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Executive Summary 
Distributed solar photovoltaic (DPV) systems that generate energy in behind-the-meter 
applications for residential, commercial, and other end-use sectors are a growing—and 
potentially disruptive—development in the U.S. power system. While less than 1% of all 
electricity generation in the United States came from DPV systems in 2016 (EIA 20171), this 
technology has experienced rapid growth in recent years and, as of the end of 2017, over 1.6 
million DPV systems had been installed (GTM 2017). Given this, projecting distributed solar 
deployment is increasingly pertinent—yet remains highly uncertain. 

The traditional U.S. power system has historically consisted of large, centralized baseload 
generators connected to demand centers via a hub-and-spoke network of synchronized voltage 
transmission and distribution lines. Utilities have also historically financed most infrastructure 
with charges apportioned among customers on a volumetric basis. DPV systems disrupt both 
prior foundations of the U.S. electric power system. Not only are DPV systems typically low 
capacity, but their generation directly offsets on-site electricity consumption or is exported to the 
grid in the case of excess, thereby reducing electricity sales. Recent declines in DPV costs has 
prompted questions regarding the conditions in which consumers might find electricity sourced 
from DPV more economically compelling than grid-sourced electricity. Sometimes termed “grid 
parity”, this phenomenon could accelerate DPV adoption. Clarity about whether DPV might 
achieve grid parity, the timing and extent of this transition, and future levels of DPV deployment 
are important factors to consider for power system operational conditions, engineering and 
financial risk, and long-term planning of the U.S. electric grid.  

To address these issues, we project trends in the net present value of residential-scale solar 
systems on a county-level basis from 2017 through 2050. Next, we combine the long-term 
projections of three national DPV adoption models to examine their short and long-term outlooks 
and sensitivities to future macroeconomic conditions. Finally, we also address the inherent 
uncertainty in projections from two distinct perspectives: (1) economic uncertainty, or the set of 
techno-economic factors that significantly impact the real world as well as our model 
projections, and (2) modeling uncertainty, or the differing implications of choices made 
regarding modeling methodology in computational simulations.  

The analysis conducted for this report is relatively static and does not capture the full range of 
factors influencing electricity markets. Nevertheless, it is intended to be instructive of the range 
of potential DPV deployment should grid conditions remain similar to today’s. Future work 
could consider other potentially disruptive factors, such as influence of electric vehicles, energy 
storage, competition between utility-scale, community-scale and distributed-scale solar systems, 
and impacts of integrating high levels of distributed solar into the electrical grid. For instance, 
distribution grid integration limits could limit the actual deployable potential or introduce new 
system integration costs not considered in this analysis. Perhaps most significant are 
“endogenous” changes; that is, evolution in retail rate design, policy, and market structure as a 
response to the expansion of DPV to better reflect the value of distributed generation.  

                                                 
1 See “What is U.S. Electricity Generation by Energy Source?” data for April 2017, 
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3. 

https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
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Distributed PV NPV Projections  
Customer adoption of DPV is primarily driven by the potential savings from the avoided 
purchase of grid-sourced electricity. We develop projections for the net present value of 
investing in a DPV system from the consumer’s perspective as a means to understand the 
conditions under which consumers might perceive DPV adoption to be economically attractive. 
The projections incorporate county-level variation in the cost of retail electricity, solar resource, 
and policies affecting the value of distributed generation and use NREL’s standard power 
systems financing assumptions (real weighted average cost of capital of 5.4%), but do not 
incorporate distribution grid integration costs or feedbacks from transmission-level impacts. 
Also, this long-term outlook is based on two modeling assumptions, most notably that current 
retail rate structures do not substantially change, with the exception that excess solar generation 
(i.e., generation exported to grid) is modeled to eventually be valued at wholesale electricity 
prices (Proudlove et al. 2017). We also simulate current net metering and other financial 
incentives to sunset as specified in current statutes.  

Our analysis suggests that residential-scale DPV systems in 2017 had a positive Net Present 
Value (NPV) for nearly a third of counties (29%) in the continental United States, mostly in the 
Southwest and Northeast. By 2027, using NREL’s 2017 Annual Technology Baseline (ATB) 
Mid Case PV cost reduction scenario, this ratio increases slightly to 33% as (projected) lower 
costs are offset by sunsetting of current policies. By 2050, assuming continued cost reductions 
(ATB Mid Cost scenario)2, adoption of distributed solar could be a compelling financial 
proposition for consumers in 80% of U.S. counties (Figure ES-1). These long-term projections 
depend highly on future capital costs. For instance, with no reduction in costs in real terms from 
today’s levels (ATB High Cost scenario) and sunsetting of current policy, we project that DPV 
would be economically competitive in only 1% of counties.  

This analysis suggests that, with continued decreases in DPV costs, distributed solar may 
become economically attractive in many jurisdictions that are not currently associated with DPV 
activity, including wide swaths of the Midwest and portions of the Southeast. Conversely, based 
on current policy statutes, DPV is unlikely to become widespread in areas with low electricity 
prices or poor solar resource—including Washington and Idaho.  

                                                 
2 For reference, Mid Cost residential capital costs are $1,770/kW in 2027 and $1,150/kW in 2050. See: 
https://data.nrel.gov/files/71/2017-ATB-data.xlsm 
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Figure ES-1. Projected net present value of a 5-kW Residential Solar System in 2050 by County 

and ATB Cost Scenario 
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DPV Deployment: Economic Uncertainty 
We address uncertainty in future DPV deployment introduced through techno-economic 
conditions by comparing the projections of three national DPV adoption models using a common 
set of input assumptions and scenarios: 

• NREL’s dGen model 
• The U.S. Energy Information Administration’s (EIA) Cash Flow Adoption model 
• EIA’s Hurdle Rate Adoption model. 

Each model is used to assess the Reference case and seven additional sensitivities from EIA’s 
2017 Annual Energy Outlook (EIA 2017) 3. We find there are substantial differences in the 
underlying models’ assumptions and, as summarized in Table ES-1, in their long-term outlook. 
In the Reference case, the 2050 DPV projections ranged from 148 gigawatts (GW) to 227 GW. 
Sensitivity of dGen projections to the set of macroeconomic conditions explored was within 
±10% of the Reference projection and was narrower than sensitivity to solar capital costs. The 
EIA models, on the other hand, project capacity increases of 5% to 12%, or decreases of more 
than 15%, in response to various macroeconomic scenarios. 

Table ES-1. Comparison of Key Reference Case Outputs by Model for 2050 

Model Installed Capacity 
(GW) 

Number of Systems 
(Million) 

Annual Generation 
(TWh) 

NREL dGen 148 22.3 202 

EIA Cash Flow 165 14.3 239 

EIA Hurdle Rate  227 36.5 333 

Figure ES-2 illustrates model projection consensus is high from the present to 2026, with small 
differences in projected capacity. From 2026 onwards, however, the models begin different 
regimes of growth. In the dGen model, most currently implemented policies have expired by 
2026 and, thereafter, the rate of new installations decreases due to an increasing saturation of the 
most-favorable sites. In contrast, growth in adoption in both EIA models increases post-2026 due 
to differences in the representation of current policy, as well as assumptions related to 
demographics and peer influence. 

                                                 
3 See “Annual Energy Outlook 2017 with projections to 2050” report, January 5, 2017 
https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf. 
 

https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf
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Figure ES-2. Reference Case DPV projections by modeling approach   

DPV Deployment: Modeling Uncertainty 
We also examine the sensitivity and uncertainty of DPV projections to model specification, 
including the choice of which real-world phenomena to represent, how results change through a 
retrospective consideration, and the quantification of uncertainty derived from stochastic 
processes within the dGen model.  

We find that stochastic processes that populate customer profiles in dGen can introduce 
significant repeatability challenges in simulations with insufficient sampling rates (Figure ES-3) 
and that model variance decreased at larger geographic scales due to the aggregation of many 
smaller random processes. In practical terms, we estimate that a single national simulation using 
one agent per county-sector is expected to have a 5% uncertainty for the national-level projected 
installed capacity. Importantly, sampling process uncertainty is additional to other modeling 
assumptions or projections (e.g., future natural gas prices). Sampling error was found to be 
higher at the state level, where the median state would have an uncertainty of 41%. These errors 
substantially decrease as the model resolution increases, where averaging of 10 simulations 
results in a 1.5% error nationally and a 12.9% error for the median state; 100 simulations achieve 
a 0.5% error nationally and a 4.1% error for the median state. These results provide guidance on 
the sampling rates needed to achieve a desired level of sampling error, which is important for 
informing future analysis. 
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Figure ES-3: Variance in New York (left) and national-level (right) results for 10 simulations for one 

agent per county-sector, each using a random seed  
 

Conclusions 
In this report, we project long-term DPV cost competitiveness with grid-sourced electricity, 
finding that future competitiveness is sensitive to both the cost of PV systems and the value of 
distributed generation. While policies such as net metering affected the DPV net present value, 
future PV system costs were more significant. Under the ATB Mid Cost scenario, DPV could be 
cost-competitive for most of the United States in 2050, though conversely there are also likely to 
be persistent regions with low deployment.  

Projections from three long-term capacity expansion models generally were consistent in the 
projected near-term deployment in the near term, roughly 50 GW in 2027 in the Reference case. 
After 2027, the models disagree on the long-term projection, with the EIA Cash Flow and NREL 
dGen model projecting 148GW–165 GW of installed capacity, while the EIA Hurdle model 
projected 227 GW.  

We also explore several dimensions to modeling uncertainty, including the choice of which real-
world phenomena to represent, how results change through a retrospective consideration, and the 
quantification of uncertainty derived from stochastic processes within the dGen model. We find 
that (1) stochastic processes that populate customer profiles in dGen may introduce significant bias 
in simulations with insufficient sampling rates (Figure ES-3) and (2) model variance decreased at 
larger geographic scales due to the aggregation of many smaller sampling processes. 
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1 Introduction 
1.1 Overview of Distributed Solar in the United States 
Distributed solar photovoltaic (DPV) systems constitute an important and growing source of new 
electrical generation in the United States. DPV generates energy in behind-the-meter applications 
for residential, commercial, and other end-user sectors,4 reducing those sectors’ net electrical 
demand, and thereby reducing electricity bill expenditures. However, as DPV deployment grows, 
it disrupts two historical tenets of the U.S. power system. First, the traditional U.S. power system 
has consisted of large, centralized baseload generators connected hub-and-spoke via transmission 
and distribution lines. DPV projects are typically smaller capacity and sited behind-the-meter, so 
either their generation directly offsets on-site consumption or excess energy is exported to the 
grid. Second, utilities have historically financed most infrastructure costs with charges 
apportioned among customers on a volumetric basis. By reducing retail electricity sales through 
on-site generation, DPV circumvents the revenue channels on which utilities typically rely for 
cost recovery. These forces make accurately projecting the adoption of DPV and analyzing its 
potential market impacts increasingly important. In particular, should residential PV costs 
continue to decline, distributed solar generation may be increasingly cost-competitive with grid-
sourced electricity. 

Financial comparisons between the costs of distributed solar generation and grid-sourced 
electricity is often referred to as “grid parity”. Many researchers have analyzed this dynamic 
postulating that, once the levelized cost of solar generation becomes more competitive than 
purchasing electricity from the grid, customers adoption might accelerate. To the extent that 
regulatory mechanisms do not decouple the reduced retail sales from fixed infrastructure cost 
recovery, continued DPV adoption could induce a feedback loop where the revenue base to pay 
off infrastructure decreases, prompting higher rates and thereby spurring additional DPV 
adoption. 

Thus, the amount of distributed solar adopted is increasingly pertinent for power systems 
planning, but also highly uncertain. In this report, we consider two categories of uncertainty—
economic and modeling uncertainty. On the economic side, numerous time-dependent factors, 
both exogenous and endogenous, influence DPV expansion. These include but are not limited to 
future solar capital costs, capital and operating costs of competing technologies, macroeconomic 
factors such as inflation and load growth, and future energy policy.  

However, even if future market conditions could be perfectly known, projections would still be 
uncertain because mathematical models are inherently imprecise. Imprecision is introduced 
through imperfect input data (e.g., the exact number of suitable roofs for solar or the exact 
profile of energy consumption). Significant portions of DPV adoption models are simply 
incompletely parameterized, as technology adoption is inherently a function of human behavior, 

                                                 
4 Distributed generation may also be located in front-of-the-meter applications, which are directly tied to 
the distribution network and therefore do not offset a user’s consumption. This report does not consider such 
installations. 
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and not deterministic. Though no model can perfectly forecast market outcomes, increased 
transparency regarding the possible range of outcomes can inform planning decisions.  

1.2 Historical Trends  
While less than 1% of all electricity generation in the United States in 2016 came from DPV 
(EIA 20175), as illustrated in Figure 1, the technology has experienced rapid growth in recent 
years both in the commercial and residential sectors. In 2016 alone, over 4 GW of DPV capacity 
was installed, a 25% year-on-year increase and more than seven times the capacity installed in 
2010 (GTM 2017). By year-end 2017, over 1.6 million DPV installations had been completed 
(GTM 2017).   

 
Penetration is defined by the count of DPV systems as a fraction of business establishments and residential 

housing units (U.S. Census Bureau 2017). 

Figure 1. Cumulative DPV penetration by sector, nationally, and for the 10 most-populated states  

Current deployment of DPV in the United States is primarily concentrated among a few states 
with high retail costs of electricity, policies encouraging the expansion of DPV, or favorable 
solar resource. Though 27 states in United States had at least 50 megawatts (MW) of DPV 
capacity as of 2016, seven states (California, New Jersey, Massachusetts, Arizona, New York, 
Maryland, and Hawaii) accounted for 80% of the U.S. installed capacity (GTM 2017). 

California, a highly populated state, is the nation’s leader in installed capacity, with over 6,500 
MWDC of capacity as of 2016. Deployment in California can be explained by a combination of 
strong solar resource, some of the nation’s highest cost of electricity (OpenEI 2017), and a long 
history of solar-related policy (DSIRE 2017).  

