Hybrid Utility-Scale PV-Wind Storage Plants for Dispatchability and Reliability Services

V. Gevorgian (NREL)
R. Burra (GE Global Research)
M. Morjaria (First Solar)

3rd International Hybrid Power Systems Workshop
Tenerife, Spain
May 8, 2018
Grid Integration Challenges for Variable Generation

- **Solutions**
 - Improved Market Design
 - Joint Market Operation
 - New Ancillary Service Markets
 - Transmission Expansion
 - Transmission Reinforcement
 - Advanced Network Management
 - Coal, CCGT, and Hydro Ramping
 - Balancing Areas Consolidation
 - Sub-hourly Dispatch and Scheduling
 - Improved Forecast
 - Grid Services by Renewables
 - New Grid Codes
 - RE Curtailment
 - Demand Response
 - Energy Storage
 - Hybrid Renewable Plants

- **Markets**
- **Grids**
- **Flexibility**
- **Operation**
- **Load**
- **Storage**

- **Variability**
- **Uncertainty**
- **Location-Specificity**
- **Non-Synchronous Nature**
- **Low Capacity Factor**

- **Dispatchability**
- **Flexibility**
- **Reliability**
- **Renewable Integration**
- **Transmission Services**
- **Distribution Services**
- **End-user Services**
- **Reliability and Resilience Services**
- **Islands and Microgrids**
- **Technology Hybridization**
- **Power Quality**
Thinking Beyond Conventional Variable Generation Plants

- New source of **dispatchability, flexibility, and reliability**
- Potential to disrupt the market for traditional single-technology players
- Potential transformational impacts on global renewable energy markets.
Ingredients of the Hybridization Recipe

Bringing “taller” economic wind power to areas rich in solar resource

- Unlocking wind energy’s potential across an additional 700,000 miles2
- Potential for vast expansion of the geographic areas where the complementary nature between economic solar and wind resources can exist
- Geographical overlap between solar resource-rich areas and new land areas that can achieve a minimum 30% net capacity factor for wind generation at 140-m hub height.
GE–NREL Concept

- Benefits?
- Use cases?
- How to size?
- How to control?
NREL NWTC Test Site

- Current total of more than 12 MW variable renewable generation
- 7-MVA controllable grid interface (CGI)
- Multi-MW energy storage test facility
- 2.5-MW and 5-MW dynamometers (industrial motor drives)
- 13.2-kV medium-voltage grid.
NWTC Controllable Grid Platform

NWTC Wind Turbines
- Alstom 3 MW
- GE 1.5 MW
- Gamesa 2 MW
- Siemens 2.3 MW

SunEdison
- 1 MW PV Array

First Solar
- 430 kW PV array

GE 1.25 MW / 1.25 MWh BESS

1 MW / 1 MWh BESS

Controllable Grid Interface (CGI) for Grid and Fault Simulation (7 MVA continuous / 40 MVA s.c.)

Regular grid, Xcel Bus

Controlled grid, CGI Bus

Switchgear Building

Xcel Substation

13.2 kV tie-line

115 kV

Aerial view of the site
Controllable Grid Interface

Power rating
- 7-MVA continuous
- 39-MVA short-circuit capacity (for 2 s)
- 4-wire, 13.2 kV.

Possible test articles
- Wind turbine types 1, 2, 3, and 4
- Capable of fault testing largest Type 3 wind turbines
- PV inverters, energy storage systems
- Conventional generators
- Combinations of technologies.

