The Energy Systems Integration Facility (ESIF) is the nation’s premier facility for the research, development, and demonstration of the integrated technologies and strategies shaping our energy system. It was established in 2013 by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy on the campus of its National Renewable Energy Laboratory (NREL), and it is a designated DOE user facility.

Now in its fourth year of operation, the ESIF continues to address the key hurdles facing energy systems integration (ESI). At the ESIF, we’re examining ways to enable the grid to be more reliable, resilient, secure, and affordable with a diverse generation portfolio including high penetrations of renewable energy. For instance, we’re working on several ESIF High Impact Projects, research partnerships with industry that were selected for their potential to impact our ability to provide clean, reliable, and affordable energy nationwide. For Fiscal Year 2017, these projects included advanced integration technologies such as microgrids, advanced inverters, smart buildings and communities, and energy storage.

Modernizing our electric grids will also mean allowing consumers to be active participants on the grid, whether it’s by using smart appliances that can provide flexibility during times of peak power consumption, advanced inverters that can provide voltage support to the distribution system, or electric vehicles that coordinate charging times with the grid or serve as power sources through vehicle-to-grid technology. In many ways, these are uncharted territories, requiring new ways to coordinate all of the players to maximize the potential of these technologies for grid reliability and efficiency. All of these projects are helping to solve different aspects of DOE’s Grid Modernization Initiative (https://go.usa.gov/xnM6), a coordinated approach among DOE and the national laboratories to develop the tools and technologies to measure, analyze, predict, protect, and control the grid of the future.

In addition to developing and advancing new technologies, we’re making them more secure within the power system. With the increasing use of information technology and operational technology to manage and control the grid and consumer devices such as advanced inverters, smart appliances, and electric vehicles, the grid’s cybersecurity surface has expanded. Anything connected to the Internet is a potential target for hackers, and diligence to protect the grid is essential because a loss of power can have severe economic, health, and national security impacts. At the ESIF, we’re examining not only ways to assess vulnerabilities in the existing system but also ways to improve our energy system’s cybersecurity posture going forward.

Award-winning lab space, the most advanced equipment, and specialized scientists and engineers who can help move new technologies forward make the ESIF a unique connecting point where breakthrough research in ESI is happening every day. The best part is, as a DOE user facility, the ESIF is open to partners from utilities to cities, academia to manufacturers. In closing, I extend an invitation, and reiterate the message that has guided the ESIF since it opened more than four years ago: bring us your challenges, and let’s solve them together.

Sincerely,

Juan Torres
Associate Laboratory Director for Energy Systems Integration at NREL

Martha Symko-Davies
Laboratory Program Manager for Energy Systems Integration at NREL
High Impact Projects

Featured throughout this report are the 2017 ESIF High Impact Projects. These industry research partnerships were selected to:

- Demonstrate the use of multiple technologies (such as storage, wind, solar, hydrogen, and buildings)
- Address the challenges outlined in DOE’s Grid Modernization Multi-Year Program Plan
- Demonstrate region-wide or company impact as well as national scalability
- Provide lessons that could be implemented across the United States

Central to the mission of the ESIF is to explore new areas of research that push the boundaries of conventional thinking. The 2017 portfolio of High Impact Projects included two projects that push into important, new mission spaces for DOE. NREL’s partnership with Southern California Gas is looking at a new way to convert excess generation from renewable sources into methane gas that can be stored and transported through our existing gas infrastructure. Our work with Panasonic Enterprise Solutions is helping developers, manufacturers, and utilities understand the interrelationships of energy use among buildings, transportation and generation so that they can build communities that are clean, sustainable and “smart.” While these projects are forward-looking, they are also timely and practical, solving some of the most complex challenges of modernizing our grid.

Look for the High Impact Project icon throughout the report.
NREL, Bosch, and Bonneville Power Administration Analyze Residential Energy Storage and Sizing

NREL is partnering with Bosch and Bonneville Power Administration to develop cyber-secure home automation algorithms that deliver reliable demand response and allow for cost-effective, easy-to-use, building-integrated battery systems for homeowners. The home automation system integrates controllable air conditioners, water heaters, dishwashers, refrigerators, washing machines, dryers, rooftop solar photovoltaic (PV) systems, and home batteries—all allowing homeowners to get better feedback on their home’s energy use, manage energy loads, and ultimately save money by right-sizing their battery systems.

Building-integrated batteries currently have no sizing standards or broad application guidelines. The resulting products are difficult to compare, leading to uncertainty in value proposition and battery life span—which limit market uptake. Establishing practical guidance for sizing, use case expectations (cycling rates, depth of discharge), and economic outcomes could stimulate sales and competition in the home battery systems markets while accelerating energy storage in markets where it could provide immediate value for manufacturers, utilities, and consumers.

NREL’s key contributions to this multi-industry challenge include developing foundational machine-learning algorithms for easy-to-operate residential systems, developing innovative strategies for complex modeling situations, and defining methods to bring grid-level cybersecurity and resiliency requirements to residential devices. Leveraging this research, NREL will then develop market guidance for home battery sizing.

Project Spotlight
Project Spotlight

NREL Assists Hawaiian Electric Companies with Key Standards and Tariff Documents, Boosting Deployment of Grid-Supportive Inverters

NREL helped Hawaiian Electric Companies (HECO) develop a Source Requirements Document (SRD)—a key technical standards document for Underwriters Laboratories (UL) 1741—that allows PV inverter manufacturers to certify grid-supportive inverters for deployment. HECO had required that inverters connected to their electric distribution system provide voltage and frequency ride-through—staying online for a brief period during grid disturbances to help the grid recover quickly—and operate at a fixed power factor of 0.95 absorbing, which assists with voltage control. NREL worked with HECO and its forum of inverter industry stakeholders to develop the SRD, aiming to harmonize requirements with the ongoing revisions to Institute of Electrical and Electronics Engineers (IEEE) 1547 and UL 1741 SA, which will define new interconnection rules for distributed energy resources (DERs).

Project Spotlight

NREL Leads Work on Revised IEEE 1547, a Key Standard for Renewable Energy Integration

A mainstay of the DER standards space, IEEE 1547 was published in 2003 and has since provided criteria and requirements for the interconnection of DERs onto the electric grid. This important standard provides the ability for all DER stakeholders to play by the same rules and expectations, ensuring that a certain technology will maintain the integrity and safety of the electric system and provide smooth transitions under normal and abnormal conditions.

Technology advances and increasing amounts of DERs, however, have led to a need for the standard’s reevaluation and revision. Since 2014, when an amendment was introduced to the standard, researchers at the ESIF and industry experts began leading the full revision of IEEE 1547, aiming to specify and harmonize new interconnection requirements for DERs.

In FY 2017, a working group of ESIF engineers and industry representatives completed the revisions to IEEE 1547. With support from DOE, Office of Energy Efficiency and Renewable Energy, and the Office of Energy Delivery and Energy Reliability, NREL also led several subteams, provided direct input to standards working groups as revisions were made, and supported technical positions based on validation tests at the ESIF. The team expects to receive final approval from IEEE by the end of the first quarter in FY 2018. Learn more about the standard’s modifications and applications at http://bit.ly/2ya2Hh.
NREL-Developed Tool Helps Utilities Fast-Track Interconnection Requests

NREL, in partnership with the Sacramento Municipal Utility District (SMUD), is developing PRECISE, a planning and real-time operation platform that distribution utilities can use to interconnect and integrate high penetrations of customer solar generation. SMUD has an average of 300 interconnection requests each month, and this platform will help cut the application approval time in half, to only 5 days, while ensuring seamless interconnection with the existing grid.

NREL Partners with ORNL and Purdue University on a High-Voltage, Silicon Carbide, 3-D-Printed PV Inverter

To enable better grid integration of solar PV, NREL, Oak Ridge National Laboratory (ORNL), and Purdue University are designing a 50-kW inverter that combines high-voltage silicon carbide with additive manufacturing (3-D printing) and multiobjective magnetic design optimization to achieve better performance and reliability at lower cost. Called AMPVI, the high-power-density inverter design will be prototyped and integration-tested at the ESIF. NREL is leading this project as part of the DOE Solar Energy Technologies Office SunShot National Laboratory Multiyear Partnership (SuNLaMP) program. For more details, visit the project profile at https://go.usa.gov/xnjn4.

