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Active Power Control for Wind Farms Using Distributed Model
Predictive Control and Nearest Neighbor Communication

Christopher J. Bay,1,3 Jennifer Annoni,2 Timothy Taylor,1 Lucy Pao,3 and Kathryn Johnson1,2

Abstract— Wind plant control strategies, including axial in-
duction and wake steering control, aim to improve the perfor-
mance of wind farms, including increasing energy production
and decreasing turbine loads. This paper presents a linear
model of wake characteristics for use with a distributed model
predictive control method for the purpose of optimizing axial
induction and yaw misalignment setpoints. In particular, we
use an iterative, distributed control method with nearest neigh-
bor communication to coordinate turbine control actions that
account for wake interactions between turbines. Simulations
of the model and controller are performed on a 2×3 array
of turbines using a modified version of the FLOw Redirection
and Induction in Steady-state (FLORIS) model to dynamically
track the relevant wake parameters. Preliminary results show
the controller’s ability to follow an arbitrary wind farm power
reference signal for the purpose of providing active power
control (APC) ancillary services for power grid stability. This
efficient distributed control strategy can enable real-time wind
farm optimization and control, even for very large scale farms.

I. INTRODUCTION

Wind energy has remained a consistent focus of renewable
energy development with installed global capacity increasing
by five-fold over the last decade [1]. As wind provides more
and more of the energy the world consumes, opportunities
remain to further decrease the levelized cost of wind energy,
increasing its competitiveness with traditional sources. This
has led to significant research into effective wind turbine
operation and control with a recent focus into control at the
wind farm level. The goals of these efforts have included
structural load reductions to increase equipment life, maxi-
mization of power production, and more robust integration
of wind into the energy grid [2], [3].
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A recent area of interest has been turbine wake control.
As wind turbines extract power, wind speeds are reduced
and turbulence is increased within the wakes. The reduced
speeds decrease the potential power that can be produced
at the downstream turbines, resulting in suboptimal power
production for the wind farm. One strategy to coordinate
the wakes has been through axial induction control [4], [5].
Upstream turbines reduce their energy capture so that greater
wind energy and less turbulence reach the downstream
systems. Another strategy includes wake steering [6], [7].
Wake steering involves misaligning the rotor of the turbine
with the incoming wind direction to deflect the wakes away
from downstream turbines.

Additionally, there has been growing interest in active
power control (APC), in which the wind farm manages
its power output in accordance with requirements from the
grid. There are many types of APC [8], but one example
is automatic generation control (AGC). In AGC, a wind
farm tracks a power reference signal typically given by
a transmission system operator (TSO). This tracking can
help balance the electrical grid or provide a power reserve
allowing for quicker responses to changes in demand beyond
traditional power generation equipment.

To accomplish these strategies, several control methods
have been proposed. One study evaluated combinations of
torque and pitch control, coupled with static optimal yaw
setpoints, to track a power reference signal across the wind
farm [9]. The authors concluded that a wake model is
needed to predict the available power in the wind more
effectively. The authors of [10] expand on the work of [9] and
propose a gain-scheduled proportional-integral controller as
a closed-loop supervisory solution to distribute the power
reference among turbines. The authors showed improved
tracking behavior for the total power output of the farm in
highly waked cases.

Gionfra, et al. [11], examined the available power gain
when using a wake model with model predictive control
(MPC) to represent the interactions between turbines. Al-
though this work includes a wake model in the central
controller, it focuses on axial induction and ignores the
effects of wake steering. Vali et al. [12] also used MPC with
an adjoint-based approach, similar to [13], for computing
the gradient of the system, where they sought to maximize
power. Even though the authors use an efficient adjoint
method, the authors keep measurements of the entire wind
field that can become cumbersome as the size of wind farms
grow. The authors also only consider axial induction control.

