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Abstract. In this paper, we introduce a data-driven machine learning framework for
improving the accuracy of wind plant flow models by learning turbulence model corrections
based on data from higher-fidelity simulations. First, a high-dimensional PDE-constrained
optimization problem is solved using gradient-based optimization with adjoints to determine
optimal eddy viscosity fields that improve the agreement of a medium-fidelity Reynolds-
Averaged Navier Stokes (RANS) model with large eddy simulations (LES). A supervised
learning problem is then constructed to find general, predictive representations of the optimal
turbulence closure. A machine learning technique using Gaussian process regression is trained
to predict the eddy viscosity field based on local RANS flow field information like velocities,
pressures, and their gradients. The Gaussian process is trained on LES simulations of a single
turbine and implemented in a wind plant simulation with 36 turbines. We show improvement
over the baseline RANS model with the machine learning correction, and demonstrate the
ability to provide accurate confidence levels for the corrections that enable future uncertainty
quantification studies.

1. Introduction
Effective wind plant flow modeling requires balancing competing objectives in terms of physical
fidelity and computational cost. While high-fidelity approaches, such as large eddy simulations
(LES), are becoming increasingly common in wind energy research, they are computationally
intractable for use in wind plant design and optimization. Similarly, remote sensing devices
can now provide detailed experimental data about actual wind plant flow fields, but a rigorous
framework for incorporating these observations into flow models is lacking. In this paper we
demonstrate the use of data-driven corrections that can improve the accuracy of a less expensive
models, and propose a machine learning framework for making the corrections predictive in new
wind plant configurations or in new atmospheric conditions.

Our approach solves a high-dimensional optimization problem to find optimal corrections
to turbulence closure models that produce better agreement with data from high-fidelity
simulations. The same approach could be equally applied to experimental field data. A
nonparametric machine learning model, using Gaussian process regression, is then trained to
predict the optimal corrections. This Gaussian process (GP) can then be used to predict
corrections to the low-fidelity model given new configurations outside of the training set, such
as a different turbine rotor diameter, turbulence intensity, or inflow velocity. The resulting
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workflow provides a rigorous, repeatable, and portable way to leverage high-fidelity wind plant
data in improving the performance of reduced order models.

2. Approach to Learning Optimal Model Corrections
Our proposed approach builds on recent work in the area of using machine learning to find
optimal turbulence closure models or build corrections to existing models in Reynolds-averaged
Navier Stokes (RANS) and LES [1, 2, 3, 4, 5]. We develop a data-driven machine learning
framework to improve the performance of WindSE [6], a medium-fidelity steady-state RANS
models with 2D and 3D capabilities and nonrotating actuator disk turbine representations.
WindSE is based on the Python FEniCS package [7], a general purpose PDE solver, along with
dolfin-adjoint [8], an automatic differentiation package. The dolfin-adjoint library automates
the process of deriving adjoint equations to PDE-constrained problems implemented in FEniCS
[9]. By solving the adjoint equations to the RANS wind plant flow solver, we efficiently obtain
high dimensional gradients for use in optimizing field variables in the turbulence closure model.

2.1. Optimization Problem Formulation
WindSE is often run in 2D to reduce the computational cost during layout optimizations. The
physics of 2D and 3D turbulent flows are fundamentally different and cause different wake
recovery rates. Our data-driven corrections attempt to improve the agreement between 2D
WindSE RANS and hub-height LES to retain the computational advantages of a 2D simulation,
while emulating the physical behavior of a 3D simulation. The model corrections are determined
from the following PDE-constrained optimization problem for the best eddy viscosity field ν̃T (x):

ν̃T (x) = arg min
νT (x)
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where Ω is the whole computational domain, ui (x) is the RANS velocity, p (x) is the RANS

pressure field uLES,HH
i (x) is the LES hub height eddy viscosity field, u′iu

′
j is the Reynolds stress

tensor which we model using the gradient transport hypothesis, fAD,n is the body force from the
nth actuator disk turbine, ϕn (x) is a geometric smoothing kernel for distributing the turbine
body force, ρ is the density of air, and λ is a regularization constant.