                                                 
5 See “What is U.S. Electricity Generation by Energy Source?” data for April 2017, 
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3. 

https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
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New Jersey has the second-most cumulative installed DPV, with over 1,600 MWDC. Compared 
to the national average, New Jersey has below-average solar resource. State policy—including a 
renewable portfolio standard, a solar carve-out and an accompanying solar renewable energy 
credit (SREC), mandatory net metering, and other polices—help explain high DPV deployment. 
A similar rationale explains high deployment in three of the other top-seven states—
Massachusetts (1,441 MW), New York (848 MW), and Maryland (603 MW). 

As an early leader in DPV adoption, Hawaii has the highest residential market penetration, with 
solar PV installed on nearly one in five homes (Gorak 2016). The state also has the nation’s 
highest cost of electricity, and retail prices are largely set by the cost of imported oil (Mulkern 
2013). In contrast, Arizona’s declining policy support and lower cost of electricity are offset by 
the state’s exceptional solar resource. Arizona (968 MW) is also notable for evolution of its solar 
policy; for example, it revised the valuation of solar energy under its net metering policy as a 
reaction to increasing deployment levels (DSIRE 2017)   

As the DPV market matures, early state leaders in the residential sector are showing signs of 
decelerating growth and new focal points are emerging. For example, 2017 was the first year in 
which new residential capacity nationally did not exceed the previous year’s (GTM 2017). Some 
of the decreased demand for DPV instead is being channeled to community solar and other 
shared solar arrangements (GTM 2017). At the same time, falling PV prices are fueling growth 
in many states with currently modest levels of deployment. At least eight states—Colorado, 
Delaware, Florida, New Mexico, Oregon, Pennsylvania, Texas, and Vermont—are projected to 
have at least 25% year-on-year growth and more than 10 MW in annual deployment in the 
residential sector (GTM 2017). Conversely, it is important to note that DPV is not a widespread 
phenomenon in several states. For example, through 2017, approximately 15 states had less than 
10 MW of installed residential capacity. Low retail prices and enacted policy in those states 
likely explain the lack of adoption. Moezzi et al. (2017) also note that residential solar is not 
viewed as a universally positive technology by all households.  

1.3 State and Federal Policy  
Expansion of DPV in the United States, and renewable energy more broadly, has largely been 
driven by a blend of policy at the federal and state levels. These include both financial incentives 
(e.g., federal investment tax Credit (ITC)), but also state-level or utility-level policies to 
incentivize renewable energy deployment (e.g., renewable portfolio standards and net energy 
metering). The nominal rationale for these public expenditures and policies has been that they 
would foster learning and innovation that enables DPV technologies to reach parity on an 
unsubsidized basis (Nemet 2009; Taylor 2008). Though it is difficult to identify the effect of any 
individual policy, rapid decreases in PV prices have prompted redesign of policy that can enable 
distributed generation to compete freely in markets.  

Many financial incentives exist in state or substate jurisdictions to incentivize DPV adoption. 
However, two incentives—the ITC and solar renewable energy credits (SRECs)—currently 
have the greatest impact on the national market outlook. The ITC, which was enacted in 2005, 
provides a credit of 30% of qualifying costs for select energy technologies, including solar 
energy. The ITC is realized once a system begins operation, and it vests over a five-year period 
(Bolinger et al. 2009). Credit for the ITC is monetized through reduced tax liability. In at least 
two cases, the ITC may not be monetized for the full value. First, some commercial and 
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residential owners may not have sufficient tax liability to fully monetize the credit’s full value, 
and in these cases, “tax equity” investors can provide monetization at a cost. Second, in cases of 
third-party ownership, the full ITC value may not be passed through to the consumer in the form 
of lower prices (Dong, Wiser, and Rai 2014). The credit has gone through several extensions 
since its inception, and the current statute allows phase-down to 10% for commercially owned 
systems and 0% for residential systems in 2022 (Mai et al. 2016). Expiration of the ITC is 
expected to represent a significant headwind to DPV expansion post-2022.  

SRECs are a production-based incentive generated for each megawatt-hour of solar electricity 
produced. These certificates are legislated by state renewable portfolio standards and represent a 
market-facing compliance mechanism for valuing the environmental benefits of solar generation. 
The credits are bought and sold among entities seeking compliance with renewable procurement 
regulations or voluntary goals. Currently, Delaware, Maryland, Massachusetts, New Jersey, 
Ohio, Pennsylvania, and Washington, D.C. have established SREC markets. SREC prices are 
extremely volatile and their value varies substantially by state, based on supply and demand 
conditions. As of November 2017, prices ranged from $3.50 per megawatt-hour (MWh) (Ohio) 
to $410/MWh (District of Columbia) (SRECTrade 2017). Though the future value of these 
credits is uncertain, for key markets they provide substantial economic benefits to DPV 
system owners. 

1.4 Economics and Market Impacts 
The rise of distributed solar and other demand-side technologies has prompted utilities and 
regulators to reconsider how the costs of operating the electrical grid are passed along to 
consumers via retail electricity tariffs. Increased deployment of DPV impacts electrical systems 
in many ways, such as lower electricity demand and thus reduced retail sales by utilities (Bird et 
al. 2013). Flat or reduced revenue challenges the recovery of costs for utility capacity and energy 
(i.e., the existing generation fleet) investments, as well as for transmission and distribution 
assets, which comprise a substantial portion of retail costs (Fares and King 2017).  

As DPV deployment rises, there is growing consensus of the need to establish an efficient and 
holistic compensation framework for determining the value of DPV generation and other grid 
services provided. Historically, net energy metering (NEM) has been the primary billing 
mechanism used to account for DPV value. Though there are many possible formulations of 
NEM, in its simplest expression, it compensates a system owner for generation not used on-site, 
at a set rate, typically the retail rate. NEM policies have contributed to the growth of DPV 
markets by providing a reliable and intuitive metric for the expected revenues of a DPV system. 
NEM availability is currently widespread, though the landscape is quickly shifting; there were 41 
state-level policy actions in 2017 relating to distributed generation—the majority of which seek 
to revise distributed generation compensation downward (NCCETL 2017). 

The primary critique of net metering policies is that it could allow PV customers to pay less 
than their full share of fixed utility infrastructure costs (e.g., transmission, distribution, and utility 
operations), thereby raising retail rates for remaining rate payers. Others find the notion of 
compensating distributed generation at retail rates inefficient, as the opportunity cost of 
wholesale energy is a fraction of the current cost of DPV. Proponents of net metering argue that, 
at least at low levels of solar penetration, solar customers provide net benefits to the grid (e.g., 
avoided environmental damages, resiliency, and avoided infrastructure costs) that exceed the 
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retail value. Finally, other research explores the long-term dynamic, with cause for caution. For 
instance, the impacts of net metering on retail prices are likely overshadowed by other 
uncertainties, such as misforecasting the price of natural gas (Barbose 2017). 

Effectively evaluating the value of distributed solar is a complex and evolving endeavor because 
solar’s value varies by level of solar penetration, local grid characteristics, and coincidence of 
solar generation with regional load profiles (Bird et al. 2013). The more straightforward DPV 
benefits include the energy and capacity value of solar generation, but the more-nuanced benefits 
may not be captured in retail rates (e.g., deferral of transmission and distribution investments, 
reduced transmission losses, risk hedging, and environmental and health benefits). Costs include 
integration of PV generation into planning, interconnection to the grid, and capital cost 
differences between DPV and comparable utility-scale sources (Bird et al. 2013). Ensuring retail 
rates provide a full account of the financial and non-financial benefit is both a contentious topic 
and one for which stakeholders are unlikely to find easy solutions (Wood et al. 2016).  

Looking forward, increased levels of DPV penetration—and variable energy resources more 
generally—are likely to raise new grid integration issues that, if unaddressed, could increase the 
societal cost of solar generation. Affecting integration at the transmission level or the bulk power 
level are issues relating to the non-dispatchable nature of solar energy, and a lack of visibility 
into distributed generation for system operators. These current limitations could lead to 
curtailment of solar generation (Cole et al. 2016) and declining capacity and generation value 
(Mills and Wiser 2012; Denholm, Clark, and O’Connell 2016). Addressing these issues would 
likely require additional levels of grid coordination and flexibility, including, market 
transformation, enhanced communication between load and distributed resources, additional 
transmission linkage, energy storage, and others. Conversely, distributed-level grid integration 
issues include investment in grid infrastructure to facilitate bi-directional power flow, regulatory 
improvements to interconnection processes, and modernized compensation schemes that reflect 
distribution-level costs and benefits (Palmintier et al. 2016; Hledik, Lazar, and Schwartz 2016; 
De Martini, Kristov, and Schwartz 2016). 

1.5 Measuring Grid Parity  
The rapid decline of DPV costs has prompted many to assert that electricity generated from DPV 
may soon reach cost competitiveness with retail electricity prices, thereby increasing the 
likelihood of future large-scale deployment across the United States (IRENA 2012; Reichelstein 
and Yorston 2013; Shahan 2014; Jacobs 2014; Honeyman 2016). Grid parity signifies when a 
novel technology has achieved cost competitiveness with incumbent technologies operating on 
the grid. For utility-scale technologies, parity describes the ability of an energy technology to sell 
electricity at a price equal to or lower than other technologies in the same wholesale market. For 
behind-the-meter technologies such as DPV, grid parity refers to the point in time when it is 
economically preferable for a residential or commercial customer to install a DPV system to self-
generate electricity rather than purchase some or all their electricity from the grid. 

Most published grid parity evaluations focus on the PV cost needed to provide a levelized cost of 
energy equal to the average cost of retail electricity. Some analyses (Reichelstein and Yorston 
2013; Shah and Booream-Phelps 2014) include incentives in their cost calculations to reflect the 
real-world market environment, while other studies exclude incentives under the assumption that 
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current incentives are transient, focusing on long-term (i.e., unsubsidized) economic comparisons 
(Farrell 2012; Shah and Booream-Phelps 2015; Hagerman, Jaramillo, and Morgan 2016).  

Grid parity metrics put forth in this report address a shortcoming in the literature by which DPV 
competitiveness is analyzed solely on levelized costs and fails to capture important nuances in 
the economic evaluation. Here, we calculate the savings relative to the avoided cost of retail 
electricity (EIA 2013). These marginal values vary geographically according to the retail rate 
structure, availability of net energy metering, and existing incentives (Ong, Denholm, and Clark 
2012; Honeyman 2016; Bevan and Donovan 2017). When using this more holistic approach, 
Honeyman (2016) found that in a business-as-usual scenario, 20 states reached grid parity in 
terms of first-year bill savings in 2016. However, when assuming including a $50 monthly fixed 
charge that was meant to ensure fixed infrastructure cost recovery, Honeyman (2016) found that 
DPV would be at parity in only two states in 2016. Bevan and Donovan (2017) found that 
comparing DPV’s LCOE to a static average electricity rate fails to account for dynamic 
residential retail tariffs (e.g., time-of-use rates) that vary throughout the year. To address this 
deficiency, they proposed a new threshold, “firm power parity,” that is achieved when energy 
systems (DPV potentially coupled with storage) provide a service (electricity provision) at an 
equal or lower cost than conventional service providers. 

Widespread grid defection stemming from distributed solar diffusion is possible, though 
unlikely, due to the rapidly evolving electrical grid. With new information technology and 
metering, grid costs can be accounted for far more accurately. Nevertheless, as technology costs 
continue to decline, market share of distributed generation may increase. Ultimately, we argue 
that the customer decision to adopt DPV (or not) is better modeled using net present value 
(NPV), as opposed to a levelized cost comparison. Grid parity is not a monolithic construct, and 
parity estimations are influenced by a variety of factors. These could include comparisons with 
other generation sources, such as utility-scale solar or utility-managed community solar.  

While many grid parity estimates focus on levelized cost (with many excluding subsidies and the 
impacts of tariff structures), this analysis examines whether DPV has reached parity from the 
point of the view of the consumer and considering the lifecycle economics of the system, 
including revenue impacts driven by real-world retail tariff structures and the projected 
availability of incentives and net metering. To that end, we project county-level NPV for 2017, 
2027, and 2050 for three long-term DPV cost trajectories (Section 2). Taken together, these 
projections provide a more accurate outlook of where and when DPV markets may emerge and 
grow.  
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2 Methodology 
This section provides an overview of the methods, data, and assumptions used in the two 
analyses for this study. The first analysis conducts county-level projections of grid parity 
completed using NREL’s SAM model (Section 2.1). The second analysis exercises three DPV 
deployment models: NREL’s dGen (Section 2.2), EIA’s Cash Flow Adoption Model (Section 
2.3), and EIA’s Hurdle Rate Adoption Model (Section 2.3), to contrast each model’s projections 
under different macroeconomic conditions. Parameters of the grid parity analysis are also stated 
below. 

2.1 Grid Parity Analysis: Data and Assumptions 
We evaluate the cost competitiveness of a hypothetical residential 5-kWDC south-facing roof-
mounted DPV system for each county in the continental United States using the NPV of 
projected system cash flows ($) assuming a 5.4% discount rate. This method evaluates the 
combined effects of net energy metering, retail tariff structures, incentives, and the time value of 
money on lifetime DPV system economics.  

This analysis uses NREL’s System Advisor Model Version 2017.9.5 (Blair et al. 2016) and 
PVWatts (Dobos 2014) calculator, along with the following techno-economic assumptions, to 
determine the lifetime economics by means of a discounted cash flow model. 

Solar Resource 
County-level solar resource profiles are based on the centroid of each county in the continental 
United States. SAM uses Typical Meteorological Year (TMY) data based on average hourly 
solar radiation values and meteorological conditions from NREL’s National Solar Radiation 
Database (NSRDB) to determine each location’s solar resource and potential energy production.  

System Size and Performance 
For consistency, all distributed solar systems in this analysis are south-facing 5-kWDC fixed-axis 
roof-mounted arrays that are tilted to match each location’s latitude. All systems are modeled to 
use standard mono-silicon modules that are roughly 15% efficient. Systems include 96% 
efficient inverters and are modeled with 14% total system losses and 0.5% annual system 
degradation rates.  