SuNLaMP Virtual Oscillator Controls Project Advances Inverter-Based Solutions for Low-Inertia Grids

NREL helped develop virtual oscillator controls (VOC) for low-inertia grids, and in FY 2016, the DOE Solar Energy Technologies Office SuNLaMP program awarded NREL a $3.85 million, 3-year project to further explore VOC and pave the path to a sustainable grid based on electronic inverters. This project has uncovered limitations of conventional controllers and outlined new methods to ease the evolution of the electric grid to an inverter-driven network. Work continued on this project in FY 2017, including demonstrating VOC’s enhanced responsiveness compared to established methods; working with SunPower to incorporate VOC into a multi-inverter system, which can act as a self-sustaining microgrid and powered a load without using any communications; and developing a model order reduction strategy that allows simpler models for complex inverter systems.

New Battery Energy Storage System at NREL Serves as Experimentation Platform for Integrating Storage, Renewables

A 1-MW, 1-MWh RESolve battery energy storage system (BESS) was installed at NREL in late March 2017 to research ways to optimize the grid for wind and solar power plants. NREL is partnering with several companies, including First Solar, the AES Corporation, Statoil, Pacific Gas and Electric Company, and Renewable Energy Systems Americas Inc.—the system’s manufacturer—to test advanced controls for integrating BESS with renewable energy systems. NREL researchers developed a new controller that integrates the BESS with 400-kW PV systems, megawatt-scale turbines, and other grid technologies, forming a dispatchable renewable energy power plant that can provide essential reliability services to the electric grid, including fast-acting primary frequency response, load regulation, voltage support, and ramping control.

Verizon Project Aims to Supply Efficient Backup Power to Cell Phone Towers

Verizon is working with NREL to establish a new topology for cell site power systems based on a PV system and battery energy storage rather than relying on the electric grid. To make this setup operate efficiently, all of the new cell tower equipment and associated cooling systems employ DC power, so the PV and battery power do not need to be converted to AC using an inverter. The prototype system’s electronics were installed in an environmental chamber in the ESIF in late June to allow for tests at temperatures from -40°C (-40°F) to 52°C (126°F). At the end of FY 2017, one of seven cooling systems for the electronics had been tested in an ongoing effort to determine which cooling systems work best in each of 17 different climate zones.
New Model Provides Better, Faster Solar Irradiance Values for Solar Applications

NREL researchers developed the Fast All-Sky Radiation Model for Solar Applications (FARMS) and published the results (http://bit.ly/2jczQ0p) in collaboration with an associate at the National Center for Atmospheric Research. Although clear-sky radiative transfer models are fairly straightforward, modeling clouds is relatively difficult and slow, so incorporating clouds into radiation models has always been a difficult task. To get around that problem, the researchers solved the clouds’ radiative transfer equations for varying cloud optical thicknesses, cloud particle sizes, and solar zenith angles, creating lookup tables of cloud transmittances and reflectances. The resulting broadband model is more than 1,000 times faster than those currently used in solar resource assessment and forecasting.

In late September 2017, the researchers presented a new spectral model (https://go.usa.gov/xnjn8) at the European PV Solar Energy Conference and Exhibition in the Netherlands. This model, FARMS with Narrowband Irradiances over Tilted Surfaces (FARMS-NIT) yields solar irradiances in many narrow wavelength bands at any orientation that is useful for PV panels. The capabilities provided by FARMS and FARMS-NIT will be particularly useful to solar developers as they assess the potential power production from any site, including such considerations as the ideal wavelengths to which to tune their solar panels.
NREL Develops New, Better Way to Forecast Future Grid Operations

NREL researchers have developed a grid-state forecaster integrated with resource and load forecasting functions. Called the Predictive Analytics for Grid Estimation (PAGE), it can reliably forecast grid conditions such as voltage in 5-minute resolutions with a 30-minute look-ahead window. PAGE uses total sky imagers to monitor clouds for short-term solar forecasts, and then it uses a radiative transfer model for state-of-the-art longer term forecasts. PAGE is the first tool of its kind to directly translate resource and load forecasting to future grid conditions, which can inform immediate actions by system operators.

NREL Contributes to DOE Grid Modernization Project to Identify Gaps in Weather Monitoring and Forecasting

NREL played a vital role in the GMLC 1.2.5 project on sensing and measurement strategy in FY 2017. The multi-lab project team for GMLC 1.2.5 has been leading industry working groups to build a roadmap for developing advanced sensing and measurement technologies. NREL has been leading the working group for weather monitoring and forecasting, which has direct implications on energy consumption and renewable energy forecasting as well as their integration into system operations and planning processes for grid modernization. In FY 2017, the NREL-led working group identified eight major gaps and five additional research needs, including improving the dynamic response of phasor measurement units (PMUs), lowering the cost of PMUs, improving PMU timing reliability and angular resolution, developing advanced phasor calculation algorithms, and improving frequency estimates.
System Operations, Power Flow, & Control

Project Spotlight

SDG&E Collaborates with NREL Researchers to Expand the Borrego Springs Microgrid

Borrego Springs, California, and the utility that serves it, San Diego Gas and Electric Company (SDG&E), both have a challenge: the single, radial transmission line serving the town traverses approximately 30 miles of remote, rugged terrain with elevation changes of 5,000 feet. This desert community, located 90 miles east of San Diego, is subject to frequent monsoonal storms replete with lightning. To reduce the duration of extended outages caused by bad weather and other emergencies, SDG&E built the Borrego Springs Microgrid with the goal to increase the resiliency of the electric service for the 2,800 metered customers who live in Borrego Springs. Thanks to a nearly $5 million grant from the California Energy Commission, SDG&E is now working to expand the microgrid by integrating it with the nearby 26-MW solar power plant to serve the entire town. The microgrid will allow the town to operate in “islanded” mode, separate from the main grid, while potentially running on 100% solar energy, to avoid the impacts of extended power outages. It will also allow SDG&E to defer upgrades to the existing transmission line.

The expanded microgrid will be the largest utility-owned microgrid in the United States. Although it features two 1.8-MW diesel generators as backup power, it is capable of running entirely on solar power through the 26-MW PV facilities and rooftop PV on 2,800 homes in the community. That power supply is backed by two BESS that provide 1.5 MW, 4.5 MWh of storage and 250 kW of ultracapacitors at the local substation as well as three 25-kW BESS distributed throughout the community. The heart of the microgrid is a microgrid controller.

Because this project is in many ways the first of its kind, NREL researchers are supporting it by building a hardware-in-the-loop (HIL) test bed that will integrate the microgrid controller, the diesel generator controllers, and the power hardware, which at the ESIF will consist of a 500-kW PV inverter and a 540-kW BESS inverter. The test bed will also connect NREL’s and SDG&E’s digital real-time simulators through a remote connection, allowing the utility’s grid simulation to interact with NREL’s hardware. Once the test bed is ready in early 2018, the system will be operated under four test cases: in grid-connected mode, while disconnecting from the grid, in islanded mode, and while reconnecting to the grid.
NREL's ARPA-E Projects Look to the Future of Electric Grids

NREL is currently leading one DOE Advanced Research Projects Agency-Energy (ARPA-E) [https://go.usa.gov/xnWHb] project and supporting another related to the future of the electric grid. ARPA-E is tasked with promoting and funding the research and development of advanced energy technologies. The ARPA-E Network Optimized Distributed Energy Systems (NODES) Program [https://go.usa.gov/xnWHh] aspires to enable renewable generation penetration at the 50% level or more by developing transformational grid control methods that optimize the use of flexible loads and DERs.

As part of NODES, NREL is leading the Real-Time Optimization and Control of Next-Generation Distribution Infrastructure [https://go.usa.gov/xnWHx] project, which will develop a comprehensive distribution network management framework that unifies real-time voltage and frequency control at the DER controller level with network-wide energy management at the utility or energy aggregator level. The distributed control architecture will use real-time feedback control to continuously steer frequencies and voltages toward optimal operating points while dynamically procuring and dispatching synthetic reserves based on the current system state and forecasts of ambient and load conditions. The framework will incorporate intrinsic network physics into the control formulation and process real-time measurements to respond to rapidly changing grid conditions with multiple DERs.

For another NODES project, A Robust Distributed Framework for Flexible Power Grids [https://go.usa.gov/xnWHn], NREL researchers are supporting the University of Minnesota in an effort to address the grid challenges presented by the randomness in widespread renewable power generation. The project will apply concepts from nonlinear and robust control theory to design self-organizing power systems that effectively respond to grid events. The proposed system will enable coordinated response by many local units to adjust consumption and generation of energy, satisfy physical constraints, and provide ancillary services requested by a grid operator. A key feature enabled by the proposed methodology is a flexible plug-and-play architecture wherein devices and small power networks can easily engage or disengage from other power networks or the grid.