Another MPC approach aims to provide secondary fre-
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quency regulation for the grid by optimizing thrust co-
efficients of individual turbines [14]. To enable real-time
implementation, the method utilizes a time-varying one-
dimensional wake model in which rows of turbines are con-
sidered to behave similarly. This assumption greatly speeds
the computation but neglects differences in the incoming
wind profiles. This assumption also requires turbines to be
fully waked, which eliminates wake steering and is only valid
for limited wind directions.

Nearly all of the aforementioned control solutions require
a centralized controller, which can become infeasible as the
size of a wind farm grows. One potential solution is to
distribute the problem into smaller subsystems. Additionally,
this eliminates single points of failure and increases modu-
larity as turbines are maintained or repaired. However, there
has been very little work completed in the area of distributed
wind farm controls. The work by Spudić et al. [15] proposed
using two distributed optimization methods to provide power
reference tracking and structural load reduction. While the
results are promising, the solution does not use a wake model
and requires a global problem to be formulated. Also, [16]
used a linearized flow field with an H2 optimal distributed
controller; however, the method is computationally complex
and not suitable for large wind farms.

In this paper, a distributed model predictive control
(DMPC) method, known as Limited-Communication DMPC
(LC-DMPC) [17], is applied to the wind farm control prob-
lem. A linear model, including time-varying axial induction
factors, yaw misalignments, and wake characteristics, is
described and used by the LC-DMPC method to determine
optimal axial induction and yaw control actions. A key
contribution of this formulation is that it does not require a
centralized model or problem formulation, as each subsystem
solves its own local objective function. Each subsystem need
only communicate with its nearest neighbor. Preliminary
simulation results are presented showing the controller’s
ability to track an arbitrary power reference signal.

The main contributions of this paper are the development
of a novel linear wind farm model that includes wake
characteristics and the formulation of the wind farm control
problem that optimizes axial induction and yaw misalign-
ment in a dynamic, distributed fashion.

The rest of the paper is organized as follows. Section II
presents the developed wake model for the control problem.
The control structure is detailed in Section III. Simulation
of the proposed method is performed on a 2×3 turbine
grid and is described in Section IV. Preliminary results are
presented in Section V. Lastly, conclusions and future work
are discussed in Section VI.

II. WAKE MODEL

As mentioned in Section I, turbines can have significant
impacts on each other through wake interactions. As an
upwind turbine extracts power, the wind velocity that the
downstream turbine sees is reduced and turbulent structures
are introduced into the wake. To effectively control for
these effects at the wind farm level, a suitable wake model

is needed. What follows is a derivation of a wake model
to enable the use of the LC-DMPC algorithm as well as
practical computational efficiency for implementation.

A. Wake Deflection

When a turbine is yawed away from the incoming wind
direction, the rotor causes a deflection in the turbine’s wake
away from the downstream centerline behind the turbine.
Jimenez, et al. [18] proposed an empirical correction for the
wake deflection based on the yaw error, θ, and the thrust,
CT . First, the angle of wake deflection, α, is defined as:

α =
cos2(θu) sin(θu)CT,u

2
(
1 + kd

(
x
D

))2 (1)

where kd is the wake deflection coefficient, x is the distance
downstream between the interacting turbines, and D is the
rotor diameter assumed to be constant across the wind
farm. The yaw misalignment and thrust coefficient from the
upstream turbine are represented as θu and CT,u, where u

denotes values from the upwind turbine. From actuator disk
theory, the thrust coefficient can be defined as a quadratic
relationship dependent on axial induction factor a [19]:

CT,u = 4au(1− au) (2)

Using the small angle approximation, the wake deflection
can be approximated by δ = αx. Also, two approximations
are made to further linearize the system:

cos2(θu) sin(θu) ≈ 0.125θu CT,u ≈ 3.0au (3)

where the first approximation is valid up to 15° of yaw
misalignment. Substituting (1) and (3) into δ = αx, the wake
deflection is:

δ =
0.125θu3.0au

2
(
1 + ke

(
x
D

))2x (4)

Equation (4) can be represented as:

δ = c1θuc2au (5)

where the constants c1 and c2 are defined as:

c1 = 0.0125 c2 =
3.0x

2
(
1 + k

(
x
D

))2 (6)

With δ(t), θ(t), and a(t), Equation (5) can be written as:

δ(t) = c1θu(t− τ)c2au(t− τ) (7)

where τ is the amount of time it takes for the effects
of the control actions of the upstream turbine to reach
the downstream turbine. Using Taylor’s frozen turbulence
hypothesis [20], it is assumed that τ is:

τ =
x

U∞
(8)

where U∞ is the freestream velocity and it is assumed that
the flow is advected at this speed. Lastly, after taking the
derivative, linearizing about θ̄u = 0 and a nonzero axial
induction factor āu, and discretizing, the equation for wake
deflection becomes:

δk+1 = δk + c1c2āu
(
θku − θk−1

u

)
(9)
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where the superscript k denotes the discrete timestep, the
size of which is equal to τ . This value of τ is chosen to to
use the least amount of states as possible for this model. In
future work, smaller timesteps will be considered.

B. Wake Width
As turbine wakes move downstream, the wake width

expands. This is due to a rotation induced on the wake from
the opposing force generated by the rotor blades on the air.
Bastankhah and Porté-Agel [21] define the wake width as a
linear expansion based on turbulence theory:

σ = kyx+D

√
1

8
(10)

where ky is the wake expansion coefficient, defined in terms
of turbulence intensity, To, the upstream axial induction
factor, au, and the downstream distance, x, between turbines:

ky = 1.4T 0.1
o

( x
D

)−0.1

au + 0.004 (11)

where 1.4, 0.1, and -0.1 are empirical constants tuned for
this model. With (11), (10) becomes:

σ(t) = c3au(t− τ) + c4 (12)

c3 = 1.4T 0.1
o

( x
D

)−0.1

x c4 = 0.004x+D

√
1

8
(13)

Taking the derivative and discretizing provides:

σk+1 = σk + c3
(
ak−Nu − ak−N−1

u

)
(14)

C. Wake Centerline Velocity
The wake centerline velocity is defined using the

Park/Jensen model [22]:

u = U∞

(
1− 2au

(
D

D + 2kex

)2
)

(15)

Equation 15 can be written as:

u(t) = c5 + c6au(t− τ) (16)

c5 = U∞ c6 = −2U∞

((
D

D + 2kex

)2
)

(17)

where ke is the wake expansion coefficient, different from ky .
Again, taking the derivative and discretizing gives a linear
form of the equation suitable for the LC-DMPC control
method:

uk+1 = uk + c6
(
ak−Nu − ak−N−1

u

)
(18)

D. Yaw and Thrust Control Models
To simulate the dynamics of the local yaw and thrust

controllers, simple proportional controllers are used for each.
The discrete time yaw and thrust controllers are given by:

θk+1
S = θkS +Kθ

(
θkS − θS,r

)
(19)

ak+1
S = akS +Ka

(
akS − aS,r

)
(20)

where θr is the reference to the yaw controllers, ar is the
reference to the thrust controllers, and S is either u or d for
upstream or downstream systems. Future work will include
more sophisticated PID controllers for these local actions.

E. Power Output

The output of the model is the power produced by each
turbine. Starting with the nonlinear computation of the ef-
fective velocity used in FLORIS [23], a simplification of the
area overlap of a wake with the rotor disk can be made to
calculate the effective velocity as:

Ukd =

(
1 +

δk − Y
σk

)
uk (21)

where Y is the relative difference between the y locations of
the upstream and downstream turbines. The linearization of
(21) is valid up to 15° of yaw. With (21), a linearized power
equation can be obtained. Turbine power is defined as:

P k =
1

2
ρACkP,d cos2(θkd)(Ukd )3 (22)

where ρ is the air density and A is the swept rotor area.
The power coefficient can be defined as CP = 4ηa(1− a)2,
where η = 0.8 is a correction term defined by Gebraad [7].