System Cost 
DPV capital cost ($/WDC) and operating and maintenance (O&M) cost ($/kWDC-year) are based 
on NREL’s 2017 Annual Technology Baseline (ATB) (NREL 2017). The ATB’s High, Mid, and 
Low solar cost projections are used to determine how sensitive parity metrics are to potential 
cost changes. For reference, capital costs are $2,932/kW in 2016 and by 2050 the Low scenario 
projects costs fall to $967/kW, the Mid scenario projects cost fall to $1,150/kW, and the High 
scenario projects cost remain constant at $2,932/kW.  
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Financing  
Financing assumptions, including assumptions about debt fraction, loan term, loan rate, weighted 
average cost of capital, inflation rate, and discount rate are based on residential solar parameters 
from the 2017 ATB (NREL 2017). Financial data from the ATB are derived from expert 
elicitation, using a common set of financial parameters to evaluate all energy technologies. 

Table 1. Grid Parity and dGen Financial Parameters 

Category Value 

Loan term 20 years 

Loan rate 5.4%  

Debt fraction 60% 

Discount rate 10% 

Tax rate 40% 

Annual inflation 2.5% 

Incentives 
The 30% ITC is modeled to decrease as currently defined in the Consolidate Appropriations Act, 
2016 (i.e., it expires for residential DPV owners on December 31, 2021). Available state-level 
incentives were compiled using the DSIRE database, though no substate incentives are modeled. 
Specifically, we modeled current state-level incentives to linearly decline in value to zero 
through 2027. This specification is based on an outlook in which very few states have well-
specified renewable portfolio standard policies through 2050, as well as the modeling 
assumption that as DPV cost competitiveness increases, states would accordingly phase-out 
incentives.  

Tariff Structure 
Utility rates for the NPV calculation are determined for each county by first determining the 
number of electric service providers in each county and then identifying which utility served the 
largest number of residential customers based on EIA-861 survey data.6 After selecting eligible 
residential tariffs for a single-family homeowner with DPV from NREL’s Utility Rate 
Database,7 the (eligible) tariff that minimized the customer’s electrical bill without solar is 
selected. The assumption that consumers selects tariffs that minimize their bills implies 
customers actively consider the tariff options available to them, which may not be true. Also, it is 
a conservative assumption, as it minimizes the potential solar bill savings (as compared to 
savings with non-optimal tariffs). Approximately 80% of load is covered by utilities with rates in 
the rate database; for counties without coverage, rates from the nearest service territory are used. 

Statutes in place at the time of publication were used to determine the availability of net energy 
metering for each year and location. Most of these statutes do not explicitly delineate the date of 

                                                 
6 See “Electric Power Sales, Revenue, and Energy Efficiency Form EIA-861 Detailed Data Files,” data for 2016, 
August 14, 2017, https://www.eia.gov/electricity/data/eia861/. 
7 The Utility Rate Database is hosted on the Open Energy Information (OpenEI) platform at 
https://openei.org/wiki/Utility_Rate_Database.   

https://www.eia.gov/electricity/data/eia861/
https://openei.org/wiki/Utility_Rate_Database
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NEM expiration, though many do specify sunset conditions based on distributed energy 
resources reaching a set percentage of non-coincident load or some other measure of penetration. 
For states with NEM constraints, we simulate the year of expiration based on projections from 
the dGen model. For states with NEM but without specified expiration clauses, NEM is modeled 
to exist indefinitely and distributed generation is valued at the full retail rate. In states and years 
in which NEM is modeled to not exist, because it either expired or never existed in the first 
place, DPV systems are compensated at the retail rate for self-consumed generated and at 
wholesale rates for exported generation. Future wholesale electricity prices are based on 
wholesale electricity price taken from the Reference case in the 2017 NREL Standard Scenarios 
(Cole et al. 2017) and using NREL’s Regional Energy Deployment System (ReEDS) model 
(Eurek et al. 2016).  

Energy Consumption 
A single, residential hourly load profile—from the U.S. Department of Energy’s Buildings 
Technology Office’s data set of Commercial and Residential Hourly Load Profiles for all TMY 
locations in the United States that is hosted on NREL’s OpenEI platform (DOE 2013)—was 
selected to represent all counties in a given state. Future work should examine the interaction of 
regional load shapes with distributed PV economics. 

2.2 The dGen Model 
2.2.1 About the Model 
The dGen model uses an agent-based simulation of customer adoption of DPV from 2014 to 
2050. After initial agent creation, DPV adoption trends are resolved over two-year time intervals 
through a multi-step process that assesses the technical, economic, and market viability of 
adoption, translating these metrics into county-level adoption rates. 

During agent creation, each county in United States is seeded with sets of residential, 
commercial, and industrial agents, each instantiated at population-weighted random locations 
within the county’s geographic boundaries. Agents are referenced against geographic data sets to 
establish a load profile, solar resource availability, a feasible utility rate structure, and other 
techno-economic attributes specific to the agent’s location. Each agent is assigned a weight that 
is proportional to the number of customers the agent represents in its county. In this context, 
agents can be understood as statistically representative population clusters and do not represent 
individual entities.  

At each time step, a cash flow analysis estimates the payback period and net present value of a 
solar energy system sized according to rooftop availability and energy consumption. Financial 
calculations are inclusive of state net metering policies, as well as prominent state and federal 
financial incentives.  

After establishing an agent’s payback period through cash flow analysis, the model estimates 
market adoption in two stages, based on the Bass Diffusion Model (Bass 1969) and associated 
willingness-to-pay literature. In the first estimation stage, annual adoption counts by state and 
sector from 1999 to 2016 are fitted to the Bass Diffusion Model using the non-linear least 
squares method (Srinivasan and Mason 1986; Dong, Sigrin, and Brinkman 2017). The initial 
year of diffusion is defined as the first year of at least five system installations, and starting 
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conditions for the non-linear least squares regression are obtained via a genetic algorithm. The 
first stage is only used to estimate diffusion growth parameters (i.e., p and q), and not overall 
market potential (i.e., m), which is estimated separately via consumer willingness-to-pay surveys 
(Paidipati et al. 2008; Sigrin and Drury 2014). The market potential parameter can be interpreted 
as the terminal fraction of technically eligible agents that would adopt the new technology at a 
given payback period level.   

This formulation embodies several conceptual assumptions about the nature of technology 
adoption. Based on the “diffusion of innovations” framework (Bass 1969; Rogers 2003), we 
assume new technologies are sequentially adopted by different classes of adopters (i.e., 
consumers). This framework posits that early adopters are willing to accept higher payback 
periods in exchange for early access to the technology. Once costs have declined further, 
mainstream adopters drive rapid growth of the technology until market penetration is mostly 
reached. After this point, late adopters contribute to small gains in growth. For example, as 
shown in Figure 2, at 15 years payback, 12% of potential residential agents and 1% of possible 
commercial agent would be expected to (eventually) adopt the distributed energy resource 
system. The willingness-to-pay curve also enforces the logic that, while economic factors are the 
primary divers of DPV adoption, complete market saturation is never reached because a small 
number of customers do not find beneficial use for the technology.  

  
Figure 2. Willingness-to-pay curves for residential and commercial agents 

2.2.2 Data and Assumptions 
The dGen model uses the following data sets and assumptions.  

Agent Characteristics 
County geographic boundaries and county demographics derived from the 2010 U.S. Census8 are 
used in agent instantiation. From these data, the number of owner-occupied detached buildings 
in the county, which typically constitute about 70% of all buildings, is used to determine the 

                                                 
8 2010 Census Summary File 1; see “U.S. Geographic Summary Data and Boundary Files,” National Historical 
Geographic Information System, http://www.nhgis.org. 

http://www.nhgis.org/
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number of constituents represented by each residential, commercial and industrial agent. Each 
agent is assigned a population-weighted random location, sampled from a 200 m x 200 m grid 
for the continental United States that correlates with several attributes by means of a simple 
spatial intersection with spatially resolved data sets (see Sigrin et al. 2016 for details).  

Model growth parameters are estimated from historical adoption data from the last 20 years 
(1999–2017) to calibrate and validate projected model growth parameters and current model 
starting conditions (i.e., the existing base of installation). Existing adoption counts are sourced 
jointly from the LBNL OpenPV Tracking the Sun (LBNL 2017) data set for adoption pre-2010 
and from the GreenTech Media Solar Market Insight report data set (GreenTech Media 2017) for 
more recent years (2010+). The Tracking the Sun report contains system-level interconnection 
records compiled from various state and utility incentive programs; however, it is not considered 
a comprehensive source of existing installations, as more and more systems are interconnected 
without state or local incentives.   

Solar Resource and Roof Characteristics 
Solar resource data are sourced from the NSRDB 10-km Gridded Hourly Solar Database 
(George et al. 2007), which consists of hourly solar radiation estimates for approximately 91,500 
grid cells in the continental United States at a 10-km2 spatial resolution. The hourly radiation 
values for each grid cell are based on typical meteorological year data (TMY3) (DOE 2013) 
from 1998 through 2005. 

Roof characteristics, including unshaded area, azimuth, and slope, are important determinants of 
a building’s technical suitability for solar. Using lidar-based aerial imagery (Gagnon et al. 2016), 
rooftop characteristics are assigned to agents via a stochastic process as documented in Sigrin et 
al. (2016, Appendix A). 

Retail Electricity Rates 
Utility rates are sourced from the NREL’s Utility Rate Database. Rates are assigned to agents 
based on a ranking algorithm that considers their location, sector, and voltage limits. If multiple 
tariffs are available, agents are assigned the tariff with the lowest cost of energy from those 
available to their class. Also, in the case of missing utility coverage, agents are supplied rates 
from the nearest covered utility.   

Electricity Load Profiles and Load Growth 
Annual electricity consumption by agent is determined by sampling with replacement from 
EIA’s Residential Energy Consumption Survey (RECS) (EIA 2009) and EIA’s Commercial 
Building Energy Consumption Survey (CBECS) (EIA 2012). The sampling is filtered on the 
region and is proportional to the sample weights. Electrical load is further constrained to match 
county-level customer counts and annual loads from Ventyx (2012). To ensure county-level load 
constraints are maintained, the sampled electric-load values are treated as intensity measures 
rather than absolute values, and agent-level demand is scaled appropriately. Though this method 
is inexact, it preserves agent-level variability in consumption and ensures county-level aggregate 
consumption is accurate. 

Hourly normalized residential and commercial load profiles are used to scale the agent’s annual 
consumption based on local weather patterns. Profiles are simulated by weather station (n = 79) 
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for 15 commercial building types and one residential building type (Ong et al. 2012; Davidson et 
al. 2015). All residential agents in a single region thus are assigned a single hourly consumption 
reflecting weather patterns, where annual electrical consumption is sampled from RECS 
microdata. Because commercial and industrial agents have more profiles from which to choose, 
these agents are assigned consumption patterns by first mapping building types to the primary 
building activities and then sampling from CBECS microdata to determine annual electrical 
consumption.  

Technology Costs and System Specifications 
PV costs and technical performance were sourced from the 2017 ATB Mid Cost scenario (NREL 
2017). As shown in Figure 3, residential installed costs in this scenario reach $1,475/W in 2030 
and $1,150/W in 2050, and with commercial installed costs of $1,176/W and $965/W in 2030 
and 2050, respectively. Systems were modeled with a constant 0.5% annual degradation rate and 
14.9–20.4 W/m2 power density from 2016 to 2050. PV systems are sized heuristically to offset 
95% of consumption on an annual basis in states and years in which net metering is applied; 
otherwise, systems are scaled to offset 50% of consumption. These sizing ratios were selected 
based on observations of historic system sizing ratios (Davidson and Margolis 2015). However, 
in the Standard Scenarios 2018 version of dGen agents will select the optimal PV system size 
based on tariff structure and DPV generation value. PV system sizes are also constrained based 
on the agent’s modeled roof size, when applicable. 

 
Cole et al. 2017 

Figure 3. Installed cost projections 

Financing Terms 
Financial parameters are based on the 2017 ATB (NREL 2017) (Table 1).  
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Federal and State Incentives 
Though there are a wide range of existing financial and non-financial incentives for DPV 
owners, challenges to data collection mean dGen only represents federal-level and state-level 
incentives. At the federal level, the ITC, which currently provides a tax credit of 30% of installed 
costs, is the predominant incentive. It is expected to scale down to 10% for commercial and 
industrial agents and 0% for residential agents by 2022. Systems are also depreciated following 
the Modified Accelerated Cost Recovery System (MACRS).  

Where applicable, state-level incentives were applied, though not at the substate level. Incentive 
types considered were production-based incentives, investment incentives, grants, rebates, and 
SRECs as captured in DSIRE. Where data were available and applicable, financial incentive 
calculations made use of system size limitations, incentive caps per project, and valid date range 
constraints. Where end dates were not known, state incentives are assumed to expire in 2027. 
Also, incentive values were modeled to linearly decrease to zero by their expiration date based 
on an assumed phase-out as solar deployment increases. 

SRECs are difficult to reconcile within long-term projections because their historical prices are 
highly volatile, yet they also provide a compelling source of revenue for system owners to 
exclude from the model. Starting values for SRECS were referenced to the January 2017 average 
state bid price as reported by SRECTrade (SRECTrade 2017). In Delaware, SREC values 
referenced to the average weighted bid price from 2017 SREC Procurement auction. To be 
consistent with other modeling choices in the report and simplify assumptions, SREC values 
were modeled to linearly decline to zero by 2027—though we acknowledge this as a simplifying 
assumption.  

Net Metering/Value of Generation 
State net metering policies were sourced from the Database of State Incentives for Renewables 
and Efficiency (DSIRE 2017). The complex and rapidly changing policy landscape prevents us 
from fully representing all current net metering implementations. We simplify by representing 
existing NEM policies by assuming all generation is credited at the retail electricity rate up to the 
stated system capacity limit. In states without net metering, or where NEM was modeled to have 
expired, self-consumed energy was valued at the retail rate and exported generation at the state’s 
wholesale cost of electricity. This assumption is based on an emerging trend for states that have 
enacted net metering successor tariffs (i.e., net billing, valuing non-self-consumed energy at an 
avoided cost) (Proudlove et al. 2017). Wholesale electricity rates were based on the 2017 
Standard Scenarios mid-case (Cole et al. 2017).  