Project Highlights

NREL and Pacific Northwest National Laboratory Work to Lower the Cost of Utility Systems Integration with GridAPPS-D

Factors such as an influx of data and smart devices, increasing automation, new market interactions, and a diverse resource mix are driving the need for better-integrated utility systems; however, integrating systems that were designed to operate in silos can be slow and costly. To make this easier, NREL is partnering with Pacific Northwest National Laboratory on a project to create an open-source, standards-based platform for developing advanced distribution system planning and operations applications. The platform, called GridAPPS-D, would reduce the cost to develop, integrate, and maintain future utility systems. NREL’s role in this project includes developing an interface between legacy distribution management system (DMS) models and the GridAPPS-D common information model, developing advanced distribution management system (ADMS) applications for the GridAPPS-D environment, and implementing GridAPPS-D using the ESIF’s hardware test beds.

NREL Works with Schneider Electric, Xcel Energy to Improve Grid Reliability and Reduce Costs

In partnership with Schneider Electric, ESIF researchers are working with Xcel Energy to modernize its distribution grid in Colorado using Schneider Electric’s ADMS platform. The ESIF’s ADMS research platform allows the researchers and their industry partners to characterize and refine the performance of an ADMS in a simulated utility environment with the objective of reducing deployment costs and accelerating utility adoption of these advanced grid monitoring and control applications.

Utility-Scale Photovoltaic Plants Increase Their Value by Providing Grid Support

Utility-scale PV power plants can create challenges for grid operators because of the variability of the solar resource, particularly under high penetrations of PV. However, as NREL and a team of partners demonstrated in FY 2017, utility-scale PV plants can also be controlled in ways that counteract this effect, providing essential reliability services to the grid with much faster response times than conventional technologies. Working with the California Independent System Operator (CAISO) and First Solar, NREL showed it was possible to control a 300-MW PV power plant to contribute to system-wide reliability, as documented in a March 2017 report [https://go.usa.gov/xnWHt]. The project points the way toward a future grid in which PV plants might employ their controls in a way that provides similar types of essential reliability services to the grid.
Coordinating Energy, Distribution, and Building System Controls for Next-Generation Grid Management

NREL is collaborating with five other national laboratories on a GMLC project to create an integrated grid management framework to allow control systems at all scales to work together seamlessly. The team is developing the framework to coordinate energy management system (EMS), DMS, and building management system (BMS) operations. They will then demonstrate the framework on a complex test system with more than 15,000 transmission substations and a high penetration (more than 50%) of DERs or microgrids. The current approach to power systems operations and controls was developed within narrow functional silos and well before the development of modern computing. This new approach will leverage leading-edge capabilities to transform or extend existing applications while better integrating renewable and distributed generation.

NREL, Sandia Help Vermont Reach Renewable Energy Goals

Ambitious renewable energy targets are rolling out in states and cities across the United States. How to effectively meet those targets without compromising energy reliability is the challenge many utilities are trying to solve. As part of the GMLC, a team from Sandia National Laboratories and NREL is looking at this issue in the Vermont Regional Initiative project. NREL contributed to this project with a detailed report that evaluated and quantified the potential benefits and impacts of reducing peak load through demand response using controllable electric water heaters and batteries on Green Mountain Power’s feeders. NREL also performed an analysis that identified gaps and offered improvements for wind forecasting so Vermont utilities could maximize this resource.

Envisioning 80 Percent Renewable Penetration in the Western United States

Frequency response—the ability of the electric grid to correct sudden mismatches between generation and load—is crucial for grid reliability. Traditional, synchronous generators can provide frequency response by adjusting their energy outputs, but renewables—especially PV—generally operate at full capacity and do not provide frequency response. In preparation for a DOE study on how higher PV penetrations could affect frequency response for the Western Electricity Coordinating Council (WECC), NREL researchers developed detailed cases of high renewable penetrations on WECC’s system. The team collected data on current and likely future PV capacity, built a model of WECC’s frequency response, and developed cases of up to 65% PV and 15% wind energy penetration—even considering 100% instantaneous PV penetration in one WECC region, the most ever considered for WECC.

NREL Evaluates Eaton’s Integrated Volt/VAR Control Algorithm

With increasing penetrations of DERs on their distribution feeders, utilities increasingly desire to apply new controls to these feeders to avoid voltage issues. Doing so by using integrated volt/VAR control (IVVC) can overcome overvoltage, reduce voltage fluctuation, save energy consumption, and improve power quality. Eaton, a power management company, has developed an advanced IVVC algorithm that might be applied to a future product. To help evaluate that algorithm, NREL researchers are performing quasi-static time-series simulations on a utility distribution feeder model to compare the performance of the Eaton IVVC algorithm to legacy local controls and traditional IVVC methods. NREL will quantify the impacts of the IVVC algorithm and perform a cost-benefit analysis of operating the feeder with Eaton IVVC in place.

NREL Evaluates Vehicle-to-Home Unit in Partnership with Nichicon, Nissan

NREL worked with Nichicon and Nissan to bring a vehicle-to-home (V2H) unit from Japan to better understand how the system would work with U.S. appliances. Researchers investigated four use cases for the Nichicon V2H emergency response and home energy management system operating with a Nissan electric vehicle: demand charge mitigation, emergency response/black-start capability, solar integration, and home load shifting. This research will provide valuable insight into technology and communications needs for V2H applications, offering the potential for electric vehicles to charge, store, or export energy back to a home according to grid conditions. This work was funded through DOE’s Vehicle Technologies Office and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project.

NREL is collaborating with Panasonic Enterprise Solutions, Xcel Energy, land developer L.C. Fulenwider, and the City and County of Denver through its Denver International Airport to enable the least-cost and most-scalable zero-energy development in the United States. The transit-oriented, 382-acre mixed-use development will feature Xcel Energy’s first microgrid in Colorado on a zero-energy campus. Located at the Peña Station on Denver’s new light-rail service to the airport, the development has been dubbed Peña Station NEXT.

NREL is developing the foundational software that will enable comprehensive energy district design and planning among cities, land developers, and energy companies. The software will integrate building energy load modeling with distribution system modeling for the first time in a tool that uses URBANopt (https://go.usa.gov/xnKWU)—an NREL-developed advanced analytics platform for high-performance buildings and energy systems in one city area—and OpenDSS (http://bit.ly/2W4kCLL), a simulation tool for power distribution systems, allowing NREL to model the district’s interaction with the grid.

NREL will then develop a variety of load and power flow scenarios using a range of technology options, including varying solar PV penetrations, energy-efficiency scenarios, distributed energy storage capacities, and district heating and cooling, possibly using geothermal energy. These will lead to distribution system models that will be verified for feasibility by Xcel Energy and analyzed for cost-benefits by Panasonic. NREL’s 2-D and 3-D visualization techniques will be employed to analyze and illustrate the results of the power systems simulations for each URBANopt scenario.

The partners are confident the project holds great promise beyond Peña Station NEXT’s borders. Xcel Energy will consider owning and operating the necessary infrastructure to achieve carbon neutrality, potentially expanding the offering to future communities in Colorado. Panasonic is similarly interested in how it might replicate and scale carbon-neutral districts and developments across its other current and future smart city engagements through Panasonic CityNOW. NREL will share its expertise and apply the lessons learned from this project to future developments. See the NREL press release (https://go.usa.gov/xnKjC) and the ESIF partner page for Panasonic (https://go.usa.gov/xnKjr).
In First-of-Its-Kind Study, NREL Weighs Benefits to Utility, Customers of Grid-Supportive Inverter Settings for Distributed PV

Hawai‘i’s success in adopting renewable energy—especially customer-sited rooftop solar PV systems—has pushed the hosting capacity of many of the islands’ distribution circuits past what was thought possible only a few years ago. NREL has been working with HECO for the past several years to help find solutions to safely host more solar PV without compromising reliability.

As part of this ongoing work, in FY 2017, NREL collaborated with HECO, solar experts on the Smart Inverter Technical Working Group Hawai‘i, inverter manufacturers, and systems integrators to research how to best implement advanced inverter grid support functions. Using technical guidance and input from the partners, NREL explored different modes of voltage regulation grid-support functions to better understand the trade-offs between grid benefits and curtailment impacts. In the project’s final report (https://go.usa.gov/xnN5z), NREL was able to provide HECO with technically sound recommendations on the initial activation of voltage-regulation grid-support functions that considered Hawai‘i’s unique feeder characteristics and operations as well as the energy curtailment impacts to solar PV customers.

Using the research findings, HECO launched a pilot project to allow some customers who were waiting on interconnection to connect to the grid if their systems included advanced inverters with specific voltage support functions activated. In collaboration with vendors SolarEdge and Enphase, NREL also developed and deployed an inverter control and data collection system that use these devices. Researchers have analyzed historic energy performance at stores to learn about thermal and electric loading across the Walmart building portfolio, and they will soon monitor and verify the system impacts of voltage regulation grid-support functions on customers who were waiting on interconnection to connect to the grid.