The objective function has two terms in it, one is an error term that penalizes deviations
in the WindSE results from the time-averaged LES hub-height velocities, and the other is a
regularization term that penalizes gradients in the eddy viscosity field. This regularization
term enforces our prior belief that the eddy viscosity field should be reasonably smooth. The
optimized field, ν̃T (x), will produce the best 2D WindSE RANS results relative to the LES hub
height velocities, and will be the target of our machine learning.

The decision variable, νT (x), is a spatially varying field and as such has the same dimensions
as the number of mesh vertices (∼ 50, 000). Normally, such high dimensional optimization
problems would be intractable; however we use gradient-based optimization techniques that
efficiently find local optima. Obtaining the necessary gradients is also normally challenging.
The adjoint capabilities in FEniCS automatically calculate high dimensional gradients at a cost
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that is independent of the dimension of the control variable, enabling gradient based optimization
of high dimensional problems.

A similar field optimization problem was studied by [12] to learn the best mixing length field
in a mixing length turbulence closure model: νT = �2mix

(
2SijSij

)
. The resulting correction field

was represented as the summation of three Gaussian distributions. In this study, we do not make
a mixing length closure model assumption and instead focus on optimizing the eddy viscosity
field itself. We then learn a general, nonparameteric function to predict the eddy viscosity
field directly, without any assumption of a mixing length model or summation of Gaussian
distributions representation. In our results section, we compare the GP improvements to this
previous mixing length model.

2.2. High-Fidelity Training Data
Data from a high-fidelity computational fluid dynamics model known as the Simulator for Wind
Farm Applications (SOWFA) was used to train the machine learning correction to WindSE.
SOWFA is a large eddy simulation code that was developed at the National Renewable Energy
Laboratory (NREL) to study atmospheric boundary layer turbulent flow within a wind plant
[10]. In the simulations used in this paper, SOWFA uses an actuator disk and solves the
unsteady, three-dimensional, filtered, incompressible Navier-Stokes equations and transport of
potential temperature equations, which take into account the thermal buoyancy and earth
rotation (Coriolis) effects in the atmosphere. SOWFA takes on the order of a day to compute
30 minutes of simulation time using NREL’s supercomputer, which is prohibitively expensive
for wind plant optimization studies or real-time control applications.

In this paper, initial RANS model improvements were learned from an LES study of a single
turbine. The NREL 5MW turbine [11], which has a rotor diameter of 126 m and a hub height
of 90 m, was simulated in a 5 km × 2 km × 1 km domain with grid spacing of 10 m. The
simulations were run on 200 cores and the surface roughness was adjusted to produce a low
turbulence intensity of 5.6%. The resulting LES fields were time averaged to enable comparison
with RANS fields.

After training our machine learning model on a single turbine, we used it to predict the
turbulence closure on a simulation of a much larger wind plant with 36 turbines. This larger
plant had turbines arranged in a 6×6 regular grid with 6 rotor diameter spacing in the streamwise
and spanwise directions. The domain size was 5 km × 5 km × 1 km with grid spacing of 10 m.
The simulations were run on 500 cores. Surface roughness was also adjusted to produce similar
atmospheric conditions, with a resulting turbulence intensity of 6%. The RANS results with
our machine learning correction were then compared against these LES results, as discussed in
Section 4.

We note that although we demonstrate our framework on LES data, the optimization and
learning procedures are not restricted to only LES. Any data source could be used for learning
model improvements, such as wind tunnel data, lidar data, or any simulation data that comes
from a higher-fidelity model. Our framework is a general approach to deriving spatially-
distributed corrections and then developing a machine learning prediction of those corrections
in new simulations.