Future availability of net metering is an important, but also uncertain, determinant of overall 
market potential. State-level availability was projected endogenously within dGen based on 
current regulations specifying the policy limits, as a fixed date, cumulative state distributed 
energy resource capacity limits, or fraction of the state’s peak demand. After being triggered, 
net metering was modeled as expired through 2050. In states with active net metering policies 
but no specified expiration, the policy is assumed to persist through 2050.  
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2.3 The EIA National Energy Modeling System (NEMS)  
EIA’s National Energy Modeling System (NEMS) uses two different methodologies to project 
new DPV installations in the residential and commercial sectors. Like the dGen model, the 
Commercial Demand Module (CDM) uses a cash flow analysis coupled with a logistic 
penetration curve to project DPV penetration. Furthermore, CDM assumes all non-residential 
DPV is allocated to the commercial sector because the industrial sector does not model DPV 
generation separately in NEMS. The Residential Demand Module (RDM) used a similar 
approach prior to AEO2017. Beginning with AEO2017, however, the EIA Cash Flow Adoption 
Model for residential solar PV penetration was replaced by an econometric hurdle model using 
ZIP code-level input data. The Cash Flow Adoption Model remains as an option, allowing users 
to compare results from both models with the same set of input assumptions. The models are 
described in the next two sections. 

2.3.1 EIA Cash Flow Adoption Model (Commercial and pre-AEO2017 Residential) 
The Commercial Demand Module (CDM) uses a 30-year cash flow analysis that determines the 
number of new solar installations in each year based on their projected economic return. For 
solar installations on newly constructed commercial buildings, penetration rates are calculated 
based on the number of years required to achieve investment payback using an internal rate of 
return approach. The calculations include the costs (down payments, loan payments, 
maintenance costs, and fuel costs) and returns (tax deductions for expenses and depreciation, tax 
credits, and energy cost savings) from the investment. The approach used by the Residential 
Demand Module (RDM) prior to AEO2017 defines investment payback as the number of years 
required to achieve a positive cash flow rather than using internal rate of return. 

Calculating the payback times with internal rate of return gives greater weight to financial costs 
and benefits that are incurred or received earlier in the cash flow horizon. For residential new 
construction, DPV investments are financed through the home mortgage, with the homeowner 
receiving a tax savings in the year following the payment that are relative to home mortgage 
deductibility. The NEMS Macroeconomic Activity Module determines mortgage rates. 

DPV penetration is calculated as a function of the payback period and an assumed maximum 
penetration limit. The penetration function for PV installations is assumed to have a logistic or S-
curve shape as shown in Figure 4, with slow initial penetration followed by rapid growth that 
eventually tapers as the technology matures. For AEO2017, penetration was limited to 75% 
of newly constructed buildings, even for investments with paybacks less than one year, as 
distributed generation is assumed to be inappropriate for some buildings regardless of payback 
time. Penetration into existing buildings is assumed to be limited to a much lower rate due to the 
added complexities of installing a distributed generation system onto an existing building. The 
limit is the lesser of either 0.5% or 10% of the new construction penetration rate for the CDM, 
and the lesser of either 0.5% or 2.5% of the new construction penetration rate for the RDM. 
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Figure 4. New construction DPV penetration rate curves for selected payback times 

Detailed assumptions for the EIA Cash Flow Adoption Model are described in Section 2.3.3. 

2.3.2 EIA Hurdle Rate Adoption Model (Residential) 
The EIA Hurdle Rate Adoption Model derives in part from studies indicating a contagion effect 
to solar PV installations, including Rothfield (2010). These studies find that the presence of solar 
PV installations in a given ZIP code, among other factors such as income and education, is a 
significant predictor of future installations. Usable ZIP code-level data on PV installations is 
currently available for five states—Arizona, California, Massachusetts, Maryland, and New 
Jersey—through NREL’s Open PV Database and state databases.9 Because these states represent 
a variety of solar irradiation, income, and education levels, they may be used to estimate 
historical PV installations and generation for ZIP codes throughout the rest of the country.  

To impute historical installations in other ZIP codes, each ZIP code in a state without available 
data (target ZIP code) is matched with a ZIP code in a data-replete state (data ZIP code) that 
minimizes the Euclidean distance between standardized covariate vectors for the two ZIP codes 
(i.e., median income, solar irradiation, retail electricity rates, and number of households). To 
obtain the installation count for each target ZIP code, the installation count from the matched 
data ZIP code is adjusted by the ratio of fitted values from a hurdle model (described in the 
paragraphs below), as well as by the ratio of number of households in the two ZIP codes. These 
historical estimates were calibrated to historical PV data based on the Solar Energy Industries 
Association’s total capacity data by census division (GTM 2017). 
The hurdle model is also used to project future solar installations in all ZIP codes. This 
econometric model has two components. A logistic regression component predicts the 
                                                 
9 Model coefficients were fitted using data from Arizona for 2000–2015, data from New Jersey for 2001–2015, 
and data from California, Maryland, and Massachusetts for 2007–2015. 
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probability (a number between zero and one) that at least one solar PV installation will be 
observed within a given ZIP code z during year t. At the model fitting stage, the dependent 
variable for this component is binary, with a value of zero indicating no installations and a value 
of one indicating at least one installation. A zero-truncated negative binomial regression 
component predicts the number of new installations, given that at least one installation occurred. 
Negative binomial models are commonly used for modeling count data. The predicted number 
of installations in each ZIP code/year combination is the probability from the logistic regression 
model multiplied by the conditional number of installations predicted by the negative binomial 
model. The GAMLSS package in R is used to fit both models to the available ZIP code-level 
data. Model covariates for both components include: 
  

• Median household income based on the U.S. Census Bureau’s American Community 
Survey and decennial census data 

• Annual average solar irradiation (kWh per square meter per day), as estimated by NREL 

• Retail electricity rate (cents per kWh) 

• Number of households based on the American Community Survey and decennial census 

• Monthly payment per kWDC of installed PV capacity, estimated based on the installed 
price of solar PV panels and the annual average mortgage interest rate in year t  

• Population density (households per square mile), estimated by dividing the number of 
households in ZIP code z by the land area in ZIP code z 

• Social spillover, which is represented as the lagged number of new installations observed 
in the previous year. This covariate is only used to model whether at least one solar 
installation will be observed (the logit component); it is not used in modeling the number 
of installations (the negative binomial component).   

Certain covariates were tested and not used. For example, household energy consumption was 
found to be insignificant due to its high correlation with electricity prices. Additionally, 
covariates were limited to those variables that could be projected in NEMS. The fitted 
coefficients for the covariates above are applied to NEMS projections for the covariate variables 
to project future residential PV installations. Although this model projects installations at the ZIP 
code level, NEMS aggregates and outputs these estimates at the census division level.10   

The effects of various state policies are not currently accounted for in the Hurdle Rate Adoption 
Model due to the difficulty in teasing out these policy effects from the effects of other factors 
(e.g., income and solar irradiation) in the states. Rather, net metering is implicitly assumed for all 
states in that retail electricity rates, not wholesale rates, are used as an input to the projections.  

Between 2009 (the last year of fully published housing characteristic and consumption microdata 
from RECS) and 2015, PV penetration model projections are calibrated to the Solar Energy 
Industries Association’s total capacity data by census division using a factor that is added to 
the modeled projection total. This factor is carried forward and added to model projections 
throughout the projection period.  

                                                 
10 For more information on the EIA Hurdle Rate Adoption Model, see Lent (2017). 
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2.3.3 Data and Assumptions 
The EIA models report outcomes based on the following data inputs and assumptions.  

Solar Resource and Regional Characteristics 
For the Cash Flow Adoption Model, solar insolation is estimated by overlaying CBECS/RECS 
climate zones within each census division onto a map of PV solar radiation developed by NREL. 
Each census division includes two to four solar insolation niches. Niches are further subdivided 
into high, medium, and low electricity price regions. For the RDM cash flow model, niche 
variables also include the census division share of housing units within a niche, average annual 
electricity use (in kWh) per single-family housing unit, and average roof area per single-family 
housing unit. The Hurdle Rate Adoption Model, by contrast, considers solar insolation at the ZIP 
code level.  

Roof Characteristics  
Available roof area per building is also used as an input for calculating the size of systems that 
may be installed in the Cash Flow Adoption Model. In the commercial model, the ratio of roof 
area to building square feet is derived from CBECS and applied to building square footage 
projections. Based on factors such as shading and rooftop equipment, 40% of commercial roof 
area is assumed to be suitable for PV. The residential cash flow model compares usable roof area 
with optimized system capacity and footprint to calculate total roof area available for PV in a 
census division. Approximately 50% of households are assumed to have a suitable southwest-
facing to southeast-facing roof surface, and of these, half of the roof area is south-facing. 
Shading and other roof impediments are assumed to make 40% of this area unavailable. The 
optimal size of individual household installations is calculated by assuming 80% of a house’s 
optimally oriented roof area will be available and 40% of this roof area will be suitable for PV. 
Additionally, effective available roof area is assumed to be 75% of this potential maximum area, 
to account for the share of residential roofs that are relatively or entirely flat. 

As modules become more efficient, they take up less space for a given system capacity; 
therefore, the amount of capacity that can fit on a given roof space is assumed to increase over 
time. Projected increases in PV efficiency are derived from Leidos (2015). Efficiency for both 
residential and commercial modules is assumed to reach 28.1% by 2050.  

As a top-down econometric model, the residential Hurdle Rate Adoption Model does not 
consider individual roof characteristics; rather, solar PV system sizes are set exogenously. 
There is an 80% cap on the number of households in each ZIP code that can install PV systems 
as distributed generation is assumed to be inappropriate for some households regardless of 
payback time.  

Retail Electricity Rates 
The NEMS Electricity Market Module calculates retail electricity rates endogenously for 22 
supply regions, and end-use prices are provided to the RDM and CDM. The rates for space 
cooling are used as inputs for both the Cash Flow Adoption Model projections and Hurdle Rate 
Adoption Model projections to reflect average prices when PV output is at its highest.  

Applying the change in Electricity Market Module-calculated rates to the historical electricity 
rate data underpinning the Hurdle Rate Adoption Model yields electricity rates in the Hurdle 
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Rate Adoption Model. To compute ZIP code-level electricity rate estimates, NREL estimates of 
ZIP code-level rates for 2011 were benchmarked to average state-level rates from EIA-861 for 
each year.11  

Technology Costs and System Specifications 
Historical installed PV system costs through 2015 were sourced from LBNL’s Tracking the 
Sun 10 report (Barbose and Darghouth 2017) for AEO2017. For years 2016 and beyond, capital 
costs are assumed to decline at the five-year incremental rates projected in the 2016 NREL ATB 
Mid Cost scenario. In the residential sector, the per-kWDC cost of PV equipment decreases from 
$8,406 in 2009 to $1,463 in 2050. In the commercial sector, the per-kWDC cost decreases from 
$5,096 in 2012 to $1,464 in 2050 for a 40-kWDC system. These prices serve as an upper bound 
to the solar costs derived from the learning cost function, described below. For the Cash Flow 
Adoption Model, residential and commercial distributed generation technology menus include 
fixed economic assumptions, including tax rates and inflation rates, and financing assumptions 
such as down payment percentages and loan terms. The Hurdle Model uses national-level annual 
mortgage interest rates and solar PV prices to compute an average monthly payment for solar PV 
systems. These payment levels are constant across census divisions but change over time 
(Lent 2017). Other system specifications throughout the projection period were obtained from 
Leidos (2015).  

The model assumes learning by doing; installed costs are expected to fall as cumulative 
shipments increase. Parameter assumptions for AEO2017 result in a 13% reduction in capital 
costs each time the installed PV capacity (including residential, commercial, and utility-scale 
systems) doubles. The model sets the capital cost of PV equal to the lesser of the result of the 
learning cost function and the PV prices derived from the LBNL and NREL sources.  

In the Cash Flow Adoption Model, PV system sizes are constrained by an exogenously imposed 
minimum and maximum (for residential, this is between 1 and 10 kWDC; for commercial, this is 
between 2 and 400 kWDC). These limits were derived from the range of capacities historically 
installed (Barbose and Darghouth 2017) Within this range, the commercial module sets system 
size equal to the lesser of the following: the maximum size possible given assumptions regarding 
suitable roof space and installation efficiency; or the average annual electricity consumption for 
the building type, size, and niche. The residential cash flow module sets system size equal to the 
lesser of the maximum installation size possible given assumptions regarding suitable roof space 
and installation efficiency, or the maximum installation size eligible for a tax credit. For the 
Hurdle Rate Adoption Model, average system sizes are set exogenously—in AEO2017, they 
were assumed to equal a constant 5-kWDC per system. 

Federal Policies 
Like the dGen model, NEMS calculates the installed cost of PV systems net of the current 30% 
federal ITC. Based on current legislation, this credit is scaled back to 26% in 2020 and 22% in 

                                                 
11 ZIP code-level estimates were developed by NREL using inputs from EIA and Ventyx Research, Inc. Estimates 
and documentation are available at https://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-
by-zipcode-feb-2011 (“U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011),” last updated 
August 29, 2017). 

https://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-by-zipcode-feb-2011
https://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-by-zipcode-feb-2011
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2021. It then drops to 10% for commercial and industrial agents and 0% for residential agents 
by 2022. Commercial PV systems are depreciated in accordance with MACRS. 

Net Metering and State Policies Affecting Interconnection 
The presence or absence of net metering is not explicitly represented in either of the AEO2017 
models. In the Cash Flow Adoption Model, excess generation beyond own use is sold back to 
the grid at the marginal price for utility purchases in all census divisions. The presence of net 
metering also is not included as a covariate variable in the Hurdle Rate Adoption Model; it is 
instead implicitly assumed for all census divisions.12 However, for both models, EIA has 
assigned scores ranging from zero (closed to interconnection) to one (completely open to 
interconnection) that reflect each state’s suite of policies on distributed generation. Scores are 
based on information from the DSIRE13 and on updates posted to state legislative and public 
utility commission websites. Components include state-level renewable portfolio standards or 
goals; public benefit funds that support renewable resources; the existence of net-metering and 
interconnection standards and rules; and the existence of solar or wind access laws. State-level 
scores are then aggregated into population-weighted census division-wide interconnection 
factors. The number of new installations calculated by either the Cash Flow Adoption Model or 
the Hurdle Rate Adoption Model is multiplied by these interconnection factors in both the RDM 
and the CDM. Interconnection limitations are assumed to ease over time with all census 
divisions open to interconnection by the end of the projection period. 