Project Highlights

NREL is Developing New Electric Grid Models under ARPA-E Project

NREL is working with the Massachusetts Institute of Technology, Comillas University, and GE’s Grid Solutions Business to develop combined distribution-transmission electric grid models. Distribution models will be created using a version of Comillas’ Reference Network Model that is adapted to U.S. utilities and based on real data from a broad range of utility partners. The models will be complemented by the development of customizable scenarios that can be used for accurate algorithm comparisons. These scenarios will take into account factors that affect the grid, such as future power generation technologies, varying electrical load, disruptions caused by weather events, and solar and wind data. This project is funded through the ARPA-E Generating Realistic Information for the Development of Distribution and Transmission Algorithms (GRID DATA) project (https://go.usa.gov/xnWJ2).

NREL Researchers and Walmart Investigate Energy Savings from Voltage Regulation Systems

ESIF researchers are working with Walmart to explore the energy-saving potential of voltage regulation systems in Walmart stores by investigating, analyzing, and documenting results from Walmart facilities that use these devices. Researchers have analyzed historic energy performance at stores to learn about thermal and electric loading across the Walmart building portfolio, and they will soon monitor and verify the performance of a voltage-regulation technology at four stores in northwestern Arkansas.

NREL Works with the North American Electric Reliability Corporation on Maintaining Grid Reliability with High Penetrations of Distributed Energy Resources

With an ever-increasing number of PV systems interconnected to distribution systems and potentially impacting the reliability of bulk power systems, the North American Electric Reliability Corporation initiated the DER Task Force to consider such impacts and plan a path forward for the continued reliable and resilient operation of the electric grid. The task force consisted of a wide cross section of power system experts, including NREL’s DER interconnection and modeling experts. NREL contributed details on the bulk system impacts of DERs with funding from DOE’s GMLC.

NREL Technical Assistance Is Helping Aruba Hit 100% Renewable Goal by 2020

Transporting fuel to islands to power their electric grids can be expensive and inefficient, making renewable generation an appealing alternative. The island of Aruba has been pursuing renewable energy and energy efficiency efforts for more than a decade, and it is targeting a 100% renewable grid by 2020. To make that possible, NREL is working with the island’s electric utility, WEB Aruba, to evaluate the technical and economic feasibility of various technologies that will help Aruba reach its goal. Particularly, NREL has been evaluating complementary storage and DER technologies such as ice storage, flywheel storage, underwater compressed air storage, biogas, and smart charging for electric buses that could help integrate higher penetrations of renewables.
Partnership with National Electrical Manufacturers Association Inspires New Approach to Secure, Standards-Based DERs

Since April 2016, NREL has been working with the National Electrical Manufacturers Association (NEMA) to develop a secure Internet of Things protocol that can be applied to DER systems. With a growing need to securely integrate DER assets as they are interconnected with the electric grid, NEMA sought help from NREL’s cybersecurity research team at the ESIF to evaluate and successfully demonstrate security specifications for the DER portion of the International Electrotechnical Commission (IEC) standard 61850 for substation automation.

After developing a validation guidance document, however, the NREL team identified a problem. Vendors had been developing DER technologies that employ a range of standards requirements, such as Modbus TCP or Distributed Network Protocol, instead of those in IEC 61850. Considering this, NREL’s cybersecurity research team proposed a solution that could be applied to a multitude of DER technologies. Instead of expecting every vendor and device manufacturer to employ one common set of standards into their product, the team designed a certification procedure that would allow vendors of different DER technology standards to ensure consistent security specifications.

During the last few months of FY 2017, NREL’s cybersecurity research team outlined 26 verification test cases with a detailed test plan for each to prevent DERs from common cyberattacks and vulnerabilities, such as eavesdropping, spoofing through security certificates, replay attacks, and man-in-the-middle attacks. The team is now sharing the document with a number of security working groups in the DER standards community as well as with major vendors to receive feedback on each of the detailed test plans.
Securing Communications Across Public Networks with Dispersive Technologies and CAISO

Redirecting data in transit offers an effective way to secure network communications while lowering the cost for information exchange between utility companies and DER asset owners. Under a partnership with Dispersive Technologies and CAISO, NREL researchers are providing configuration, evaluation, and data collection on the company’s Critical Infrastructure Software-Defined Network. The team has been working to validate the technology for its effectiveness in deflecting information packets to eliminate the potential for hackers to receive continuous data streams on a single path. As industry moves to a more distributed generation model in which various hubs will require the ability to exchange information, such technologies are required to secure reliable communications across low-cost public networks.

Governance Assessments Lead to New Partnerships and Research

NREL’s cybersecurity research team conducted nine cyber-governance assessments for U.S. utilities in FY 2017 that included the National Institute of Standards Technology’s Cybersecurity Framework and DOE’s Cybersecurity Capability Maturity Model. The team developed a customized framework for each utility that offers tangible metrics for its cybersecurity posture, providing each of the nine utilities with a list of prioritized action items for their strategic investments in cybersecurity. These assessments led to a number of future engagements and interest in NREL’s cybersecurity evaluation services.

Project Highlights
HECO Grid Modernization Project Informed by ESIF Research

The Hawai‘i Public Utilities Commission (PUC) approved on July 17, 2017, a Power Supply Improvement Plan (PSIP) submitted by HECO to upgrade its five island power grids. The plan describes the scope and estimated cost to update the energy networks of Hawaiian Electric, Maui Electric, and Hawai‘i Electric Light in the next 5 years and how it will help the companies achieve a consolidated renewable portfolio standard of 48% by 2020 (relative to a mandate of 30%) and 100% by 2040, 5 years ahead of schedule. The PSIP was informed by NREL research on advanced inverters and renewable resource potential in Hawai‘i.

To achieve the plan’s goals, HECO will acquire nearly 400 MW of new renewable resources by 2021. HECO’s plan anticipates continued growth of rooftop solar and describes the work needed to expand and upgrade grid infrastructure using the newest generations of inverters, control systems, and energy storage to help reliably integrate an estimated total of 165,000 rooftop systems by 2030, more than twice today’s total of 79,000. See the HECO press release (http://bit.ly/2A4aFRZ).

Meanwhile, on August 29, 2017, HECO submitted a related strategy to modernize its electric grids, allowing for increased use of renewable resources, improved reliability, and more customer choice. Now under consideration by the Hawai‘i PUC, the plan was also informed by ESIF research that examined the performance of advanced inverters on HECO’s distribution grids. The PUC opened the plan for public comment from August 30 to September 13, 2017. See HECO’s Grid Modernization Strategy (http://bit.ly/2hMpNeA) and the ESIF web page on NREL’s work on advanced inverters (https://go.usa.gov/xnKu8) for HECO.

Project Spotlight

NREL Report Helps Improve the Interconnection Process in New York State

NREL collaborated with the New York State Energy Research and Development Authority to develop new methods to make the interconnection process in New York State quicker and easier. The project resulted in an NREL-developed guide for utilities and developers called Supplemental Information for New York State Standardized Interconnection Requirements (https://go.usa.gov/xnKWX). Focusing on key technical issues that have accounted for the majority of concerns when connecting PV systems, the guide provides background, guidance, and mitigation measures. In addition to the guide, NREL developed a white paper comparing and contrasting New York interconnection requirements with requirements and “fast screens” in other states such as California, Hawai‘i, and Massachusetts. Partners on the project included the New York Department of Public Service, the New York Power Authority, and New York investor-owned utilities.
Approximately 38 million people in the United States live in buildings that contain five or more units—totaling almost 18.5 million households. Demand is growing, but designers and builders still face a number of challenges in bringing advanced, zero energy building construction to multifamily housing. NREL researchers are working with Denver developer iUnit to overcome these challenges with an innovative pilot test at a 380-ft² modular apartment installed in the ESIF.

The ESIF’s smart home HIL research capabilities and energy modeling tools are helping to enhance energy efficiency in the modular multifamily pilot apartment while creating a development platform for construction. The team is working to understand how a reduction in apartment energy loads combined with energy storage can be scaled up to whole-building energy management. Researchers are also investigating energy storage opportunities that might be available to optimize PV integration at a whole-building scale.

The innovative solutions that the iUnit team is evaluating at the ESIF will be incorporated into their planned Champa Flats community in Denver. If applied on a large scale, energy-efficiency efforts in multifamily housing such as iUNIT could save $3.4 billion annually.
NREL, Wells Fargo Help Start-Ups Bridge the Gap with Innovation Incubator

NREL worked with Wells Fargo to develop the Innovation Incubator (IN2) program, designed to accelerate the tech-to-market pipeline for early-stage entrepreneurs. These projects offer scalable, clean-technology solutions designed to reduce the energy impact of commercial buildings. Selected companies receive $250,000 in funding from Wells Fargo as well as access to NREL's world-class facilities and researchers who will test, validate, and incubate the companies' technologies to help them meet critical validation milestones on the path to market.