Linearizing (22) about the operating point θ̄u,d = 0◦

would result in the θ̄d term going to zero due to a sin(θ),
which is undesirable. As such, an approximation was made
for the linearization term associated with θ̄d such that
cos2(θ̄d) ≈ (1−0.002θd). Under this assumption, the model
is only valid for yaw control over [0°,15°]. With the above
approximation, the linearization of (22) gives:

P k =
1

2
εU3

eff +
3

2
εζ
Ueff
σ̄

(δk − δ̄)

+
3

2
εζ

[
Ueff (Y − δ̄)

σ̄2

]
(σk − σ̄)

+
3

2
εζ

[
1 +

δ̄ − Y
σ̄

]
(uk − Ueff )

+
1

2
ρA cos2(θ̄d)U

3
eff

[
12ā2

d − 16ād + 4
]

(akd − ād)

− 1

10
ρA
[
4ηād(1− ād)2

]
U3
eff (θkd − θ̄d)

(23)
where ε and ζ are defined as:

ε = ρA
[
4ηād(1− ād)2

]
cos2(θ̄d) (24)

ζ =

[(
1 +

δ̄ − Y
σ̄

)
Ueff

]2

(25)

and Ueff is the effective rotor speed as calculated by
FLORIS. In the next section, (9), (14), (18), (19), (20), and
(23) will be composed into a linear state-space model.

III. DISTRIBUTED CONTROL STRUCTURE

As mentioned in Section I, a distributed model predictive
controller is used to optimize the wind farm performance.
The specific algorithm used is Limited-Communication
DMPC (LC-DMPC), presented in [17]) is an iterative, co-
operative algorithm for linear discrete time systems. Where
it stands out is that for it to converge, only directly coupled
subsystems need to share local information and adjust their
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Fig. 1. Hierarchy for LC-DMPC algorithm [17].

actions accordingly without a solution of a centralized prob-
lem. A brief explanation of the algorithm will be included
here and the reader is referred to [17] for more details.

Fig. 1 shows an overview of the LC-DMPC structure.
The overall system is organized into subsystems that consist
of plants, which in the case of wind farms are individual
turbines and their local controllers. During an iteration, the
local subsystem, i, shares its predicted effects, zi, with its
downstream neighbors and receives its upstream neighbors’
effects as a disturbance vector, vi. These effects are used
to calculate sensitivities, γi+1, of the downstream system to
the upstream system’s actions, and these sensitivities are then
passed to the upstream systems, as ψi, on the next iteration.
The subsystem then solves the updated local optimization
using the sensitivities and communicates its new effects to
the downstream systems for the next iteration.

A. Linear State-Space Model

For the LC-DMPC algorithm, the system equations must
be in a linear state-space representation of the form:

xk+1
i = Aix

k
i +Bu,iu

k
i +Bv,iv

k
i

yki = Cy,ix
k
i

zki = Cz,ix
k
i +Dz,iu

k
i

(26)

where xki are the states, uki are the control inputs, and vki
is the disturbance vector from upstream systems. The state
equation is defined in (27). The output of the local plant
yki is power, given by (28). The vector containing disturbing
effects for downstream systems is zki given in (29).

Equations (9), (14), (19), and (20) were used to generate
the state matrices Ai, Bu,i, and Bv,i as shown in Equation
(27), where Kθ and Ka are the proportional gains for the yaw
and axial induction controllers, respectively. The constants
c1,i, c2,i, c3,i, and c6,i are derived from the linearized,
discrete equations and are defined in (6), (13), and (17).