2.3. Supervised Learning of Predictive Correction Function
After determining the optimal eddy viscosity field, we solve a machine learning problem to
predict future values of the eddy viscosity in other simulations. We learn a nonparameteric
predictive function f , drawn from some hypothesis space F , that best maps from a set of inputs
θ (x) to outputs ν̃T (x). To do so, we construct a training set consisting of N input–output

pairs D =
{
θ
(
x(i)

)
, ν̃T

(
x(i)

)}N

i=1
sampled from N mesh points. This is considered a supervised

learning problem because we have training data labeled as inputs and outputs. Furthermore,
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because we seek outputs in a continuous space rather than a discrete set, this is a function
regression problem instead of a classification problem.

It is important to construct the input vectors θ in a way that makes the learned function f
applicable in different simulations. Therefore, we use only local RANS flowfield information and
avoid introducing any dependence on location or rotor diameter. The flowfield variables that
are available to be used as inputs are

θ =

[
u1, u2,

∂u1
∂x1

,
∂u1
∂x2

,
∂u2
∂x1

,
∂u2
∂x2

,
∂2u1
∂x21

+
∂2u1
∂x22

,
∂2u2
∂x21

+
∂2u2
∂x22

, p,
∂p

∂x1
,
∂p

∂x2

]
. (6)

Our desired function approximates the optimal eddy viscosity with some, possibly nonlinear,
function of these variables ν̃T ≈ f (θ) that performs well on our training data D and also
generalizes to unseen data.

We choose our function based on the principle of empirical risk minimization [13], by solving
the following optimization problem:

min
f

1

N

N∑
i=1

V
[
ν̃
(i)
T , f

(
θ(i)

)]
+ γR (f) (7)

where ν̃
(i)
T = ν̃T

(
x(i)

)
and θ(i) = θ

(
x(i)

)
, V [·] is a loss function corresponding to errors in

predicting the optimal eddy viscosity with our function f such as an �2 norm, and R (f) is a
regularization function that penalizes complex functions f . This empirical risk minimization is
used as a proxy for minimizing the true expected risk, which would depend on the unknown
joint pdf of the input and output data. By applying regularization to the learned function, we
express a preference for simpler or smoother functions that are likely to generalize well and not
overfit to the training data. A natural measure of f ’s complexity for R (·) is the norm ‖f‖F
in the Hilbert space F where f is chosen from. This is readily accomplished using Gaussian
process regression, as discussed in the following section.

3. Machine Learning with Gaussian Process Regression
To solve the supervised learning problem we model the function f as a Gaussian process (GP),
i.e. we assume a Gaussian prior probability distribution of possible functions, and condition
on observations from our training data using a kernel covariance function. In doing so, a
GP performs Bayesian inference to learn a posterior distribution of possible functions. When
evaluating a Gaussian process for a given input, it returns a normal random variable, and each
finite combination of these random variables is a multivariate normal distribution.

The GP approach to supervised learning has three remarkable features. First, the kernel
choice implicitly defines a reproducing kernel Hilbert space (RKHS), F , which is our function
hypothesis space. Based on the Representer Theorem [14], it can be shown a priori that
the solution to empirical risk minimization problems can be efficiently expressed as linear
combinations of kernel evaluations on training points. This allows for learning very nonlinear
or high dimensional functions f because the training costs scale with the number of training
points and not the function complexity. Second, it is nonparametric, meaning that we do not
impose any particular mathematical or operator form on our closure model a priori. As the GP
is provided more training data, its expressiveness or ability to capture complex functions grows.
Third, because the GP is Bayesian it provides more complete statistical information about the
prediction, including an analytical formulation of the uncertainty in the mean prediction. A
comprehensive review of Gaussian process techniques is provided in [15].