Teams Working in the ESIF

Go Electric
Customer-facing microgrid solution, which reduces typical building energy costs.

LiquidCool Solutions
Energy-efficient computing cooling technology.

Whisker Labs
Peel-and-stick energy metering technology, which might reduce metering costs by 90%. Following testing at NREL, Whisker Labs was purchased by Earth Networks, and its metering technology is being readied for commercial release.
Southern California Gas Company (SoCalGas) and Electrochea have joined with NREL to launch a demonstration project to create and test a carbon-free, power-to-gas system for the first time ever in the United States. The technology takes excess electricity and converts it to hydrogen, which can be used, stored, or further converted to renewable natural gas. This last step in the process is achieved via a bioreactor that houses hardy bacteria. The hydrogen is combined with carbon dioxide and fed to the bioreactor where the bacteria produce renewable natural gas (methane). With minor filtration, the methane meets pipeline quality and can be injected into existing natural gas infrastructure.

This innovative technology could provide North America with a large-scale, cost-effective solution for storing excess energy produced from renewable sources. The pilot project will be used to determine the commercial viability of this power-to-gas approach to energy storage and provide insights into megawatt-scale system designs. By combining these insights with renewable energy resource data, the research team will identify optimal locations in California and the western half of the United States where this grid-scale energy storage would be the most economical.
Collaboration with EasyMile to Boost Research in Intelligent and Autonomous Electric Vehicles

NREL’s research on electric vehicle grid integration examines the interactions among electric vehicles, building energy systems, utility electric grids, and renewable energy sources. In an important step toward furthering intelligent, efficient, and autonomous electric vehicles, transportation researchers at NREL plan to partner on research-and-development efforts with EasyMile, a smart mobility solutions company. The collaboration will explore opportunities for how wireless charging can enable intelligent load management in various grid and campus load scenarios.

NREL Researchers Investigate Approaches for Scaling Up the Use of Renewable Hydrogen

As technologies mature and costs drop, potential uses for hydrogen in the energy system are expanding from power generation and transportation to grid services and industrial processes. The H2Scale initiative—a collaboration among DOE and 14 national laboratories, including NREL—is looking at ways hydrogen can support our future energy system. At the ESIF, NREL researchers and partners from national laboratories and industry are pursuing H2Scale by advancing hydrogen technologies in a number of areas, including low-temperature electrolysis, storing excess solar and wind energy by producing renewable natural gas from hydrogen and carbon dioxide, and reducing the cost, improving the reliability, and increasing the availability of hydrogen fueling stations.

NREL Researchers Achieve Milestone in Fuel Cell Catalyst Development

NREL’s Extended Thin-Film Electrocatalytic Structures project achieved a key fuel cell performance and durability target established by DOE. The NREL-led team successfully demonstrated an electrocatalyst mass activity of more than 440 mA/mgPt, at 900 mVIR-free in fuel cell tests while meeting membrane electrode assembly durability targets. Improvements in the performance and durability of fuel cells pave the way for the broader adoption of hydrogen technology in vehicle and grid support applications.

Improving Hydrogen Dispenser Reliability

Hydrogen dispensers are the leading cause of maintenance events at retail hydrogen stations. Through DOE’s Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) project, NREL is working with manufacturers to lessen downtime by improving hydrogen dispenser component reliability. NREL researchers built a prototype test skid that simulates the inner workings of eight hydrogen dispensers to test reliability in highly accelerated life testing. Hydrogen is produced at the ESIF and dispensed through the test skid into a tankless vehicle simulator to evaluate hydrogen dispenser components during continuous refueling.

Improving Quality and Lowering Costs of Fuel Cell Membranes

NREL and W.L. Gore & Associates set out to clarify manufacturing quality requirements for fuel cell membranes. NREL’s suite of real-time inspection techniques and research web line allows researchers to establish a baseline for the quality of GORE-SELECT Membrane materials by mapping characteristic nonuniformities. NREL will also use its unique spatial cell performance tools to better understand the performance and lifetime impact of nonuniformities. The project will contribute to the goal of continuously improving the quality and reducing costs of Gore’s proton-conducting membrane, which is used in commercially available fuel cell vehicles.

Project Highlights

NREL Researchers Investigate Approaches for Scaling Up the Use of Renewable Hydrogen

Improving Optical Inspection Methods to Detect Fuel Cell Membrane Defects

NREL is assisting Mainstream Engineering Corporation in developing and validating a device to optically inspect fuel cell membranes. Mainstream is prototyping a full-scale inspection device based on NREL-developed technology. NREL, along with partners at Georgia Institute of Technology, is conducting studies to understand the effects of membrane inhomogeneities on fuel cell performance and quantify how those defects lead to accelerated cell degradation. This project aims to identify thresholds of detection based on defect size and type and demonstrate Mainstream’s commercialization-ready system on several roll-to-roll membrane manufacturing lines.

Improving Optical Inspection Methods to Detect Fuel Cell Membrane Defects

NREL’s research on electric vehicle grid integration examines the interactions among electric vehicles, building energy systems, utility electric grids, and renewable energy sources. In an important step toward furthering intelligent, efficient, and autonomous electric vehicles, transportation researchers at NREL plan to partner on research-and-development efforts with EasyMile, a smart mobility solutions company. The collaboration (https://go.usa.gov/xnjnR) will explore opportunities for how wireless charging can enable intelligent load management in various grid and campus load scenarios.
ESIF Testing Confirms the Water Savings of Thermosyphons

NREL and Sandia National Laboratories have partnered with Johnson Controls to investigate the use of the company’s BlueStream Hybrid Cooling System (https://go.usa.gov/xnKWN), which adds a thermosyphon upstream of evaporative cooling towers to reduce water consumption. The thermosyphon was installed on the ESIF roof and started operating in August 2016 for NREL’s High Performance Computing Data Center (HPC). After monitoring the system for a year, ESIF researchers have confirmed that the system cut water use by nearly half, saving more than 1 million gallons without any negative impacts on the data center’s efficiency. Sandia National Laboratories will apply the data from the ESIF’s installation to their own cooling needs.

Watch: Did you know that NREL’s HPC is the engine that powers the lab’s 3-D visualizations? These visualizations give researchers never-before-seen insights that help advance research in new ways. Step into some 3-D visualizations here (http://bit.ly/2BonqWz).

High-Performance Computing Usage Information

<table>
<thead>
<tr>
<th>Area</th>
<th>No. of Projects</th>
<th>Node Hours Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced manufacturing</td>
<td>2</td>
<td>107,228</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>3</td>
<td>1,094,418</td>
</tr>
<tr>
<td>Buildings</td>
<td>4</td>
<td>10,951</td>
</tr>
<tr>
<td>Computational science</td>
<td>5</td>
<td>146,077</td>
</tr>
<tr>
<td>Energy systems integration</td>
<td>8</td>
<td>950,300</td>
</tr>
<tr>
<td>Exascale computing</td>
<td>2</td>
<td>29,818</td>
</tr>
<tr>
<td>Geothermal</td>
<td>3</td>
<td>5,524</td>
</tr>
<tr>
<td>Grid modernization</td>
<td>6</td>
<td>56,918</td>
</tr>
<tr>
<td>Hydrogen and fuel cells</td>
<td>6</td>
<td>2,315,663</td>
</tr>
<tr>
<td>Solar energy</td>
<td>13</td>
<td>4,524,516</td>
</tr>
<tr>
<td>Vehicles</td>
<td>10</td>
<td>1,058,729</td>
</tr>
<tr>
<td>Wind</td>
<td>11</td>
<td>2,802,657</td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td>17,663,183</td>
</tr>
</tbody>
</table>
New ESIF High-Performance Computing Data Management and Analysis Capabilities

In FY 2017, the ESIF’s high-performance computing system added ESIF Relay, a real-time data streaming service that supports a range of functions, from HIL experiments to lab-wide metering data management. In addition, an application programming interface allows secure data accessibility and standardized programming access to data stored within the ESIF’s Research Data System; Tanager, a new graphics processing unit cluster, enables enhanced visualization, image analysis, and machine learning; and the Big Data Analytics Platform provides access to the ESIF’s HPC or—for external collaborations—the cloud, allowing scientists to explore massive data sets efficiently.

