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Resource Planning Model (RPM)

Capacity expansion model for a regional electric system over a utility
planning horizon (through 2035).
Key features:

— Individual generation unit and transmission line representation

— Hourly chronological dispatch and detailed system operation
representation

— High spatial resolution informs generator siting options, particularly for
renewable resources

— Flexible data structure to develop models for customized regions

— New: Models the cost and value of storage and other enabling
technologies

https://www.nrel.gov/analysis/models-rom.htm/
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RPM is
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Nodal

/ Zonal
Model e

Resource Planning
Model - Arizona

Scale 113,000,000

4] 100 200 300 mi

Bitly Raberts | 2014 JUN 10
H=N
']
3

NATIONAL RENEWABLE ENERGY LABORATORY.

-
Wi

Resource Planning
Model - Colorado

Scale 113,000,000

0 100 200 300 mi

Billy Roberts | 2014 JUN 10
=N
L} n
x|

NATIONAL RENEWABLE ENERGY LABORATORY




High spatial resolution modeling to accurately represent
renewable resource potential and quality
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Clustering techniques are applied to develop renewable resource zones that have similar output
characteristics. Each zone is characterized by:
(1) resource potential, (2) hourly profiles, and (3) grid interconnection costs NREL | S



Temporal resolution

and sampled dispatch
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(Getman et al. 2015)
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Low period does not fully

Peak day does
capture conflict between not fully capture
wind, solar, and thermal fleet capacity value
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We therefore estimate some parameters using a full year’s worth of data ... e | 7



Vari

able Generation (Wind and Solar) Capacity Value
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e Capture shift in net peak load based on top 100 hours
* Values geospatial and technology diversity
 For each NERC region:

—  Capacity value of existing VG = <LDC — NLDC>,,, ;4 / (existing VG capacity - 100)

* For each VG resource region:
— Marginal capacity value of new VG = <NLDC(6) — NLDC>,, 1o, / (6 - 100)

Fractional capacity values used in planning reserve constraints el | 8



Demand

Minimum Curtailment of Variable Generation
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Curtailment of wind and solar arises when load, net of renewable

. . " ” . ) . . .
generation (i.e., “net-load”), is below the system’s minimum generation
level. This occurs because committed thermal generators can only be
turned down to a specific minimum level.

RPM estimates curtailment rates based on regression analysis of
curtailment observed in numerous production cost model runs
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Primary outcomes are capacity

expansion and generation dispatch
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Model revenues show why resources are built
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Navajo Generating

Study, Phase 2
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Ownership of Lands Suitable for RE Development

Lands suitable for wind development
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(Barrows et al. 2016)
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Value of Storage
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Integration with Distributed Generation Market

Demand Model (dGen)

Early Adopters Mass Adopters Late Adopters
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Calculate financial Estimate maximum IZ:: Estimate rate of
performance IZ; market share adoption
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Automated toolchain enables production cost modeling

griddb

RPM
database

(PCM) of expansion plans

PIDG

PLEXOS Inputs:

Current
System

beetl PLEXOS Inputs: <>
RPM ————»1 PLEXOS Detailed
Model Year Dispatch

* reliable
* repeatable
* configurable

RPM,__

+ extensible PIDG & beetle

automated PLEXOS input construction from large-scale datasets
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Algorithmic Structure

year =year + 5

Single RPM Model Year

year = 2015 »

current / incremental
system composition

(net)load —
technical parameters —

(net)load —=
VG / dispatch profile =

8760 Methods
parameters
regression existing / marginal
model of |- curtailr%ientesgtimate
PCM results
heuristic . di
storage $ax—caEaC|t)f;i::re it
dispatch ispatch profile
net load . .
. existing / marginal
difference > . ,
calc. capacity credit

Investment & Dispatch Co-Optimization

Minimize

Subject To

(96 - 600 h)

(capital & fixed costs for new generators) +
(capital & fixed costs for new transmission) +
(variable, fuel, start-up, and carbon costs) +
{transmission hurdle rates)

load balancing (hourly chron,, 4 dispatch periods)
transmission constraints

capacity, reserve, and energy constraints

allowed locations and sizes of new assets

wind and solar resource availability

policy constraints (RPS, carbon policy)

retirements
demand growth
tech costs

fuel price

policy updates

model
‘ outputs

» Sequentially solves for resources that meet system needs at least cost
e 8760 methods adjust reduced-order co-optimization to dynamically account
for VG & storage technology capacity value and curtailment impacts
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Capacity Expansion Models Have to Balance

Operational Detail with Computational Complexity

Computation Time as a Function of Model Configuration

These have generally been improved, but the relative times are still illustrative.
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Storage Capacity Value

e Capture shift in net peak load
based on top 100 hours

| Capacity Value
Of Storage

* Values geospatial and technology
diversity

At the NERC level and by storage
technology:

— capacity value of existing storage =
<NLDC—SLDC>,,, 14, / existing capacity

demand

: . N hour
— marginal capacity value of new storage =

<SLDC(8)>10 100 / 8
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Capacity value of storage resource and required spillage (CSP

with TES) is estimated using a heuristic dispatch algorithm

Concentrating Solar
Power with Thermal
Energy Storage
(CSP with TES)

Example

applied to the NERC sub-region net load curve

Load, GWh

Load, GWh

— Load
--- Load + CSP
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— Solar Field
--- Spillage



What is the cost of misforecasting distributed PV adoption

(and what is the value of improving it)?

Change in Total Present-value System
Cost Relative to Perfect Forecast
(2017% per TWh of Electric Sales)

s

mmm  Actual Adoption
What is planned for
{misforecast)

Plans are
updated

Increase in
Energy
Penetration of
DPV by Year 15
(% of total

Plans are updated :
generation)

Distributed Photovoltaic
Capacity (GW)

Year

Example result: A large utility with 10 TWh/year of
retail sales that is planning for DPV growth of 3.5% of
total generation over 15 years could expect present-
value savings of $4.0 million by reducing its DPV
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Systematic Error in 5-year Forecast (%)

forecast uncertainty from roughly +75%/-55% to +25%.

(Gagnon et al. 2018)
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