2.4 Model Comparison  
This section summarizes similarities and differences among data and assumptions used in 
simulations with the NREL dGen model and EIA Cash Flow Adoption Model and Hurdle Rate 
Adoption Model.  

2.4.1 Input Data 
Table 2 lists and compares key input data for each model analyzed in the report. Each modeling 
team was permitted flexibility to parameterize the models with assumptions based on the team’s 
analytical judgment, where the primary aim was to elicit a range of modeling results. Though 
models differ in key input data, they were aligned based on scenarios (see Section 2.4.2, Core 
Scenarios). 

                                                 
12 The residential hurdle rate adoption model currently uses the projected change in the space cooling electricity 
price to project the change in ZIP code-level retail rates from year to year. 
13 Database of State Incentives for Renewables & Efficiency (DSIRE), Raleigh, North Caroline, accessed July 2015: 
http://www.dsireusa.org/. 

http://www.dsireusa.org/
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Table 2. Comparison of NREL and EIA Input Data   

Metric NREL EIA 

Number of 
customers with 
technical capability 
to adopt solar 

Technical suitability is based on a 
statistical model derived from lidar 
rooftop imagery of individual 
buildings (Gagnon et al. 2016; Sigrin 
et al. 2016 Appendix A). This model 
estimates probability distributions of 
the unshaded area, azimuth, and tilt 
of building stock by county. Solar 
adoption in the residential sector is 
limited to owner-occupied single-
family buildings. In the commercial 
sector adoption is limited to owner-
occupied buildings and one-third of 
leased buildings.  
For 2018, we model 7.22 billion 
square meters of available roof 
space over 70.2 million buildings 
nationally. 
 

In the EIA Cash Flow Adoption Model, 
the overall penetration of solar on new 
construction is limited to 75%. For 
existing buildings, the limit is the lesser 
of 0.5% of the building stock or 10% of 
the new construction penetration rate 
for the CDM, and the lesser of 0.5% of 
existing single-family households or 
2.5% of the new construction 
penetration rate for the RDM. 
The RDM also assumes only 50% of 
households would have a suitable 
southwest-facing to southeast-facing 
roof surface, and both the CDM and the 
RDM impose further limits on the roof 
space that can accommodate solar (see 
Section 2.3.3.2). 
In the EIA Hurdle Rate Adoption Model, 
the penetration rate is bound by the 
number of households and population 
density. 

Amount of electrical 
demand for 
customers with 
technical capability 
to adopt solar 

Electricity demand is based on a 
combination of current county-level 
demand using ABB Velocity Suite 
and random sampling with 
replacement from EIA RECS and 
CBECS microdata to assign per-
agent consumption. Future demand 
is calculated by multiplicatively 
scaling with AEO2017 demand 
growth escalations. 
In the Reference case, annual 
consumption of customers with 
technical capacity to adopt solar is 
2,819 terawatt-hours (TWh) in 2018. 

Electricity demand is determined 
endogenously by the NEMS Residential 
and Commercial Demand Modules, 
using a bottom-up engineering 
approach. 

Capital costs Capital costs are based on the NREL 
2017 ATB Mid Cost scenario. Under 
this case, residential and commercial 
costs in 2050 are $1,150/kWDC and 
$965/kWDC respectively 

The average per-kWDC cost of 
residential PV equipment decreases 
from $8,406 in 2009 to $1,463 in 2050. 
In the commercial sector, the per-kWDC 
cost decreases from $5,096 in 2012 to 
$1,464 in 2050. 
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Metric NREL EIA 

Electricity rates Retail rates are based on data in 
NREL’s Utility Rate Database and 
are calculated based on hourly 
vectors of consumption and system 
generation. These calculations 
include consideration of demand and 
fixed charges, and other complex 
elements affecting marginal value of 
generation. Rates are assigned to 
agents based on the nearest utility 
with data coverage, selecting the 
tariff that minimizes the agent’s pre-
adoption electricity expenditure. 
Future rates are calculated by 
multiplicatively scaling with 
AEO2017 retail rate escalations. 

Projected electricity rates are 
determined endogenously by the NEMS 
Electricity Market Module through a set 
of integrated, iterative NEMS runs. 
To specify model coefficients for the 
Hurdle Rate Adoption Model, EIA uses 
ZIP code-level historical retail electricity 
rate estimates. These are calculated by 
combining average state-level rates 
from form EIA-861 with ZIP code-level 
estimates developed by NREL using 
inputs from EIA and Ventyx Research, 
Inc.a Projected electricity rates for the 
EIA Hurdle Rate Adoption Model are 
obtained by applying the change in 
NEMS electricity rates to the Hurdle 
Rate Adoption Model electricity rate 
estimates. 

Net metering and 
policies affecting 
ease of 
interconnection 

Current net metering policies are 
represented at the state-level by 
sector. Future net metering 
availability is endogenously 
determined based on current statute. 
If available and no sunsetting details 
are listed NEM is assumed to exist in 
perpetuity. For states without net 
metering, self-consumed generation 
is valued at retail rates and exported 
generation at the wholesale rate. 
Interconnection costs are not directly 
represented. 

The presence or absence of net 
metering is not explicitly represented in 
the EIA models. EIA assigns scores 
ranging from zero (closed to 
interconnection) to one (completely 
open to interconnection) to reflect each 
state’s policies on distributed 
generation. State scores are 
aggregated into census division-wide 
interconnection limitation factors, which 
are used to adjust the number of 
projected installations in both models.  

a Estimates and documentation are available at https://catalog.data.gov/dataset/u-s-electric-utility-
companies-and-rates-look-up-by-zipcode-feb-2011 (“U.S. Electric Utility Companies and Rates: Look-up 
by ZIP code (Feb 2011),” last updated August 29, 2017). 

https://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-by-zipcode-feb-2011
https://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-by-zipcode-feb-2011
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2.4.2 Core Scenarios  
Scenarios were based on the core cases from the U.S. Energy Information Administration Annual 
Energy Outlook 2017 (EIA 201714). Details of each scenario are summarized in Table 3.  

Table 3. Eight Core Annual Energy Outlook 2017 Scenario Descriptions   

Scenario 
Name 

Description 

Reference The Reference case provides a conservative load growth baseline against which 
alternative scenarios can be compared. Retail and wholesale electricity prices, as well 
as PV installed costs, draw from NREL’s 2017 ATB Mid Cost scenarios. Brent crude oil 
prices are assumed to rise at an average annual rate of 2.1%, reaching $117 per barrel 
in 2050. 

High Oil and 
Gas Price 

The High Oil and Gas Price case deviates from the Reference case in that it assumes 
load growth and retail energy prices projection assuming crude oil prices reach $241 
per barrel by 2050. 

Low Oil and 
Gas Price 

The Low Oil and Gas Price case assumes load growth and retail energy prices in line 
with Brent light sweet crude oil prices remaining below $50 per barrel through 2050. 

High Oil and 
Gas 
Resource 
and 
Technology 

The High Oil and Gas Resource and Technology case deviates from the Reference 
case in that it assumes load growth and retail energy prices that are representative of 
the United States having access to 50% more shale gas, tight gas, tight oil well, and 
offshore resource domestically than in the Reference case. Cost reductions and 
productivity are also 50% more favorable than in the Reference case. 

Low Oil and 
Gas 
Resource 
and 
Technology 

The Low Oil and Gas Resource and Technology case deviates from the Reference 
case in that it assumes load growth and retail energy prices representative of the 
United States having access to 50% less shale gas, tight gas, tight oil well, and offshore 
resource domestically than in the Reference case. Cost reductions and productivity are 
also 50% less favorable than in the Reference case. 

High 
Economic 
Growth 

The High Economic Growth case substitutes load growth and retail electricity price 
projections from the Reference case, with those reflective of real gross domestic 
product growing at an average annual rate of 2.6% from 2016 to 2050. 

Low 
Economic 
Growth 

The Low Economic Growth case substitutes load growth and retail electricity price 
projections from the Reference case, with those reflective of real gross domestic 
product growing at an average annual rate of 1.6% from 2016 to 2050. 

No Clean 
Power Plan 

The scenario that models the absence of the Clean Power Plan or similar greenhouse 
gas emissions restrictions as compared with the Reference case.a  

a Because this report uses scenarios from AEO2017, policies modeled under the Reference case include 
the Clean Power Plan. The Clean Power Plan was not included in the AEO2018 Reference case, which 
was released after the analysis for this report was completed 

                                                 
14 See “Annual Energy Outlook 2017 with projections to 2050” report, January 5, 2017 
https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf. 

https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf
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2.4.3 Output Metrics 
The NREL and EIA model simulations reported DPV deployment in terms of cumulative 
installed capacity, aggregate number of systems, and annual generation. Across all scenarios, 
reported statistics are for the first-time adoption (i.e., that systems are repowered at the end of 
their financial lifetime). 

• Installed Capacity: the aggregate installed solar PV capacity in MW in United States, 
reported biennially until 2050  

• Number of Systems: the aggregate number of combined solar and storage systems 
installed nationally, reported biennially until 2050 

• Generation: the estimated annual energy production from all distributed solar PV 
systems aggregated at the national level, reported biennially until 2050.  
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3 Residential Solar Net Present Value Projections 
This section describes projections of county-level Net Present Value (NPV) for a typical 5-kWDC 
residential system in 2017, 2027, and 2050. The modeling framework is based on two principles: 
i) Evaluate the economic attractiveness based on the lifetime costs and revenue of DPV 
ownership from the consumer’s perspective, i.e. savings as compared to consuming grid-sourced 
electricity; ii) Discount the projected cash flows at 5.4% as a basis for evaluating when DPV 
might be cost-competitive with grid-sourced electricity. This discount rate is part of the standard 
financing assumptions used in NREL power system capacity expansion analyses.  

The net present value projections are based on technology cost and performance parameters from 
the NREL 2017 Annual Technology Baseline, e.g. a 25-year investment term and 5.4% weighted 
average cost of capital. The projections reflect current state and federal policy statutes, which 
provide regional variantion in the level of policy support for DPV. Significantly, the projections 
intentionally do not consider how retail tariffs could evolve in the future, for instance as a 
reaction to increased DPV deployment, as the purpose is to understand the situations in which 
distributed solar might achieve grid parity under business-as-usual conditions--even if evolution 
of tariffs is likely. Tables of the full results can be found in Appendices A (Low DPV Prices), B 
(Mid DPV Prices), and C (High DPV Prices).    

3.1 Modeled Residential Distributed Solar NPV in 2017 
We estimate that in 2017 the Net Present Value of a residential solar investment was positive in 
906 counties (29%) of the total 3,108 counties in the continental United States, based on existing 
policies and current technology prices (Figure 5). Similarly, we estimate 13 states15 had positive 
NPV in at least two-thirds of counties. 

 
Figure 5. Simulated NPV for 5-kW resiential system by county in 2017  

These findings highlight that DPV may be an attractive investment for consumers in select 
portions of the county—mainly the Southwest and Northeast—and for those with sufficient 

                                                 
15 Arizona, California, Colorado, Connecticut, Massachusetts, New Jersey, New Mexico, New York, Rhode Island, 
Texas, Utah, Vermont, and Washington, D.C. 
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electricity consumption and roof availability. Higher levels of economic return in these areas are 
primarily being driven by a combination of high solar irradiance (e.g., the Southwest), the 
availability of net energy metering, state-level incentives, and high-cost retail electricity. Low 
retail power prices in the Northwest and Southeast generally incentivize customers to continue to 
source electricity from the grid rather than DPV systems. We also note that a 5.4% rate of return 
may not be a sufficient threshhold for widespread adoption; some consumers may require higher 
rates of return before investing (Rai and Sigrin 2013), as the implicit cost of information 
searching and perceived risks are incorporated into consumer decision-making (Moezzi et al. 
2017).  

3.2 Projected Residential Distributed Solar NPV in 2027 
Projections of residential distributed solar NPV for 2027 (Figure 6) are made for three capital 
cost trajectories. With no additional cost reductions (High Cost scenario) the number of counties 
with a positive NPV (n = 27, 1%) is lower than in 2017 because of the modeled expiration of 
state and federal-level policies incentivizing solar (e.g., federal ITC, state-level net metering, 
state-level SRECS). However, under the Mid Cost scenario (i.e. continued cost decline) 33% (n 
= 1,010) of counties are modeled to have a positive NPV; under the Low Cost scenario (i.e. 
accelerated cost decline) 72% (n = 2,218) of counties are modeled to have a positive NPV.  

Aside from costs, uncertainty about future state and federal policies is an influential factor in the 
projections of grid parity. For instance, current statutes suggests that, sans reenactment, net 
metering policies in New York, Massachusetts, and Vermont will have expired by 2027. Though 
DPV currently has a positive NPV in a majority of counties in these states, the potential 
expiration of enacted policy leads to a minority of counties with positive NPVs in 2027. In 
contrast, a majority of counties were modeled to have a positive NPV in neighboring 
Connecticut, where net metering was projected to persist beyond 2027. Thus, readers are urged 
to apply caution in interpreting these results, considering the possible range of potential future 
policy actions. Finally, many states show stability in NPV trends as compared to 2017, 
(e.g., California, New Mexico, and portions of South Carolina) whiles others show persistently 
negative NPV (e.g., Washington, Idaho, and Louisiana). 
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Figure 6. NPV by county and PV cost assumption in 2027 
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3.3 Projected Residential Distributed Solar NPV in 2050 
Projections of residential distributed solar NPV for 2027 (Figure 7) are made for three capital 
cost trajectories and net metering and discount rate sensitivities. By 2050, in the Mid Cost 
scenario ($1,150/kWDC) 80% of U.S. counties (n = 2,487) are estimated to have a positive NPV, 
while in the Low Cost scenario ($967/kWDC) 89% of counties (n = 2,772) had positive NPVs. In 
contrast, should PV costs remain constant until 2050, only 1% of counties would have a positive 
NPV. Figure 7 illustrates that by 2050, many markets in the Northeast that are competitive in 
2017—but lose competitiveness in 2027 due to expiring policies—transition back to competitive. 
In these scenarios, cost reductions enhance DPV cost competitiveness in areas already 
competitive in 2027. Relative to 2027, and with moderate PV cost declines, 23 additional states 
(a total of 40) are expected to reach the point where more than 66% of counties in each state 
have a positive NPV for DPV. Conversely, eight states, mostly in the Pacific Northwest and 
South, are projected to have at least a third of counties with unfavorable economics.  