Project Highlights

NREL completed a campus renewable energy planning proof-of-concept, which combines techno-economic optimizations from REopt simulations, whole building simulations from URBANopt, and power flow simulations from OpenDSS. Users can interactively explore the complex parameter space by defining new simulation scenarios and launching those scenarios on the HPC resources. The Peña Station NEXT project used the framework to couple and interactively visualize scenarios from whole building energy simulations and distribution power flow simulations.
PARTNERS

NREL continues to forge new partnerships among industry, academia, and government to leverage the expert staff and exceptional resources that the ESIF offers. Below are partners with active agreements in FY 2017.

3M Company
Advanced Energy Industries
Argonne National Laboratory
Bonneville Power Administration*
Bosch
California Energy Commission
Caterpillar, Inc.*
CenterPoint Energy, Inc.
CenturyLink
Chinese Academy of Sciences
CPS Energy
Cogent
Colorado School of Mines
Commonwealth Edison
CSIRO*
Dispersive Technologies
Duke Energy
Eaton
Electric Power Research Institute*
Element One, Inc.
El Paso Energy
First Solar
Florida Power & Light*
GE Energy Solutions
General Motors
Giner, Inc.
Go Electric
Green Change Networks
Hawaiian Electric Company, Inc.*
Heila Technologies
Hyperlight Energy
Ibis Networks
Idaho National Laboratory
Ingersoll Rand
Intel Corporation
Leviton Manufacturing
Mainstream Engineering Corp.
National Electrical Manufacturers Association
New York State Energy Research & Development Authority*
Northrop Grumman Corp.
OMNETRIC Group
Panasonic
PDC Machines
Peak Reliability
Peroxygen Systems, Inc.
Pika Energy
Rijksdienst voor Ondernemend
Sacramento Municipal Utility District
SafeConnect Solar
San Diego Gas & Electric*
Schneider Electric
Schweitzer Engineering Labs
Shell Global Solutions
Smarter Grid Solutions
Southern California Edison
SolarCity
Southern California Gas Company*
Sumitomo Corporation
Toyo Electric Power Company
Toyota
University of Delaware
University of Illinois Urbana-Champaign
U.S. Department of Defense
U.S. Navy*
Western Electricity Coordinating Council
Verizon
W.L. Gore & Associates
Walmart, Inc.
Xcel Energy
XTRLS

*These partners have more than one project.
DOE PROGRAM RESEARCH

ARPA-E

Network Optimized Distributed Energy Systems (NIDDES)
 • RONIN
 • ROBUST
Generating Realistic Information for the Development of Distribution and Transmission Algorithms (GRID DATA)
 • SMART-DS: Synthetic Models for Advanced & Realistic Testing of Distribution systems and Scenarios

Buildings

Home Battery System

Fuel Cell Technologies Office

GMLC Category 1 Projects:

- DER Siting and Optimization Tool for California
- 700 bar Hydrogen Dispenser Hose Reliability Improvement
- Advanced Ionomers and Membrane Electrode Assemblies for Alkaline Membrane Fuel Cells
- Automotive Fuel Cell Material and Manufacturing Development (cooperative research and development agreement with GM, cost-shared with the Fuel Cell Technologies Office [FCTO])
- Collaboration on SBIR/TTO Phase II Project for Optical QC Device (FCTO-funded SBIR with Mainstream Engineering)
- Demonstration of Hydrogen Tube-Trailer Consolidation for Reducing Refueling Station Cost
- Dispenser Reliability Component Testing

Dynamic Modeling and Validation of Electrolyzers in Real-Time Grid Simulation
- ElectroCat (Electrocatalysis Consortium): Membrane Electrode Assembly (MEA) Diagnostic, Segmented Cells
- Extended-Surface Electrocatalyst Development (ETECS)
- Fuel Cell Bus Evaluations (National Fuel Cell Technology Evaluation Center [NFCTEC])
- Fuel Cell Electric Vehicle Evaluation (NFCTEC)
- Fuel Cell Membrane Electrode Assembly Manufacturing Research and Development (FCTO AOP)
- Fuel Cell Technology Status: Degradation (NFCTEC)
- FC-PAD: Fuel Cell Consortium for Performance and Durability—Advanced Integration, Contaminants, Electrode Layers
- H2@Scale
- High-Efficiency Tandem Absorbers for Economical Solar Hydrogen Production
- HydroGEN Advanced Water Splitting Materials Consortium
- Hydrogen Component Validation
- Hydrogen Meter Benchmark Testing
- Hydrogen Sensor Testing Laboratory
- Hydrogen Station Data Collection and Analysis (NFCTEC)
- Improved Hydrogen Liquefaction through Heisenberg Vortex Separation of Para- and Orthohydrogen
- Integrated Research Facility for Advancing Hydrogen Infrastructure (HITRF)
- Materials Performance Testing (technical services agreement with W.L. Gore & Assoc., cost-shared with FCTO)
- Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes (FCTO AOP)
- National Codes and Standards Deployment and Outreach

Optimal Stationary Fuel Cell Integration and Control (Energy Dispatch Controller)
- Renewable Electrolysers Integrated System Development and Testing
- Technical Assistance in Fabrication and Testing of MEAs (FCTO-funded SBIR with Altair)

Grid Modernization

GMLC Category 1 Projects:

- 1.1 Foundational Analysis for GMLC Establishment
- 1.2 Grid Architecture
- 1.2.2 Interoperability
- 1.2.5 GMLC Testing Network
- 1.2.4 Grid Services and Technologies Valuation Framework Development
- 1.2.5 Sensing and Measurement Strategy Methodology
- 1.3.05 DER Siting and Optimization Tool for California
- 1.3.10 Vermont Regional Partnership Enabling the Use of DER
- 1.3.21 Alaska Microgrid Partnership
- 1.3.29 Grid Frequency Support from Distributed Inverter-Based Resources in Hawaii
- 1.3.33 Midwest Interconnection Seams Study
- 1.4.01 Standards and Test Procedures for Interconnection and Interoperability
- 1.4.02 Definitions, Standards and Test Procedures for Grid Services
Office of Electricity Delivery and Energy Reliability

GMLC Category 1 Projects:

1. Foundational Analysis for GMLC Establishment
 - Grid Architecture
 - Interoperability
 - GMLC Testing Network
 - Grid Services and Technologies Valuation
 - Sensing and Measurement Strategy Methodology
 - DER Siting and Optimization Tool for California
 - Vermont Regional Partnership Enabling the use of DER
 - Alaska Microgrid Partnership
 - Grid Frequency Support from Distributed Inverter-Based Resources in Hawaii
 - Midwest Interconnection Senses Study
 - Definitions, Standards, and Test Procedures for Grid Services
 - Advanced Sensor Development
 - Control Theory
 - Multi-Scale Integration of Control Systems (EMS/DMS/BMS)
 - Development of Integrated Transmission, Distribution, and Communication Models
 - Extreme Event Modeling
 - Computing Science for Grid Management

GMLC Category 2 Projects:

- Virtual Battery-Based Characterization and Control of Flexible Building Loads Using VOLTTRON
- Vehicle to Building Integration Pathway
- Development of an Open-Source Platform for Advanced Distribution Management Systems
- Systems Research Supporting Standards and Interoperability
- Modeling and Control Software Tools to Support V2G Integration
- Measurement-Based Hierarchical Framework for Time-Varying Stochastic Load Modeling
- Diagnostic Security Modules for Electric Vehicle to Building Integration
- Vehicle to Building Integration Pathway
- Advanced Distribution Management System Testbed Development
- Optimal Stationary Fuel Cell Integration System Testbed Development
- Advanced Distribution Management Interactions between Stationary Hydrogen, Vehicle, and Grid Resources
- Integrated Systems Modeling of the Resources for Wide Area Reserve Provision
- Community Control of Distributed Resources for Wide Area Reserve Provision
- Future Electricity Utility Regulation

Solar Energy Technologies Office

SiNLAMP Prime Projects (GMLC Category 2):
- Additively Manufactured PV Inverter
- Solar Resources Calibration, Measure, and Dissemination
- Improve and Validation of the System Advisor Model
- Assessing the Value and Impact of Distributed Resources for Wide Area Reserve Provision

[49 |]
30362 Opportunistic Hybrid Comm Systems for Dist PV Coordination
30363 Accelerating Systems Integration Standards (ACCEL)
30364 Stabilizing the Power System in 2035 and Beyond

SuNaLMP Subrecipient Projects (NREL as Subrecipient):
- Oak Ridge National Laboratory Prime: Frequency Response of Three Major U.S. Power Grids—Zhang
- Sandia National Laboratory Prime: Distribution System Modeling—Mather
- Argonne National Laboratory Prime: An Integrated Tool for Improving Grid Reliability—Zhang