The GP representation of f is fully described by a mean function μ (·) and kernel covariance
function k (·, ·):

f (θ) ∼ GP (
μ (θ) , k

(
θ,θ′

))
(8)
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where without a loss of generality we assume μ (θ) = 0 and k (θ,θ′) is the Matern kernel. We
use a Matern kernel of degre 3/2, which is a product of a linear polynomial and an exponential
function, given as

kν=3/2 (r) =

(
1 +

√
3r

l

)
exp

(
−
√
3r

l

)
(9)

where r = |θ − θ′| is the distance between inputs and l is a lengthscale hyperparamter that is
tuned by optimizing the log-likelihood of the hyperparameter.

After conditioning on the training data D, we arrive at the posterior distribution used to
predict the eddy viscosity at a new input vector θ∗:

f (θ∗ | D) ∼ GP (
μf |D, kf |D

)
(10)

μf |D (θ∗) = kT
∗K

−1y (11)

kf |D (θ∗,θ) = k (θ∗,θ∗)− kT
∗K

−1k∗ (12)

k∗ = [k (θ∗,θ1) , . . . , k (θ∗, θN )] (13)

K = Kij = k (θi,θj) for i, j = 1, . . . , N (14)

Here the new vector k∗ is the vector of kernel function outputs when evaluated with the desired
input point θ∗ and each of the training points. Similarly, the N × N matrix K contains the
kernel covariance function evaluated for each combination of the training points. The vector

y = yi = ν̃
(i)
T contains the training data outputs.

While the GP model is insensitive to the complexity of the function f , its costs do scale
with the number of training points N . This arises in an offline step where the matrix K
must be inverted to solve K−1y, and in several online prediction steps such as calculating
k∗ and the matrix-vector multiplication of K−1 and k∗. The offline training is not an issue for
implementation in a computational fluid dynamics code, however the online components must be
recomputed at each location in the flow. To reduce the online computational cost, we randomly
select N = 100 points from the complete set of mesh vertices, of which there are around 50,000,
and constrain our training data to this subset of the complete data. Future work on a more
principled selection of these points could be fruitful.

After conditioning on the training data, the GP makes both a mean prediction of the eddy
viscosity, and provides an estimate of the uncertainty in the prediction. As seen in Eq. 10, the
posterior uncertainty is determined by the prior covariance predicted by the kernel, reduced by
the information gained by the nearby training points. This allows for further model development
and a sampling strategy for selecting high fidelity training points to minimize the uncertainty
in the machine learning prediction.

4. Optimization Results and Prediction of Wind Plant Flows
The optimized eddy viscosity field is shown in Figure 1. This eddy viscosity should produce
the best agreement with LES regardless of which RANS model produces it, i.e. a mixing length
model, a k− ε model, or a Gaussian process machine learning model. The desired eddy viscosity
features strong mixing in the wake shear layer that peaks approximately 10 rotor diameters
downstream of the turbine. It also features a localized increase in mixing immediately upstream
of the rotor. The Gaussian process model was trained on N = 100 locations and then used to
predict the eddy viscosity at every point in the domain. The GP is able to capture the strong
mixing in the shear layer and the correct location of the peak, but slightly over predicts the
mixing in a broad area upwind and transverse to the rotor diameter. We also compare to the
eddy viscosity produced by the original mixing length model in WindSE. The mixing length
model generally underpredicts the eddy viscosity and lacks the spike in mixing downstream of
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Figure 1: The top row contains a comparison of LES and RANS velocity fields computed from
the Gaussian process prediction and the original mixing length RANS model. In the bottom
row, the left panel shows the eddy viscosity field that produces optimal agreement with LES,
the middle panel shows the eddy viscosity prediction from the Gaussian process trained on 100
mesh points, and the right panel shows the eddy viscosity field produced by the mixing length
model. The Gaussian process is alble to capture the increase shear layer mixing, particularly in
the far wake, while the mixing length model overpredicts the eddy viscosity in the near wake
and underpredicts in the far wake.

the rotor. It also overpredicts the eddy viscosity just at the rotor and in the near wake shear
layer.