We also considered two side scenarios to understand sensitivities to parameters chosen for the 
model. In the first, each state was modeled to have full net metering through 2050. This scenario 
is not a reflection of current policy, and it is intended to control for the effect of individual-state 
policies. Under this assumption and Mid Cost scenario, 1,392 counties (45%) would be at parity 
in 2027 and 2,780 counties (89%) would be at parity by 2050. In contrast with what was 
described in Section 3.2, all counties in Massachusetts and Vermont and half of New York’s 
counties were at parity in 2027 in this sensitivity. These results suggest that policy and retail rate 
representation is an important variable for long-term outlooks.  

The second sensitivity considered the influence of consumers using a 10.2% all-equity weighted 
average cost of capital (instead of 5.4%) as the satisficing criterion for economic 
competitiveness. This sensitivity can be interpreted as the consumer requiring a higher economic 
threshold before adopting.  Under this assumption and Mid-case costs, 18 counties (< 1%) are 
simulated to have positive NPVs in 2027 and 528 counties (17%) by 2050. These results suggest 
that consumer perception of economic attractiveness, especially the financing structures utilized, 
could have a significant influence on the adoption of DPV. 

Projections of economic competitiveness result in three basic conclusions. First, widespread 
economic competitiveness by 2050 depends on further PV cost reductions—at current costs and 
sans new enacted policy, DPV is unlikely to be widely competitive. Importantly, these 2050 
projections should be considered in the context of uncertainty in future technology costs, retail 
electricity prices, and policies. There are likely to be future economic drivers, and new 
technologies not modeled in this report that could impact the competitiveness of DPV. Secondly, 
under the Mid Cost projection, a substantial percentage of the counties in the United States could 
have distributed solar investment returns >5.4%, i.e. a positive NPV. In this model, the 
Southwest and Northeast are particularly seen as competitive. Finally, and conversely, some 
sections of the country are unlikely to be economically competitive for DPV in 2050, particularly 
northwestern and southern states, even under aggressive cost reduction, due to a combination of 
current policy statute and low retail electricity rates. 
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Figure 7. NPV by county and PV cost assumption in 2050 
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4 DPV Projections and Modeling Uncertainty Results 
This section compares model projections for the eight scenarios (see Section 2.4.2) jointly 
modeled by the NREL dGen model, the EIA Cash Flow Adoption model, and the EIA Hurdle 
Rate Adoption model. In this section, estimates of future deployed capacity, numbers of 
deployed systems, total annual generation, and percent saturation of the developable market are 
provided and compared to the Reference case to understand the implications of modeling 
approaches as well as exogenous conditions on DPV adoption. See Appendix D for results in 
tabular form. 

4.1 Economic Uncertainty in dGen 
This section summarizes the results from the dGen model for the eight scenarios modeled as 
shown in Figure 8. 

 
Figure 8. Cumulative installed capacity by core scenario, 2014–2050, 

according to NREL’s dGen Model 

Reference  
By 2050, the Reference case projects 22.3 million operational DPV systems, accounting for 148 
GW of cumulative capacity. Total electricity generation from these systems is projected to 
exceed 202 TWh annually. 

At this time, the developable DPV market is modeled to be 31% saturated. The residential sector, 
where one out of every four homes has installed a DPV system, has the greatest DPV market 
penetration, accounting for two-thirds of all DPV capacity. Moreover, the commercial sector will 
account for about a quarter of capacity, while the industrial sector accounts for less than 10%. 

No Clean Power Plan 
In the case where the Clean Power Plan (CPP) or similar greenhouse gas emissions restrictions 
are not implemented, cumulative installed DPV capacity are simulated to reach 141 GW by 2050 
nationally, which is about 5% lower than in the Reference case. Likewise, total installation is 
simulated to be reduced by 1.7 million systems compared to the Reference case and cumulative 
generation is simulated to be reduced by about 11 TWh. In the No CPP scenario, future 
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electricity and natural gas prices are lower than in the Reference scenario, which reduces the 
economic motivation for customers in dGen to adopt DPV. The penetration of the developable 
market and the distribution of DPV systems among sectors is consistent with the Reference case. 

Oil and Gas Resource 
Oil and gas resource availability scenarios deviate the most from the Reference case, and among 
the macroeconomic conditions modeled, they constituted the greatest source of economic 
uncertainty in DPV adoption.16 In the case of High Oil and Gas Resource and Technology, 
cumulative installed DPV capacity is simulated to reach 133 GW by 2050 nationally. This is the 
lowest projected capacity of the core scenarios modeled-- about 90% of the capacity projected in 
the Reference case. This scenario likewise projects about 20 million systems installed nationally 
that annually produce 180 TWh of electricity.   

Alternatively, in the Low Oil and Gas Resource case, cumulative installed DPV capacity is 
simulated to reach 171 GW by 2050 nationally, the aggregate capacity of 26 million systems 
capable of producing 235 TWh of electricity annually. With 37% saturation of developable 
capacity, these economic conditions contribute to the greatest modeled market penetration of any 
scenario. Neither scenario is significantly alters the modeled distribution of DPV systems among 
sectors. 

Oil and Gas Price 
Oil and gas price variability accounts for the second-greatest source of macroeconomic 
uncertainty. In the Low Oil and Gas Price case, cumulative installed capacity is simulated to 
reach 145 GW by 2050 nationally. While market penetration rates are similar to the Reference 
case, this capacity represents slightly lower DPV adoption compared to the Reference case, in 
that it reduces electricity generation by 5 TWh and total system installations by about a half 
million systems.  

In the High Oil and Gas Price case, the cumulative capacity of 161 GW is 9% higher than the 
Reference case, but it is lower than the Low Oil and Gas Resource projection. The capacity 
translates to about 24.3 million individual systems producing 220 TWh annually, and a market 
penetration of about 28%. 

Economic Growth 
The economic growth uncertainty projections align closest with the Reference case projections, 
suggesting that dGen simulations are insensitive to the impact of economic growth. In the Low 
Economic Growth case, cumulative installed capacity is simulated to reach 145 GW by 2050 
nationally, whereas in the High Economic Growth case, cumulative installed capacity is expected 
to reach 155 GW by 2050 nationally. While low economic growth slows simulated DPV 
adoption and high economic growth somewhat accelerates growth, the projected number of 
systems installed does not change substantially, and the amount of energy produced does not 
fluctuate more than 10 TWh. Likewise, the penetration of the developable market and the 
distribution of DPV systems among sectors remain consistent with the Reference case. 

                                                 
16 As is evident from the previous section, future technology costs constitute a far larger uncertainty. 
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4.2 Economic Uncertainty in the EIA Models 
This section summarizes the results of the EIA Cash Flow Adoption Model and the EIA Hurdle 
Rate Adoption Model for the eight modeled scenarios as illustrated in Figures 9 and 10 (below). 
See Appendix E and F for results in tabular form. 

Reference  
In the Reference case, using the Hurdle Rate Adoption Model for residential PV, NEMS projects 
227 GW of cumulative installed PV capacity in the residential and commercial sectors by 2050. 
The installed capacity represents over 36.5 million systems that are operational in 2050, with 
annual electricity generation from these systems projected to total 333 TWh. DPV electricity 
generation for direct use meets 9% of electricity needs in buildings in 2050 in this case (13% 
of residential electricity requirements and 4% of commercial electricity requirements). 

Projections made using the Cash Flow Adoption Model for residential PV are significantly lower 
than they are for projections from the Hurdle Rate Adoption Model. By 2050, 165 GW of 
cumulative capacity is installed, with an annual generation of 239 TWh. Total installations are 
projected to reach 14.3 million PV systems in 2050, accounting for 8% of residential electricity 
consumption and 4% of commercial. Much of the divergence between the Cash Flow Adoption 
Model and the Hurdle Rate Adoption Model occurs in the last 10 years of the projection period 
and mostly with the residential sector. During this time, the Hurdle Rate Adoption Model 
projections accelerate due to both the spillover effects of earlier PV adoption and rising incomes. 
Meanwhile, the Cash Flow Adoption Model projections remain steady in later years. 

 
Figure 9. Cumulative installed capacity by core scenario, 2014–2050, 

according to the EIA Cash Flow Adoption Model 
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Figure 10. Cumulative installed capacity by core scenario, 2014–2050, 

according to the EIA Hurdle Rate Adoption Model 

No Clean Power Plan 
Although the Hurdle Rate Adoption Model projects fewer distributed PV installations without 
the CPP or similar greenhouse gas emissions restrictions, the effect of removing this policy is 
modest. In the absence of the CPP, using the Hurdle Rate Adoption Model for residential PV, 
cumulative installed distributed PV capacity reaches 223 GW by 2050, which is 1.7% lower than 
in the Reference case. Annual PV generation totals 328 TWh in 2050, which is also 1.7% lower 
than in the Reference case. By 2050, 36.1 million systems are installed in the No CPP case, 
which is 1.2% fewer than in the Reference case. This modest impact reflects the importance of 
income to the Hurdle Rate Adoption Model’s projections. The CPP has only a small effect on 
income—without the CPP in effect, real disposable personal income is only 0.3% higher in 2050. 

When the Cash Flow Adoption Model is used for residential PV projections, the absence of the 
CPP or similar greenhouse gas emissions restrictions results in a larger difference from the 
Reference case than when the Hurdle Rate Adoption Model is used. Cumulative PV capacity in 
2050 without the CPP is 6% lower, totaling 155 GW with the residential Cash Flow Adoption 
Model. Generation and number of systems also decrease by 6% relative to the reference scenario, 
to 225 TWh and 13.5 million systems, respectively, in 2050. This difference reflects the CPP’s 
effect on retail electricity prices, a key input into the model’s cash flow projections.  Without the 
CPP, electricity prices are about 5% lower in both the residential and commercial sectors, 
making distributed PV relatively less attractive to consumers.  

Oil and Gas Resource and Technology 
When the Hurdle Rate Adoption Model is applied, the Oil and Gas Resource cases have only 
a small effect on the projections. Relative to the Reference case, the High Resource and 
Technology case reduces projected capacity and generation by 0.6% and 0.5%, respectively, in 
2050. The Low Resource and Technology case increases both projected metrics by 1.4%. Both 
scenarios increase the number of systems by 0.3%. Although the lower oil prices under the High 
resource case should decrease the incentive for homes and businesses to install solar panels, this 
effect is offset by higher effective incomes, which increase the incentive to invest, as well as 
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lower inflation and interest rates, which decrease the cost of financing PV investments. The 
reverse is true for the Low Resource case. The result is a minor effect in each case.  

Impacts are more significant using the residential Cash Flow Adoption Model, which is more 
sensitive to electricity prices. Of all the scenarios modeled, the High and Low Resource and 
Technology cases have the largest impact on electricity prices; the high case decreases 
residential and commercial retail electricity prices by 10% and 9%, respectively, while the low 
case increases prices by 12% to 13%. Therefore, in the High Resource and Technology case, all 
metrics projected—capacity, generation, and number of systems—decrease by 7% relative to the 
Reference case in 2050 when using the Cash Flow Adoption Model. Capacity is projected to 
reach 153 GW in this year. The same metrics increase by 11% in the Low Resource case relative 
to the Reference case in 2050, and capacity reaches 183 MW in 2050.  

Oil and Gas Price 
The NEMS Oil Price cases have a small effect on projections using either model. Compared with 
the Reference case, the Hurdle Rate Adoption Model’s capacity projections are 1.6% lower in 
the High Oil Price case and 1.4% higher in the Low Oil Price case in 2050, reaching 223 GW 
and 230 GW, respectively. Similarly, changes in projections of generation and PV systems 
installed are 2% or less.  

The impact of the Low Oil Price case on projections using the residential Cash Flow Adoption 
Model is also small. Compared with the Reference case, capacity, generation, and number of 
systems decrease by 1% or less. The High Oil Price case, however, has a larger effect: capacity, 
generation, and the number of systems all increase by about 4.5%.  

The Oil Price cases highlight the relative importance of different factors in the Hurdle Rate 
Adoption Model and residential Cash Flow Adoption Model. While high oil prices cause PV 
growth to increase under the Cash Flow Adoption Model because of higher electricity prices, 
lower disposable income results in slightly lower PV growth in the High Oil Price case using the 
Hurdle Rate Adoption Model. Changes in both electricity prices and income are small in these 
scenarios, however, and lead to modest impacts in both models. 

Economic Growth 
Economic growth has the largest impact of any of the scenarios modeled, particularly when 
using the Hurdle Rate Adoption Model. With high economic growth and the Hurdle Rate 
Adoption Model, capacity is projected to be 12% higher than in the Reference case in 2050, 
reaching 254 GW. When economic growth is lower, capacity reaches only 186 GW, 18% lower 
than the Reference case. Projections for generation and number of systems installed show similar 
results. Generation and systems installed in the Reference case and Growth case are 13% higher 
and 14% higher in 2050 than in the Reference case, respectively. Lower economic growth, on the 
other hand, reduces both metrics by approximately one-fifth. The Hurdle Rate Adoption Model 
therefore suggests the long-term rate of economic growth could potentially significantly affect 
the growth of distributed solar PV.  

With the Cash Flow Adoption Model applied to the residential sector, the impacts of economic 
growth are smaller but significant. High economic growth is projected to boost capacity, 
generation, and the number of installed systems by about 5% over Reference case levels in 2050. 
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Capacity reaches 174 GW in this year. With low economic growth, capacity and generation are 
16% lower, and the number of systems installed is 19% lower than in the Reference case.  