GMLC Category 1 Projects:
- 1.1 Foundational Analysis for GMLC Establishment
- 1.2 Grid Architecture
- 1.3.21 Alaska Microgrid Partnership
- 1.4.01 Standards and Test Procedures for Interconnection and Interoperability
- 1.4.15 Development of Integrated Transmission, Distribution, and Communication Models
- 1.4.25 Distribution System Decision Support Tools
- 1.4.29 Future Electricity Utility Regulation
- 1.4.05 Advanced Sensor Development

ENERGISE Projects
NREL Primes:
- Grid Optimization with Solar (GO-Solar)
- Enhanced Control, Optimization, and Integration of Distributed Energy Applications (Eco-Idea)

NREL Subs:
- Scalable/Secure Cooperative Algorithms and Framework for Extremely-High Penetration Solar Integration (SolarExPert)
- Electric Access System Enhancement (EASE)

Vehicle Technologies Office
GMLC Category 1 Projects:
- 1.4.02 Definitions, Standards, and Test Procedures for Grid Services
- 1.4.10 Control Theory

Wind Power Technologies Office
GMLC Category 2 Projects:
- WORD-04 Providing Ramping Service with Wind to Enhance Power System Operational Flexibility
- WORD-05 Power System Reliable Integration Support to Achieve Large Amounts of Wind Power (PRISALA)
- WORD-35 Market and Reliability Opportunities for Wind on the Bulk Power System
- WORD-38 North American Renewable Integration Study (NARIS)
- WORD-49 Understanding the Role of Short-Term Energy Storage and Large Motor Loads for Active Power Controls by Wind Power
- WGRID-59 WindView: An Open Platform for Wind Energy Forecast Visualization

Water Power Technologies Office
- North American Grid Integration Study (NARIS)
- Pumped Storage and Hydropower Value Consortium (HVC)
- Termary PSH Design and Evaluation
- Obermeyer PSH Valuation
- FY2017 Small Business Voucher—Natel
KNOWLEDGE SHARING

Leading the Next Generation of Energy Systems Researchers

Internships at the ESIF present students with the unique opportunity to establish long-term relationships with NREL researchers while being exposed to the breadth of dynamic topics in NREL's ESI research portfolio. In FY 2017, the ESIF offered nearly 100 internships to graduate and undergraduate students who have a variety of backgrounds in science and technology from universities across the United States.

Several types of internships are offered at the ESIF, including the Science Undergraduate Laboratory Internships, opportunities through NREL's Research Participant Program, the Office of Energy Efficiency and Renewable Energy Robotics Internship Program, the National Science Foundation, and the ESI Summer Graduate Internship Program.

Webinars

Webinar Series: Competitive Procurement for Microgrid Controller Technology—November 10, 2016–May 5, 2017

Call for High-Impact Projects—January 17, 2017

Workshops & Conferences

Enabling High Pen PV through Next-Generation Power Electronic Technologies—October 11, 2016

U.K.-U.S. Grid Modernization Collaboration Workshop—February 28, 2017

Siemens-OMNETRIC Industry Day—March 22, 2017

EPRI-Schneider Electric Industry Day—March 29, 2017

Fourth International Grid Simulator Testing Workshop—April 25, 2017

Autonomous Energy Grids Workshop—September 13, 2017

Smart Grid Educational Series

NREL hosts an ongoing series of educational webinars on smart grid-related topics featuring speakers from the lab and the energy industry. Recordings of the 11 Smart Grid webinars NREL hosted in 2017 can be found at https://www.nrel.gov/esif/sges-webinars.html.

Did you know? The ESIF hosts thousands of visitors each year from the United States and around the world.
Grid Simulator Capacity Doubles to 2 MW

The ESIF’s 1-MW bidirectional grid simulator is the most requested piece of equipment at the facility. This asset is central to large-scale PHIL experiments and is the workhorse for advanced grid studies. To meet increasing demand and advanced research needs, NREL and DOE have installed a second 1-MW system, bringing the total asset size to 2 MW comprising eight individual 250-kW simulators. Individual simulators can be paralleled in various combinations to provide flexible grid simulation power levels tailored to each activity. To optimize the use of this valuable system and minimize downtime, the ESIF also entered into a service agreement with Ametek, the manufacturer of the grid simulator system, to streamline maintenance and repairs.

Real-Time Connections to Other National Laboratories, Industry Amplify ESIF’s Impact

NREL is collaborating with Idaho National Laboratory, Sandia National Laboratories, and five U.S. and two European university partners on the Real-Time Super Lab project. The goal of this project is to maximize geographically separated testing capabilities by connecting them in real-time simulations via the Internet. The implications are broader than testing, however. Whereas the current approach is limited to regional electricity sharing, the team sees the potential to exchange electricity among continents, improving the resiliency of electric grids. NREL’s contributions to this project included accurately estimating communications delays, addressing latency issues, and improving available bandwidth. In addition, NREL has established real-time links to industry partners to make it possible to run experiments virtually by linking assets at partner facilities to the advanced research equipment at the ESIF. Links have been established with SDG&E, Australia’s Commonwealth Scientific and Industrial Research Organization, and Rijkdienst voor Ondernemend in the Netherlands.
NREL enables utility partners, technology vendors, potential system owners, and researchers to evaluate existing and future use cases under different scenarios for a variety of energy control and management systems at the ESIF’s national, vendor-neutral research platforms. The ESIF research platforms cover microgrids, smart homes, cybersecurity, and ADMS.

Microgrid
Cities, utilities, businesses, universities, and the military are increasingly interested in the flexibility, quick response, and security of microgrids. At the ESIF, new technologies and configurations are assessed at full power against a realistic replica of the actual location. Laboratory validation improves performance and mitigates anomalies before bringing these systems into the field. The ESIF also adds a cybersecurity communications layer, connecting power systems via realistic control networks using actual industry protocols. The megawatt-scale cyber-physical platform for microgrids reduces risks of deployment and helps optimize the successful implementation of actual industry protocols. The megawatt-scale cyber-physical platform for microgrids into the field. The ESIF also adds a cybersecurity communications layer, connecting power systems via realistic control networks using actual industry protocols. The megawatt-scale cyber-physical platform for microgrids reduces risks of deployment and helps optimize the successful implementation of actual industry protocols.

Advanced Distribution Management System
NREL and the DOE’s Office of Electricity Delivery and Energy Reliability have developed a vendor-neutral advanced distribution management system (ADMS) evaluation platform and are expanding the platform’s capabilities. For low-cost, low-risk evaluation, utilities can use the platform at the ESIF to assess the performance of an ADMS that has been deployed or will be deployed. The platform uses actual grid-scale hardware, large-scale distribution system models, and advanced visualization to simulate real-world conditions. Among the many use cases evaluated in the ADMS research platform are the integration of transmission-to-building operations, incorporation of high penetrations of DERs into utility operations, and coordination among traditional utility assets and islandable microgrids.

Cybersecurity
NREL’s cybersecurity research platform employs a nine-layer cybersecurity architecture that effectively protects any multimedia Internet protocol network. NREL demonstrates this by protecting distribution grid management use cases against insider threats and external hackers. Compared to traditional approaches to cybersecurity, which rely on costly updates to fixed legacy systems, the nine-layer architecture separates the power, communications, and cybersecurity systems—allowing each of these to be modular and evolve according to the business needs of a given use case. This method presents a systemic approach to protecting critical infrastructure without a need for forklift upgrades or additional security at the end device and protocol level. By leveraging lessons learned via NREL’s cybersecurity research platform, asset owners can save significant amounts of capital investments in cybersecurity while meeting regulatory requirements.

Smart Home
NREL’s smart home research platform advances technology to make our homes more comfortable and convenient while saving energy and being more grid-friendly. Researchers simulate real-world conditions in a controlled laboratory environment incorporating power generation, energy storage, electric vehicles, and end loads in a space that connects sensors and analytics, appliances, a home, or even a community. Using HIL technology, researchers evaluate all aspects of intelligent building ecosystems—from smart appliances to cyber-secure home EMS—to tie into the dynamic grid of the future.

SYSTEM & TECHNOLOGY RESEARCH PLATFORMS

NREL researchers can a grid simulation using industrial-scale inverters to model a microgrid that San Diego Gas & Electric is expanding in Borrego Springs, California. Other partners that have used the microgrid research platform include Caterpillar, EaglePicher, Honeywell, and Raytheon.

Researchers work with a home battery that integrates with a solar inverter and other controlled appliances as part of a home EMS available in the smart home research platform. This project is jointly funded by Bonneville Power Administration, Bosch, and the U.S. Department of Energy Building Technologies Office. Other partners that have worked in the smart home research platform include: A.O. Smith, Scobee, Epanua, Electric Power Research Institute, ESSPIFT, Fronius, Green Mountain Power, Hawaiian Electric Companies, Intevion, Lenze, LG Chem, Nissan, Pentair, Toyota, Trane, and Whisker Labs/Earth Networks.