One valuable feature of Gaussian processes is that they provide analytical estimates of
the uncertainty in predictions because each input evaluation actually returns a Gaussian
distribution. This provides a confidence level in the machine learning prediction that can be
useful for the flow modeling practitioner, as well as a useful tool in experimental design for
selecting new training points. Figure 2 shows the GP eddy viscosity mean prediction, the
standard deviation for that prediction, and the error in the mean viscosity prediction relative
to the true optimal. The strong correlation between the regions with high uncertainty and high
errors shows that the GP model fails gracefully, i.e. it can correctly anticipate and inform users
about regions where the model is likely to fail.

These regions of high uncertainty typically occur where the GP is extrapolating outside of
training points, which is a usually problematic region for surrogate models. Here we see that
when asked to extrapolate outside of training points, the GP mean prediction decays back to
the mean value, which is usually assumed to be 0 or the mean of the training points, at a rate
determined by the covariance kernel length scales. At the same time, the GP reports a growing
standard deviation at those extrapolated points, resulting in the broad region of average viscosity
and elevated uncertainty upwind of the rotor.

To demonstrate the predictive capability of the machine learning model, we implement the
GP model on a wind plant simulation with 36 turbines. As shown in Figure 3, the GP model is
able to predict eddy viscosity corrections for unseen data arising in simulations unrelated to the
training set. This predictive ability is a crucial characteristic of machine learning models that
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Figure 2: A valuable feature of Gaussian processes is that they provide analytical estimates
of the prediction uncertainty. The left panel shows the mean GP prediction, the center panel
shows the estimated standard deviation, and the right panel shows the error of the GP prediction
relative to the true value. The strong correlation between the standard deviation prediction and
the error demonstrates that the GP provides an accurate assessment of its own uncertainty.

Figure 3: The GP model is truly predictive, and can be used in wind plant simulations that
are unrelated to the training set, such as the 36 turbine wind plant shown above. This results
in plant-wide improvements to the predicted velocity field. As shown in the right panel, this is
difference is particularly apparent in the wake structure and shear layer behavior relative to the
original mixing length model.

distinguishes them from ordinary model tuning. The resulting plant flowfield is improved from
the original mixing length model, and produces structured changes in the wake shear layers.
Because the trained GP only uses local flowfield information as inputs, it can easily adapt to
new turbine layouts or different rotor diameters without requiring retraining.

5. Conclusion
This paper has demonstrated a data-driven framework for learning corrections to lower
fidelity models from higher fidelity data sources such as LES or experimental data. The
desired corrections were identified by solving a high-dimensional optimization problem for
a turbulence closure field variable. While such high-dimensional optimization problems are
typically challenging, the adjoint capabilities in WindSE enabled an efficient gradient-based
optimization of a high dimensional (∼ 50000) variable.

Instead of assuming a fixed turbulence closure model as commonly done, we learn a general,
nonparametric function to predict the eddy viscosity with no a priori assumptions about
its mathematical form. The closure function was found by solving a supervised learning
problem using training points sampled from the optimized correction field. A Gaussian process
representation of the closure function provided a Bayesian inference pathway to learning the
nonparametric function and enabled efficient learning of highly nonlinear representations.
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The GP prediction of the eddy viscosity field captures many important features of the desired
correction with just 100 training points, such the elevated mixing in the far wake shear layer.
Additionally, the GP showed a remarkable ability to predict its own errors thanks to the
analytical expression for the variance provided by the GP formulation. This information is
invaluable in uncertainty quantification studies and can also enabled informed selection training
points in experimental design studies.

Finally, the GP model is truly predictive. It showed improvements to the simulation of a 36
turbine wind plant relative to the original mixing length model when only trained on a single
turbine. This predictive ability is enabled by the choice of local field variables, like velocities,
pressures, and their gradients, as inputs to the GP model. Because none of the inputs are
domain or turbine specific, the GP model can be applied to any layout or turbine configuration,
yielding a flexible tool for improving wind plant modeling.
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