4.3 Modeling Uncertainty 
Though prior analyses have examined the sensitivity of DPV projections to various economic 
drivers (e.g., future technology or fuel costs), few have explicitly considered the role that model 
specification plays in the long-term uncertainty of a projection. Here we refer to economic 
uncertainty to mean the set of techno-economic factors that significantly impact our model’s 
projections but are ultimately unknowable. As explored already in Sections 4.1 and 4.2 these 
include but are not limited to technology costs, economic growth, fuel costs, and demand for 
electricity. We contrast this with modeling uncertainty, which has an epistemic quality—these 
are parameters that are knowable, but unknown to a modeler, either because of the difficulty of 
collecting them or fully representing them quantitatively. For instance, many models use the 
central tendency of a variable (e.g., annual electricity consumption), with the awareness that the 
central tendency does not reflect the full range of outcomes but is easily observed. Alternatively, 
models may intentionally be resolved at a low-spatial resolution because of computational 
infeasibility or ease of maintenance.  

We explore three dimensions to modeling uncertainty in the models used: (1) how improvements 
to model features affect its performance, (2) quantification of uncertainty derived from stochastic 
processes, and (3) how results change through a retrospective consideration. Though economic 
uncertainty is likely a far larger source of uncertainty, the notion of determinism is endemic 
within modeling communities, and attempts to better quantify imperfections in methodology help 
advance the state of the art. 

4.3.1 Differences between Modeling Approaches 
The dGen, EIA Cash Flow Adoption Model and EIA Hurdle Rate Adoption Models adoption 
projections share commonalities, especially in the near term, though they differed in the long-
term (2050) projected deployment as well as the relative influence of market factors on 
deployment. 

Figure 11 compares projected deployment across the three models for the Reference case and 
show similar near-term projections. For example, the dGen and EIA Cash Flow Adoption Model 
both reflect the impact of the federal ITC and its expiration through an early bump and 
subsequent lag in DPV deployment that recovers by 2025. Furthermore, until 2044, the EIA 
Cash Flow Adoption Model estimates about 7% lower adoption than dGen, and until 2036 the 
EIA Hurdle Rate Adoption Model projects only about 5% lower installed capacity on average 
than dGen. Higher deployment levels in dGen are likely due to the inclusion of state incentives 
in the early years of the modeled period.  
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Figure 11. Comparison of DPV adoption projections for the Reference Case by model 

From 2026 onwards, however, the models begin different regimes of growth. In the dGen model, 
most currently implemented policies have expired by 2026 and, thereafter, the rate of new 
installations is projected to decrease due to an increasing saturation of the most-favorable sites. 
In contrast, projected growth in adoption in both EIA models accelerates post-2026 due to 
differences in modeling approaches. For instance, because the EIA models do not model net 
metering expiration, they continue to assess trends under favorable economic assumptions. 
Deployment within the EIA Hurdle Rate Adoption Model accelerates throughout the entire 
modeled period, reflecting one of its underlying premises—that the presence of solar in a certain 
ZIP code area begets more solar in that same area due to social contagion. The EIA Hurdle Rate 
Adoption Model is also driven more by macroeconomic factors than by PV prices, and 
installations therefore grow as income increases over time. 

Interestingly, in the Reference case at 2050, dGen and the EIA Cash Flow Adoption Model 
arrive at similar projected cumulative installed DPV capacity levels (within about 10% of each 
other), while the EIA Hurdle Rate Adoption Model projects significantly more adoption. It 
projects about 50% more deployment in 2050 than dGen and over a third more installed capacity 
than the EIA Cash Flow Adoption Model, demonstrating that the inclusion of contagion effect 
provides a more optimistic DPV projection than financial calculations alone suggest.  

Comparisons of modeled scenarios to the Reference case reveal that all models are aligned in 
suggesting the absence of the CPP or similar greenhouse gas emissions restrictions could 
modestly reduce DPV deployment (on the order of 2.0%–6.0%) in relation to the Reference case. 
All models assume no additional subsidies are deployed for distributed renewable generation 
under the CPP; changes in DPV deployment therefore are solely due to changes in retail 
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electricity prices and economic growth. The application of the CPP is projected to increase retail 
electricity prices by approximately 6% in both sectors by 2050. This price increase makes 
distributed generation more economically attractive in the EIA Cash Flow Adoption Model and 
the NREL dGen model. CPP impacts on economic growth and income are much smaller—in 
NEMS, the CPP decreases real disposable personal income by only 0.2% by 2050. As a result, 
the effect of the CPP on the results of the EIA Hurdle Rate Adoption Model, which is more 
dependent on macroeconomic variables, is much smaller than on the EIA Cash Flow Adoption 
Model and the NREL dGen model.  

Moreover, dGen and the EIA Cash Flow Adoption Model both simulate oil and gas resource and 
technology variability to have a notable impact on future deployment trends. In the Low Oil and 
Gas Resource and Technology scenario, both models predict an increase in cumulative 
deployment of 11%–15% compared to the Reference case, while in the High Oil and Gas 
scenario, the models predict decreases in deployment of 7%–11%. These effects are due to 
electricity price changes. The Low Oil and Gas resource scenario causes electricity prices to 
increase significantly, by over 10%, making solar PV installations more economically attractive; 
conversely, electricity prices are much lower under the High Oil and Gas Resource case, making 
solar PV installations less attractive to consumers. Interestingly, the EIA Hurdle Rate Adoption 
Model does not suggest a notable change from the mean in this scenario, as deployment in this 
model depends on macroeconomic factors more than retail electricity prices.  

Also, while dGen bounds macroeconomic effects to be within 5% of the Reference case, both the 
EIA Hurdle Rate Adoption Model and EIA Cash Flow Adoption Model suggest these forces will 
have a more dramatic impact on adoption. The EIA models suggest these market conditions will 
either increase DPV deployment by 5%–12% or reduce it by more than 15%.  

4.3.2 Sampling Error 
Attributes of customers represented in dGen (i.e., agents) are determined by sampling with 
replacement from spatially resolved probability distributions. Specifying customer attributes in 
this manner reflects the principle that new technology adoption first occurs in customer segments 
with high levels of innovativeness, or, customers for whom the technology would provide 
substantially more value than the average customer. For DPV specifically, these early adopters 
could represent customers with high electricity prices, high solar irradiance, and large south-
facing roofs. Properly identifying these outliers would be infeasible using only the central 
tendency of the population because, by definition, these customers represent the tails of a 
distribution. This formulation is not comparable to traditional deterministic capacity expansion 
models (e.g., ReEDS), which tend to use central tendencies.   

Accordingly, error in dGen is introduced via sampling error in the sense that an infinite number 
of draws would be required to perfectly reproduce the underlying population, or the full set of 
possible combinations of agent characteristics. Sampling error can variously be reduced either 
by increasing the number of agents sampled per geographic region or by averaging the results 
of multiple runs, with each run using a different random seed. Each additional agent or model 
run increases accuracy with the tradeoff of additional processing time and computing resource 
burden. 
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At a conceptual level, sampling error is introduced by overrepresenting or underrepresenting 
specific combinations of techno-economic factors that influence the economic feasibility for an 
agent. These primarily include per-agent roof characteristic and the amount of annual electrical 
consumption. Because the number of agents sampled per county in dGen is currently a fixed 
quantity, and it is not weighted by population, high-population counties are represented at a 
lower resolution than low-population areas and are more prone to sampling error.17 This section 
explores the tradeoffs of different sampling strategies and their resultant impact on model 
uncertainty. 

To measure the variability among projected DPV trends we ran 10 national dGen model 
simulations of the Reference case, each instantiated with a unique random seed value (Figure 
12). Over these 10 runs, the mean model projection within one standard deviation in 2050 was 
140.6 ± 3.3 GW nationally, and 4.51 ± 1.09 GW in New York, which was selected as an example 
of a state with high sampling uncertainty. A Shapiro-Wilk test was run for United States (w = 
0.97, p = 0.90, and n = 10) and New York (w = 0.95, p = .72, and n = 10) samples, both of which 
fail to reject the null hypothesis of normality. 

 

 
Figure 12. Variance in state (New York) and national-level simulations for 10 random seeds for one 

agent per county 

Based on the assumption of normality, a confidence interval can be constructed to determine the 
population mean at a 95% confidence level (i.e., having confidence of the true model results 
were it to be run with infinite sampling). Let �̅�𝑥 and σ�  be the sample mean and standard deviation 

                                                 
17 As an illustrative example, this might be realized if all residential customers were substantiated with roofs 
unsuitable for solar or were substantiated with very high electrical demand. 
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calculated with n samples, µ be the population mean, and σ the population standard deviation, 
which we estimate directly as σ�. By the central limit theorem, the expected value of �̅�𝑥 is µ, and 
the standard error of �̅�𝑥 is given by (1): 

𝑆𝑆𝑆𝑆(�̅�𝑥) =  
σ
√𝑛𝑛

                                               (1) 

Based on (1), a 95% confidence for the population mean is approximately 2 * SD(�̅�𝑥). For the 10-
run United States model, the two standard errors for the 2050 projection are 2.108 GW, or 1.50% 
of the 2050 sample mean. Error for the 10-run N.Y. model is much higher, where the two 
standard errors for the 2050 projection are 692 MW, or 15.3% of the 2050 sample mean. 
Accordingly, we estimate that the installed capacity in 2050 for a single U.S. simulation using 
one agent per county can be said to be known within 4.74% at a 95% degree of confidence. 
However, a single New York simulation at the same sampling rate would have a 95% confidence 
of a 48.5% error. Across all states, the median state has a 95% probability of a 40.7% error or 
less. These errors substantially decrease as the model resolution increases, where averaging 
10 simulations results in a 1.5% error nationally and a 12.9% error for the median state; 
100 simulations achieve a 0.5% error nationally and a 4.1% error for the median state.  

At the national level, variance between model runs is the largest early on in the model. From 
2018, when projections are first calculated in place of historical trends, to 2024, the coefficient 
of variation among projected total installed capacities for the same year doubles from 0.027 to 
0.053, before steadily decreasing to 0.024 by 2050. These results suggest the cumulative effect 
of stochastic processes on agents within the dGen model is greatest in the earliest modeled years 
and will asymptotically settle to a stable value over long enough timeframes. 

The national trends in variability are mimicked at subnational levels, yet the magnitude and 
timing of peak variability differ. The timing of greatest variability for any state typically follows 
the period of mass adoption; or in other words, variance is largest during the years when markets 
are growing fastest. For example, in Montana, variability in modeled cumulative installed 
capacity exponentially increases to 0.54 in 2050 because mass adoption is not expected to 
occur in this state until the latest modeled years.  

Furthermore, several states (Delaware, Massachusetts, New York, and Nevada) deviate from 
the national trend and their variability inflates during later model years. These are states with 
incentives whose relative value linearly decrease over the modeled period. In these cases, as 
incentive values decrease, more variability in underlying rate structures is exposed.  

These results demonstrate that the error for the national-level results alone is very reasonable, 
but a substantially higher sampling rate is needed for state-level or substate-level analysis. 
However, substantially higher sampling rates are eminently feasible for state-level results 
because of the reduced computational burden as compared to the national-level model. Future 
work will explore the role of different sampling techniques (e.g., population-weighted 
techniques), the trade-off of higher per-county sampling as compared to more simulations at 
lower resolutions, and analysis of the underlying sources of sampling error and how these might 
be improved. 
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4.3.3 Retrospective Analysis 
Over the last decade, distributed-scale and utility-scale solar have experienced rapid growth, 
often exceeding the range of experts’ previous projections. These discrepancies between 
modeled and actual deployment highlight the inherent uncertainty of forward-looking 
projections, as well as the risk of model overfitting based on limited data. Differences between 
actual and modeled results can attributed to both unexpected changes in the economic 
attractiveness of DPV (e.g., accelerated cost reduction and introduction of new policies) as well 
as customer acceptance of new technology. Here we conduct retrospective analysis over the last 
six years as part of the broader exploration of modeling uncertainty.   

Using historical time series of actual adoption counts for the residential and commercial sector, 
we compare how projections of DPV growth have updated over time, simply as a factor of 
having access to more-recent market data. Projections are based only on a simple Bass Diffusion 
Model (Srinivasan and Mason 1986) and not the NREL or EIA models. The Bass Diffusion 
Model estimates the coefficients of imitation (𝑞𝑞) and innovations (𝑝𝑝), which govern the shape 
of diffusion, and the market size (𝑚𝑚) parameter, which governs the total addressable market. 
A notable feature of this specification is that the annual adoption must follow a symmetric 
Gaussian form—that is, a market can only “peak” once, and the method is not well-suited to 
understand transient changes in market activity.   

Bass parameters were estimated for each state and sector from 1998 to 2016 for each state with 
at least five system installations. Adoption trends for 1998–2010 were obtained from the 
OpenPV Tracking the Sun data set (LBNL 2017), which is a compilation of system-level trends 
from state incentive programs. For 2010–2016, we used data from GreenTech Media’s Solar 
Market Insight report (GTM 2017), because program data alone are not comprehensive for recent 
years. The regression technique is based on the non-linear least squares method (Srinivasan and 
Mason 1986; Dong, Sigrin, and Brinkman 2017), and it does not include information on the 
historical economic attractiveness or level of marketing. 

Figure 13 shows how projections of annual national adoption based on the existing data available 
at that time have evolved. The retrospective projections are made using the Bass Diffusion 
Model and with an overlay of the actual historical amount of adoption. Projections that would 
have been completed in 2010–2012 would have significantly underestimated future adoption, 
instead projecting that market growth would peak in 2018–2020. Conversely, 2013–2015 project 
a secular change in market activity, with substantially higher projections and, notably, not 
predicting peak market activity prior to 2020. The last retrospective projection (2016) simulates 
more modest annual growth than projections made in 2013–2015, with an acceleration in 
later years.  
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Figure 13. Sequential projection of annual installations nationally as function of available data 

These results illustrate the difficulty of accurately projecting long-term market activity and 
clarify the importance of the difference between “projections” and “forecasts”. Forecasting is the 
science of predicting near-term outcomes. In contrast, projections are meant to be an internally-
consistent framework for comparing “what-if” scenarios—in which the purpose is to determine 
the comparative impact of a specific policy/outcome, but less to be quantitative accurate. All 
three of the models in this report seek to develop projections and should not be interpreted to be 
forecasts.  

