

Hybrid Utility-Scale PV-Wind Storage Plants for Dispatchability and Reliability Services

V. Gevorgian (NREL)

R. Burra (GE Global Research)

M. Morjaria (First Solar)

3rd International Hybrid Power Systems Workshop Tenerife, Spain May 8, 2018

Grid Integration Challenges for Variable Generation

Research

Thinking Beyond Conventional Variable Generation Plants

Flexible, Dispatchable and Reliable Renewable Generation Plants

- New source of **dispatchability**, **flexibility**, **and reliability**
- Potential to disrupt the market for traditional single-technology players
- Potential transformational impacts on global renewable energy markets.

Ingredients of the Hybridization Recipe

Bringing "taller" economic wind power to areas rich in solar resource

GE–NREL Concept

NREL NWTC Test Site

- Current total of more than 12 MW variable renewable generation ٠
- 7-MVA controllable grid interface (CGI) ٠
- Multi-MW energy storage test facility ٠
- **2.5-MW and 5-MW dynamometers (industrial motor drives)** ٠
- ٠ 13.2-kV medium-voltage grid.

Research turbines 2 x 600 kW

3 MW

GE 1.5 MW

NWTC Controllable Grid Platform

Controllable Grid Interface

Power rating

- 7-MVA continuous
- 39-MVA short-circuit capacity (for 2 s)
- 4-wire, 13.2 kV.

Possible test articles

- Wind turbine types 1, 2, 3, and 4
- Capable of fault testing largest Type 3 wind turbines
- PV inverters, energy storage systems
- Conventional generators
- Combinations of technologies.

Voltage control (no load THD <3%)

 Balanced and unbalanced voltage fault conditions (LVTY, ZVRT and 130% HVRT)—independent voltage control for each phase on 13.2-kV terminals

13.2 kV

- Response time: 1 ms (from full voltage to zero—or from zero back to full voltage)
- Long-term symmetrical voltage variations (+/- 10%) and voltage magnitude modulations (0–10 Hz)—SSR conditions
- Programmable impedance (strong and weak grids)
- Programmable distortions (lower harmonics 3, 5, 7)

Frequency control

- Fast output frequency control (3 Hz/s) within range of 45–65 Hz
- 50/60-Hz operation
- · Can simulate frequency conditions for any type of power system
- PHIL capable (coupled with RTDS, Opal-RT, etc.)

Capabilities

- Balanced and unbalanced over and under voltage fault ride-through tests
- · Frequency response tests
- Continuous operation under unbalanced voltage conditions
- · Grid condition simulation (strong and weak)
- Reactive power, power factor, voltage control testing
- Protection system testing (over and under voltage and frequency limits)
- Islanding operation
- · Sub-synchronous resonance conditions
- 50 Hz tests

Hybrid Systems Test and Control Validation Platform

Island Power System Model in RTDS (IEEE 9 Busses)

Hybrid Plant P-Q Capability

11

BESS only—strong grid

BESS P-Q Capability

Dispatchable Hybrid Power Plant

Main control panel

Reduced ramps

Examples of Dispatchable Operation Demo

Dispatchable wind power plant

 $P_{bess}(t) = P_0 - 2H \frac{df}{dt} - \frac{\Delta f}{droop} + K_P \cdot ACE$

BESS Emulating Response of Rotating Generator

$$\Delta P = -2H \cdot f \cdot \frac{df}{dt}$$

- BESS can operate with programmable H.
- Different shapes of inertial response can be implemented.
- ROCOF deadbands are implemented to reduce impacts on battery life.

BESS Providing PFR

60.05

BESS Participating in AGC

- PSCO historic area control error (ACE) time series (updated every 4 s)
- ACE is scaled down to match BESS rating.

POD Controls by BESS

Demonstration of power oscillations damping control by BESS

20

NREL

18

Emulated Inertial Responses of Individual Wind Turbines in a 150-MW Wind Power Plant

Aggregate Inertial Response of Large Wind Power Plant

Services by Multi-Technology (Hybrid) Power Plants

- Dispatchable renewable plant operation
 - Long-term and short-term production forecasts
 - Capability to bid into day-ahead and real-time energy markets like conventional generation
- Ramp limiting, variability smoothing, cloud-impact mitigation
- Provision of spinning reserve
- AGC functionality
- Primary frequency response (programmable droop control)
- Fast frequency response (FFR)
- Inertial response:
 - programmable synthetic inertia for a wide range of H constants emulated by BESS
 - Selective inertial response strategies by wind turbines
- Reactive power/voltage control
- Black start by BESS
- Advanced controls: power system oscillations damping
- Stacked services
- Plant electric loss reduction, AEP increase
- Selective plant configuration for BESS: ability to serve a whole wind power plant, or selected rows/turbines
- Battery SOC management
- Optimization model-predictive control strategies work in progress
- Revenue optimization work in progress

Thank you

vahan.gevorgian@nrel.gov

www.nrel.gov

NREL/PR-5D00-71551

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