δk+1
i

σk+1
i

uk+1
i

θk+1
i

θki
ak+1
i

aki


︸ ︷︷ ︸
xk+1
i

=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 +Kθ 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 +Ka 0
0 0 0 0 0 1 0


︸ ︷︷ ︸

Ai



δki
σki
uki
θki
θk−1
i

aki
ak−1
i


︸ ︷︷ ︸

xk
i

+


03x2

−Kθ 0
0 0
0 −Ka

0 0


︸ ︷︷ ︸

Bu,i

[
θki,r
aki,r

]
︸ ︷︷ ︸
uk
i

+


c1,ic2,iāu,i −c1,ic2,iāu,i 0 0

0 0 c3,i −c3,i
0 0 c6,i −c6,i

04x4


︸ ︷︷ ︸

Bv,i


θk−Ni,u

θk−N−1
i,u

ak−Ni,u

ak−N−1
i,u


︸ ︷︷ ︸

vki
(27)

The downstream effect equation zki from (26) and its
matrices Cz,i and Dz,i are defined as:[

θki θk−1
i aki ak−1

i

]T︸ ︷︷ ︸
zki

=
[
04x3 I4x4

]︸ ︷︷ ︸
Cz,i

xki + 04x2︸︷︷︸
Dz,i

uki

(29)
During the optimization, the predicted values of yi, zi,

and vi will be generated along the prediction horizon of
length Np. These predictions can be stacked to provide
the vectors Yi, Zi, and Vi. Stacking the Vi and Zi vectors
across all the subsystems and constructing an interconnection
matrix, Γ, that correctly captures the coupling between
systems, upstream and downstream vectors can be related
as V = ΓZ. For the wind farm layout simulated in this
paper, and assuming no change in the wind direction, the
interconnections are:

V1

V2

V3

V4

V5

V6

 =


0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0




Z1

Z2

Z3

Z4

Z5

Z6

 (30)

where 0 and I are block matrices of appropriate dimension.

B. Subsystem Models with Prediction Horizon

As the subsystems described in (26) are used along the
prediction horizon, the predicted output values of Yi and Zi

Cy,i =
[

3
2εiζi

Ueff

σ̄i

3
2εiζi

(Yi−δ̄i)Ueff

σ̄2
i

− 3
2εiζi

[
1 + δ̄i−Yi

σ̄i

]
− 2

5ρAηād(1− ād)
2U3

eff 0 1
2ρA cos2(θ̄d)

(
12ā2

i − 16āi + 4
)
U3
eff 0

]
(28)
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can be represented as:

Yi = Fy,ix
k
i +My,iUi +Ny,iVi (31)

Zi = Fz,ix
k
i +Mz,iUi +Nz,iVi (32)

where the system matrices F , M , and N are defined in [17].

C. Cost Function and Optimization

The cost function for the LC-DMPC algorithm has the
standard quadratic error and control terms, but to facilitate
the cooperation between the subsystems and the convergence
to the centralized solution, an additional term, ψTi Zi, is
added. This term scales with the sensitivities, ψ, that cor-
relate with the interactions between the subsystems. The
distributed optimization can be stated as:

min
Ui

Ji = eTi Qiei + UTi SiUi + ψTi Zi

s.t. (39), (40), & Ui,min ≤ Ui ≤ Ui,max
(33)

where ei is the error from the power tracking signal, Qi
is the weight penalizing the error term, Ui are the control
actions, Si is the weight penalizing the control term, ψi is
the penalty passed from the downstream system, and Zi is
the vector of disturbing inputs to the downstream system.

Quadratic programming can be used to solve the optimiza-
tion after reformulating the problem to:

min
Ui

Ji = UTi HiUi + 2UTi Fi + V Ti EiVi + 2V Ti Ti

Ai,limUi ≤ Bi,lim
(34)

where

Hi = MT
y,iQiMy,i + Si, Ei = NT

y,iQiNy,i

Fi = MT
y,i

[
Fy,ix

k
i +Ny,iVi + rki

]
+ 0.5MT

z,iψi

Ti = NT
y,iQi

[
Fy,ix

k
i − rki

]
+ 0.5NT

z,iψi

Ai,lim =
[
INp

,−INp

]T
, Bi,lim =

[
UTi,minU

T
i,max

]T
The term ψi in the optimization comes from the sensitivity

of the downstream system to the upstream system’s deci-
sions. For example, if the current subsystem i is downstream
of the subsystem i−1, the sensitivity, γi, is computed as the
sensitivity of the downstream system’s cost function to the
upstream disturbance vector.