Voltage control (no load THD <3%)
- Balanced and unbalanced voltage fault conditions (LVTY, ZVRT and 130% HVRT)—independent voltage control for each phase on 13.2-kV terminals
- Response time: 1 ms (from full voltage to zero—or from zero back to full voltage)
- Long-term symmetrical voltage variations (+/- 10%) and voltage magnitude modulations (0–10 Hz)—SSR conditions
- Programmable impedance (strong and weak grids)
- Programmable distortions (lower harmonics 3, 5, 7)

Frequency control
- Fast output frequency control (3 Hz/s) within range of 45–65 Hz
- 50/60-Hz operation
- Can simulate frequency conditions for any type of power system
- PHIL capable (coupled with RTDS, Opal-RT, etc.)
Hybrid Systems Test and Control Validation Platform

Real-Time RODEO tool (Revenue, Operation, and Device Optimization model)—5-min time step

Optimized dispatch
Island Power System Model in RTDS (IEEE 9 Busses)

- Hybrid plant voltage FRT test
- Extreme wind ramps
- 30–40-ms response time
- BESS response times

Diagram showing:
- Load 1, Load 2, Load 3
- G1, 80 MVA
- G4, 30 MVA
- G3, 40 MVA
- G5, 30 MVA
- 230 kV grid
- 1.5MW PV
- 2.3 MW
- 1MW/1MWh BESS
- Ground Fault Emulation Logic
- CGI POI
Hybrid Plant P-Q Capability

Hybrid plant: 1.5-MW PV, 1.5-MW wind, 1-MW BESS—strong grid

BESS only—strong grid
BESS P-Q Capability

Strong grid

20% line impedance
Dispatchable Hybrid Power Plant

Main control panel

Reduced ramps

No curtailment
Examples of Dispatchable Operation Demo

Dispatchable wind power plant

\[P_{bess}(t) = P_0 - 2H \frac{df}{dt} - \frac{\Delta f}{droop} + K_P \cdot ACE \]
BESS Emulating Response of Rotating Generator

\[\Delta P = -2H \cdot f \cdot \frac{df}{dt} \]

- BESS can operate with programmable H.
- Different shapes of inertial response can be implemented.
- ROCCF deadbands are implemented to reduce impacts on battery life.

Inertia-like response
BESS Providing PFR

BESS providing 3% droop while charging

3% droop response
BESS Participating in AGC

- PSCO historic area control error (ACE) time series (updated every 4 s)
- ACE is scaled down to match BESS rating.
POD Controls by BESS

Demonstration of power oscillations damping control by BESS

\[P(t) = P_m e^{-\frac{t}{\tau}} \sin (2\pi ft + \varphi) \]
Emulated Inertial Responses of Individual Wind Turbines in a 150-MW Wind Power Plant

Frequency event emulated by CGI—1 Hz/s ROCOF

Results of 65 inertial response test by G 1.5 MW wind turbine generator
Aggregate Inertial Response of Large Wind Power Plant

BESS Enhancing Inertial Response by Wind Power

- Inertial response by wind power
- Total response (Wind + BESS)
- Energy provided by BESS
- Wind only response
- Beginning of frequency event

18 turbines operating at nominal power

Power (MW) vs. Time (sec)

Loss: ΔE = -251 MWs
Services by Multi-Technology (Hybrid) Power Plants

- Dispatchable renewable plant operation
 - Long-term and short-term production forecasts
 - Capability to bid into day-ahead and real-time energy markets like conventional generation
- Ramp limiting, variability smoothing, cloud-impact mitigation
- Provision of spinning reserve
- AGC functionality
- Primary frequency response (programmable droop control)
- Fast frequency response (FFR)
- Inertial response:
 - Programmable synthetic inertia for a wide range of H constants emulated by BESS
 - Selective inertial response strategies by wind turbines
- Reactive power/voltage control
- Black start by BESS
- Advanced controls: power system oscillations damping
- Stacked services
- Plant electric loss reduction, AEP increase
- Selective plant configuration for BESS: ability to serve a whole wind power plant, or selected rows/turbines
- Battery SOC management
- Optimization model-predictive control strategies – work in progress
- Revenue optimization – work in progress
Thank you

vahan.gevorgian@nrel.gov

www.nrel.gov

NREL/PR-5D00-71551