For a project with Duke Energy, researchers study feeder topography of a distribution management system electric grid in the ESIF’s collaboration room. Other partners that have used the ADMS research platform include: AEOI Energy, EPRI, GE Grid Solutions, Schneider Electric, and Opal RT.

NREL researchers work through different scenarios to evaluate the security of new technologies that are being introduced to the electric grid. The nine-layer architecture that the research platform employs is applicable to any multisite information system in any industry that uses real-time transactions (such as generation, transmission, and distribution) between users and/or systems. NREL cybersecurity researchers worked with several industry partners in FY 2017 to evaluate the cybersecurity for a number of technologies—from online energy devices to electric vehicles, wind turbines, home energy networks, thermostats, and demand response systems.

For a project with Duke Energy, researchers study feeder topography of a distribution management system electric grid in the ESIF’s collaboration room. Other partners that have used the ADMS research platform include: AEOI Energy, EPRI, GE Grid Solutions, Schneider Electric, and Opal RT.

NREL researchers ran a grid simulation using industrial-scale inverters to model a microgrid that San Diego Gas & Electric is expanding in Borrego Springs, California. Other partners that have used the microgrid research platform include: Caterpillar, EaglePicher, Honeywell, and Raytheon.

Researchers work with a home battery that integrates with a solar inverter and other controlled appliances as part of a home EMS available in the smart home research platform. This project is jointly funded by Bonneville Power Administration, Bosch, and the U.S. Department of Energy Building Technologies Office. Other partners that have worked in the smart home research platform include: A.O. Smith, Scobee, Epanua, Electric Power Research Institute, ESSPIFT, Fronius, Green Mountain Power, Hawaiian Electric Companies, Intevion, Lenze, LG Chem, Nissan, Pentair, Toyota, Trane, and Whisker Labs/Earth Networks.

For a project with Duke Energy, researchers study feeder topography of a distribution management system electric grid in the ESIF’s collaboration room. Other partners that have used the ADMS research platform include: AEOI Energy, EPRI, GE Grid Solutions, Schneider Electric, and Opal RT.
<table>
<thead>
<tr>
<th>Title</th>
<th>Primary NREL Center</th>
<th>NREL Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Modular and Scalable Power Architecture for Medium-Voltage Power Conversion</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-74</td>
</tr>
<tr>
<td>A Short-Term and High-Resolution Distribution System Load Forecasting Approach</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-88</td>
</tr>
<tr>
<td>ACES Investigator</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-28</td>
</tr>
<tr>
<td>AMLax</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-29</td>
</tr>
<tr>
<td>Class Object Attribute Data (COAD) for PLEXIDS</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-31</td>
</tr>
<tr>
<td>Commercial Distribution Management Systems (DMIS) model to Common Information Model conversion</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-37</td>
</tr>
<tr>
<td>Data-Driven Decision Support for Renewable Curtailment</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-45</td>
</tr>
<tr>
<td>Decentralized Interleaving of Parallel-Connected Converters in DC Microgrids</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-64</td>
</tr>
<tr>
<td>DSS2/PHASOR (“OpenDSS” files to “PHASOR-595” interface files converter)</td>
<td>SD00 - Power Systems Engineering</td>
<td>SWR-17-34</td>
</tr>
<tr>
<td>FAIRMS-NRT (Fast All-sky Radiation Model for Solar applications with beammode irradiance over tilted surfaces)</td>
<td>SD00 - Power Systems Engineering</td>
<td>SWR-17-48</td>
</tr>
<tr>
<td>HELICS (High-Performance Transmission Distribution Communication Market Co-Simulation Framework)</td>
<td>SD00 - Power Systems Engineering</td>
<td>SWR-17-52</td>
</tr>
<tr>
<td>Heterogeneous Network Topology Manager</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-95</td>
</tr>
<tr>
<td>Integrated PV Module and Lights</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-23</td>
</tr>
<tr>
<td>Libispace</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Primary NREL Center</th>
<th>NREL Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, and Linear Models</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-40</td>
</tr>
<tr>
<td>Low-Voltage Electric Vehicle Power Distribution System</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-37</td>
</tr>
<tr>
<td>Measurement-Based Hidden PV Estimation</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-87</td>
</tr>
<tr>
<td>Network-Aware Decentralized Voltage Control for Distribution Grids</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-28</td>
</tr>
<tr>
<td>PeaC</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-35</td>
</tr>
<tr>
<td>PeaPhysics</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-36</td>
</tr>
<tr>
<td>PQScal (Power Quality Score Calculation for Distribution Systems with DER Integration)</td>
<td>SD00 - Power Systems Engineering</td>
<td>SWR-17-06</td>
</tr>
<tr>
<td>pye2k (Python WindFlowKit)</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-26</td>
</tr>
<tr>
<td>Remote Sensing of Transmission Line Operating Environment for Dynamic Line Ratings</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-43</td>
</tr>
<tr>
<td>Single-Phase Battery Charger for EV With No Energy Storage Requirements</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-38</td>
</tr>
<tr>
<td>Transmission Distribution Simulation Visualizer (TDSVis)</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-18</td>
</tr>
<tr>
<td>Travelling Wave Based Protection Scheme to Detect and Identify Faults in a Distribution System With High Penetration of Inverter Based Distribution Energy Sources</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-77</td>
</tr>
<tr>
<td>Use of Embedded Optical Fibre in Transmission Cable Wrapping for Conductor Temperature Sensing</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-44</td>
</tr>
<tr>
<td>Variable Time-Step Solution Method for Quasi-Static Time-Series Power Flow Analysis</td>
<td>SD00 - Power Systems Engineering</td>
<td>ROI-17-16</td>
</tr>
<tr>
<td>Volttime</td>
<td>2C00 - Computational Sciences</td>
<td>SWR-17-33</td>
</tr>
<tr>
<td>WPP_Observer_IR</td>
<td>SD00 - Power Systems Engineering</td>
<td>SWR-17-12</td>
</tr>
</tbody>
</table>
Patent Filings

<table>
<thead>
<tr>
<th>Title</th>
<th>Primary NREL Center</th>
<th>NREL Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time Voltage Regulation Through Father and Broadcast Techniques</td>
<td>SD00 - Power Systems Engineering</td>
<td>16-35</td>
</tr>
<tr>
<td>Distribution Infrastructure Optimization and Control</td>
<td>SD00 - Power Systems Engineering</td>
<td>PROV/16-124</td>
</tr>
<tr>
<td>Determining Load Flow in Multiphase Networks</td>
<td>SD00 - Power Systems Engineering</td>
<td>PROV/17-40</td>
</tr>
<tr>
<td>Network-Cognizant Voltage Drop Control</td>
<td>SD00 - Power Systems Engineering</td>
<td>PROV/17-28</td>
</tr>
<tr>
<td>Mitigating Latency Errors in Distributed Systems</td>
<td>SD00 - Power Systems Engineering</td>
<td>16-31</td>
</tr>
<tr>
<td>Virtual Oscillator Control</td>
<td>SD00 - Power Systems Engineering</td>
<td>PCT/16-74</td>
</tr>
<tr>
<td>Virtual Oscillator Control</td>
<td>SD00 - Power Systems Engineering</td>
<td>16-74</td>
</tr>
<tr>
<td>Decentralized Control</td>
<td>SD00 - Power Systems Engineering</td>
<td>PROV/17-64</td>
</tr>
<tr>
<td>Modular Scalable Power Conversion</td>
<td>SD00 - Power Systems Engineering</td>
<td>PROV/17-74</td>
</tr>
</tbody>
</table>

PUBLICATIONS

Most Downloaded Publications

The following were the most downloaded FY 2017 ESIF publications on NREL.gov:

2. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, Vol I—National Study
3. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry
4. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
5. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study
8. A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards
10. “Grid Integration Science,” NREL Power Systems Engineering Center
Conference Papers (Preprints)

Conference Papers (Published Proceedings)

Posters

Presentations

Energy Systems Integration Partnerships: NREL + Sandia + Johnson Controls. NREL/FS-5C00-69669.

Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy. NREL/FS-5C00-67984.

Energy Systems Integration: Demonstrating Distributed Resource Communications. NREL/FS-5C00-67783.

Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control. NREL/FS-5C00-67776.

Fuel Cell Technology Status Analysis Project: Partnership Opportunities. NREL/FS-5C00-67791.

Smart Home Test Bed: Examining How Smart Homes interact with the Power Grid. NREL/FS-5C00-66513.

Management Reports

Newsletter

“New Perspectives on Wind and Solar Integration Studies.” 2017. NREL/NS-5D00-68779.