γi =
∂Ji
∂Vi

= 2
[
Ei−1Vi + Ti +NT

y,iQiMy,iUi
]

(35)

Stacking these vectors of γi, the communication of the
sensitivities to the upstream systems as inputs ψi can be
described with the interconnection matrix as ψ = Γγ.

In order to ensure convergence of the communication
dynamics, a convex combination of the control action is used,
given by:

uk+1 = wuk + (1− w)ukQP (36)

where uQP is the optimal control action determined by the
quadratic program and w ∈ [0, 1) is a tuning parameter. For
more information and a proof of stability, see [17].

Fig. 2. Simulation of the wakes with FLORIS, showing the layout of the
turbines given in [12].

IV. SIMULATION

Simulations of the control method were performed using
the same wind farm layout shown in Fig. 2 from [12],
as it provides for varying wake conditions in contrast to
a regular grid. The simulation environment is a nonlinear
dynamic model using a modified FLORIS model [23]. In
particular, FLORIS was modified to include the dynamics
of the aerodynamic interactions by including a time delay
between turbines. The wake of the turbines is assumed to
propagate with τ = 52 s, as shown in (8), which is based on
Taylor’s frozen turbulence hypothesis [20]. The free stream
velocity was set to be 12.0 m/s. The linearization points were
set around an axial induction factor of 0.15, a yaw misalign-
ment of 0°, a wake deflection of 0 m, a wake half-width of
79.2 m, and wind velocities as determined by FLORIS at
each turbine. The axial induction had to be reduced so that
there is room for the wind farm power to fluctuate up and
down with the AGC signal. The specific AGC signal used
in the simulations is the RegD signal defined by the PJM
Interconnection [24], a regional transmission organization
located in the eastern United States. The RegD signal is a
quickly changing signal used by PJM for APC qualification.
The signal is 40 minutes long and was up-sampled to the
simulation’s timestep τ .

Fig. 3. Results of individual turbines tracking their power reference signals.
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Fig. 4. The wind farm power tracking error.

V. RESULTS

Preliminary results from the simulations verifying AGC
tracking capability of the LC-DMPC approach are shown
in Fig. 3. Each of the turbines attempts to track its power
reference signal, with two turbines shown due to space con-
straints. The predicted output from the LC-DMPC follows
the reference very well while the power output from the
FLORIS model shows some discrepancies, though for a
linear model it shows good promise and tracking at the
farm level. The discrepancies are most likely due to the
assumptions that were made in the linear model development
as this is a highly nonlinear problem.

The overall tracking error is shown in Fig. 4. For this
simulation, the maximum tracking error was 2.72%. The
authors consider this performance proof of the LC-DMPC
approach’s potential for APC of wind farms and will pursue
advancements through future work as described below.

VI. CONCLUSIONS & FUTURE WORK

This paper presented a linear wake model and distributed
control method for the purpose of optimal wind farm control.
The model predicts the effects turbines have on one another
through wake interactions. The distributed control algorithm
solves a local optimization objective at each turbine, greatly
reducing the computational burden compared to a centralized
optimization on large-scale wind farms. This is a key chal-
lenge of implementing real-time control on wind farms and
may help take the optimization from infeasible to practical.
Preliminary results show the controller’s ability to track an
arbitrary power reference for the purpose of providing grid
services.

In the future, the authors plan to expand the model to
include tilt of the turbine rotor to allow for vertical wake
steering in addition to horizontal wake steering. Also, the
inclusion of uncertainty in the wind is an important subject
to offset some of the simplifications due to the linearizations.
The authors would also like to implement an estimator to
help address some of the model error seen in the results.
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