The retrospective analysis demonstrates two take-aways. First, the models used in this report 
could be expected to be reasonably accurate for one-year to two-year outlooks and should not be 
considered forecasts. The uptake in DPV growth for 2013 – 2015 models the rises of solar leases 
in those years, where 2012 was the first year for zero-down leases to constitute >50% of new 
residential systems (GTM 2017). That is, models need to reflect market structure, in addition to 
cost to represent technology diffusion. Heightened uncertainty in the current DPV market 
complicates future projections. For instance, 2017 was the first year in which annual deployment 
decreased year-on-year (GTM 2017)—and this introduces uncertainty for the range of adoption 
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in the next few years. Though costs for DPV have generally continued to decline, challenges 
include a reduced rate of DPV cost decline—particularly from customer acquisition challenges, 
policy action that disincentivizes adoption, a refocus from project developers on profitability not 
growth, and an exit of major industry actors (Feldman, Hoskins, and Margolis 2017). 
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5 Conclusion 
Growth of distributed energy resources are disrupting business-as-usual in the U.S. power 
system, prompting a re-examination of the build-out and operation of the electrical grid. The 
future of DPV is highly uncertain, with future costs, policies, retail rates, macroeconomic 
conditions, and customer acceptance among the factors that will impact its long-term future. In 
this report, we examine uncertainty in the timing and extent of DPV cost competitiveness with 
grid-sourced electricity. We also compare methods developed by two modeling teams to better 
understand how differences in modeling approaches and specifications impact deployment 
estimates.  

Our results suggest that DPV could be marginally more cost-competitive in 2027, despite 
continued cost declines, if current policy expires at its statutory limits assuming 2017 ATB Mid 
Cost PV costs. However, by 2050, and assuming 2017 ATB Mid Cost scenario cost declines, 
DPV would be competitive in most U.S. counties (80%). The level of competitiveness will 
ultimately depend on local combinations of quality of solar resource, retail electricity prices, and 
policy. Critically, we also find that select regions, particularly the Pacific Northwest and portions 
of the South could remain unfavorable to DPV-sourced electricity well into the middle of this 
century.  

Projections from the NREL dGen model, the EIA Cash Flow Adoption Model, and the EIA 
Hurdle Rate Adoption Model generally agree in levels of deployment in the near term, with 
cumulative deployment by 2027 anticipated to be slightly more than 50 GW in a Reference case. 
After 2027, the models results are not aligned on the long-term outlook; while the EIA Cash 
Flow and NREL dGen models suggests cumulative deployment of 148 GW–165 GW, the EIA 
Hurdle model projected as much as 227 GW of deployment.  

We also explore several dimensions to modeling uncertainty, including the choice of which real-
world phenomena to represent, how results change through a retrospective consideration, and the 
quantification of uncertainty derived from stochastic processes within the dGen model. We find 
that (1) stochastic processes that populate customer profiles in dGen may introduce significant 
uncertainty in simulations with insufficient sampling rates (Figure ES-3 and Figure 11) and (2) 
model variance decreased at larger geographic scales due to the aggregation of many smaller 
sampling processes.  

The analysis conducted for this report is relatively static and does not capture the full range of 
factors influencing electricity markets. Nevertheless, it is intended to be instructive of the range 
of potential DPV deployment should grid conditions remain similar to today’s. Future work 
could consider other potentially disruptive factors, such as influence of electric vehicles, energy 
storage, and competition between utility-scale, community-scale, and distributed-scale solar 
energy systems. Perhaps most significant are endogenous changes; that is, evolution in policy 
and market structure as a response to the expansion of DPV to better reflect the value of 
distributed generation. For instance, distribution grid integration limits could limit the actual 
deployable potential or introduce new system integration costs not considered in this analysis.  
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Our findings suggest financial attractiveness of DPV primarily depends on sustained PV cost 
reductions and is strongly influenced by future energy policy. With continued cost reductions 
and policy encouraging customer adoption, DPV deployment could grow faster than it ever has 
before by the middle of the century. Alternatively, if DPV incentives and policies expire in the 
coming decades, DPV growth may level off. As technology advances, new revenues channels 
become available to DPV, state policies and incentives are revised, and new data becomes 
available, updated analyses will likely be needed to continue to inform those exploring and 
planning for possible futures. 
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Appendix A. Low PV Cost Grid Parity Projections 
Table A-1 provides statewide metrics for average savings from LCOE relative to average retail 
rates and NPVs across all counties in each modeled state and year, assuming significant PV cost 
reductions. The table also provides the percentage of counties in the state that are in parity 
according to LCOE savings alone, a positive NPV alone, or the ability to satisfy at least one of 
these conditions in this scenario.  

Table A-1. Projected State-level Grid Parity Metrics for Low Cost scenario 

State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV ($) 

Counties 
LCOE < Avg. 

Retail (%) 
Counties 

NPV > 0 (%) 

AL 2027 2.8 474 100% 97% 
AL 2050 7.3 2,309 100% 100% 
AR 2027 1.3 386 100% 79% 
AR 2050 5.5 2,115 100% 88% 
AZ 2027 5.7 2,433 100% 100% 
AZ 2050 10.1 4,177 100% 100% 
CA 2027 10.1 5,498 100% 84% 
CA 2050 16.1 7,129 100% 100% 
CO 2027 4.7 3,529 100% 98% 
CO 2050 9.0 5,141 100% 100% 
CT 2027 11.9 8,210 100% 100% 
CT 2050 18.8 9,823 100% 100% 
DC 2027 6.7 3,893 100% 100% 
DC 2050 11.9 5,505 100% 100% 
DE 2027 4.8 -773 100% 0% 
DE 2050 9.8 1,123 100% 100% 
FL 2027 4.8 3,055 100% 100% 
FL 2050 9.4 4,668 100% 100% 
GA 2027 3.0 -2506 100% 0% 
GA 2050 7.6 -535 100% 0% 
IA 2027 1.8 1,547 100% 98% 
IA 2050 6.0 3,159 100% 100% 
ID 2027 0.4 -2223 70% 0% 
ID 2050 4.8 -287 100% 39% 
IL 2027 1.8 916 100% 100% 
IL 2050 6.6 183 100% 97% 
IN 2027 2.3 -364 100% 15% 
IN 2050 6.7 1,416 100% 100% 
KS 2027 4.4 3,418 100% 88% 
KS 2050 9.0 2,608 100% 90% 
KY 2027 0.7 10 100% 37% 
KY 2050 5.1 505 100% 52% 
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State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV ($) 

Counties 
LCOE < Avg. 

Retail (%) 
Counties 

NPV > 0 (%) 

LA 2027 1.2 -1,125 100% 19% 
LA 2050 5.2 584 100% 39% 
MA 2027 11.0 -408 100% 0% 
MA 2050 17.7 1,329 100% 100% 
MD 2027 6.6 584 100% 88% 
MD 2050 11.8 2,414 100% 100% 
ME 2027 5.3 -1,480 100% 0% 
ME 2050 11.1 429 100% 100% 
MI 2027 2.4 719 100% 80% 
MI 2050 7.8 668 100% 80% 
MN 2027 2.9 873 100% 98% 
MN 2050 7.5 2,486 100% 100% 
MO 2027 3.0 -288 100% 30% 
MO 2050 7.5 1,484 100% 80% 
MS 2027 2.9 -1,199 100% 37% 
MS 2050 7.5 677 100% 44% 
MT 2027 2.1 1,852 98% 86% 
MT 2050 6.5 3,464 100% 100% 
NC 2027 3.0 183 100% 45% 
NC 2050 7.4 1,857 100% 100% 
ND 2027 1.9 168 100% 83% 
ND 2050 6.3 1,822 100% 100% 
NE 2027 2.9 2,884 100% 99% 
NE 2050 7.1 1,154 100% 98% 
NH 2027 8.5 3,406 100% 100% 
NH 2050 15.4 1,440 100% 100% 
NJ 2027 7.7 2,687 100% 100% 
NJ 2027 7.7 2,687 100% 100% 
NM 2027 4.9 5,276 100% 100% 
NM 2050 9.0 6,888 100% 100% 
NV 2027 3.9 530 100% 82% 
NV 2050 8.2 2,400 100% 100% 
NY 2027 8.5 359 100% 39% 
NY 2050 14.8 2,121 100% 100% 
OH 2027 2.0 2,999 100% 100% 
OH 2050 7.0 4,845 100% 100% 
OK 2027 1.5 872 100% 92% 
OK 2050 5.6 2,622 100% 100% 
OR 2027 1.7 -1,237 97% 0% 
OR 2050 6.1 259 100% 64% 
PA 2027 2.0 2,015 100% 100% 
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State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV ($) 

Counties 
LCOE < Avg. 

Retail (%) 
Counties 

NPV > 0 (%) 

PA 2050 7.3 3,858 100% 100% 
RI 2027 11.2 3,931 100% 100% 
RI 2050 17.9 1,904 100% 100% 
SC 2027 3.1 1,327 100% 63% 
SC 2050 7.7 1,673 100% 63% 
SD 2027 3.0 -792 100% 2% 
SD 2050 7.5 1,098 100% 85% 
TN 2027 2.8 -239 100% 43% 
TN 2050 7.2 1,519 100% 93% 
TX 2027 2.9 2,938 100% 92% 
TX 2050 7.0 4,677 100% 98% 
UT 2027 2.5 3,780 100% 97% 
UT 2050 6.6 1,364 100% 97% 
VA 2027 2.3 552 100% 61% 
VA 2050 6.9 1,015 100% 97% 
VT 2027 7.4 397 100% 93% 
VT 2050 13.6 2,117 100% 100% 
WA 2027 -1.2 -2694 23% 0% 
WA 2050 3.2 -1,063 100% 5% 
WI 2027 4.2 2,911 100% 99% 
WI 2050 9.1 4,523 100% 100% 
WV 2027 0.3 1,433 87% 96% 
WV 2050 4.8 1,405 100% 100% 
WY 2027 1.5 3,337 100% 91% 
WY 2050 5.5 5,060 100% 100% 
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Appendix B. Mid PV Cost Grid Parity Projections 
Table B-1 provides statewide metrics for average savings from LCOE relative to average retail 
rates and NPVs across all counties in each modeled state and year, assuming mid case PV cost 
reductions. The table also provides the percent counties in the states that are at parity according 
to LCOE savings alone, a positive NPV alone, or the ability to satisfy at least one of these 
conditions in this scenario. 

Table B-1. Projected State-level Grid Parity Metrics for Mid Cost scenario 

State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV, $ 

Counties 
LCOE < Avg. 

Retail, % 
Counties 

NPV > 0, % 

AL 2027 0.6 -1,470 100% 0% 
AL 2050 6.4 1,697 100% 100% 
AR 2027 -0.9 -1,624 0% 0% 
AR 2050 4.6 1,274 100% 79% 
AZ 2027 4.1 682 100% 93% 
AZ 2050 9.4 3,855 100% 100% 
CA 2027 8.0 3,830 100% 84% 
CA 2050 15.3 7,319 100% 100% 
CO 2027 2.8 1,664 100% 98% 
CO 2050 8.3 4,365 100% 98% 
CT 2027 9.6 6,345 100% 100% 
CT 2050 17.9 9,046 100% 100% 
DC 2027 4.6 2,049 100% 100% 
DC 2050 11.0 4,750 100% 100% 
DE 2027 2.5 -2,666 100% 0% 
DE 2050 8.9 575 100% 100% 
FL 2027 2.8 1,198 100% 87% 
FL 2050 8.6 3,900 100% 100% 
GA 2027 0.8 -1,432 100% 0% 
GA 2050 6.7 2,062 100% 100% 
IA 2027 -0.3 -320 6% 19% 
IA 2050 5.1 2,382 100% 100% 
ID 2027 -2.1 -4,287 0% 0% 
ID 2050 3.8 -858 100% 0% 
IL 2027 -0.7 -1,292 0% 1% 
IL 2050 5.6 -403 100% 1% 
IN 2027 0.1 -2,206 64% 14% 
IN 2050 5.8 860 100% 95% 
KS 2027 2.5 1,481 100% 88% 
KS 2050 8.2 2,017 100% 88% 
KY 2027 -1.7 -2,036 0% 11% 
KY 2050 4.0 -136 100% 37% 
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State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV, $ 

Counties 
LCOE < Avg. 

Retail, % 
Counties 

NPV > 0, % 

LA 2027 -0.9 -3,004 0% 0% 
LA 2050 4.3 -91 100% 39% 
MA 2027 8.8 -2,168 100% 0% 
MA 2050 16.8 1,120 100% 100% 
MD 2027 4.5 -1,263 100% 13% 
MD 2050 10.9 1,868 100% 100% 
ME 2027 2.7 -3,457 100% 0% 
ME 2050 10.0 95 100% 75% 
MI 2027 -0.4 -1,469 13% 6% 
MI 2050 6.7 49 100% 72% 
MN 2027 0.7 -1,000 98% 3% 
MN 2050 6.5 1,701 100% 100% 
MO 2027 0.9 -2,175 100% 0% 
MO 2050 6.6 868 100% 76% 
MS 2027 0.6 -3,204 100% 0% 
MS 2050 6.5 24 100% 44% 
MT 2027 -0.2 -21 54% 71% 
MT 2050 5.6 2,680 100% 96% 
NC 2027 0.8 -1,761 99% 20% 
NC 2050 6.5 1,043 100% 52% 
ND 2027 -0.4 -1,755 15% 0% 
ND 2050 5.3 1,017 100% 98% 
NE 2027 0.8 957 100% 80% 
NE 2050 6.3 646 100% 100% 
NH 2027 5.9 1,248 100% 100% 
NH 2050 14.2 1,067 100% 100% 
NJ 2027 5.5 856 100% 100% 
NJ 2050 12.5 4,045 100% 100% 
NM 2027 3.3 3,402 100% 100% 
NM 2050 8.4 6,104 100% 100% 
NV 2027 1.9 -1,457 100% 0% 
NV 2050 7.4 1,861 100% 94% 
NY 2027 6.0 -1,481 100% 15% 
NY 2050 13.8 1,600 100% 100% 
OH 2027 -0.7 855 1% 92% 
OH 2050 5.9 3,947 100% 100% 
OK 2027 -0.6 -1,162 17% 0% 
OK 2050 4.7 1,771 100% 96% 
OR 2027 -0.6 -2,799 42% 0% 
OR 2050 5.2 337 100% 67% 
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State Year Avg. Retail—
LCOE (c/kWh) Avg. NPV, $ 

Counties 
LCOE < Avg. 

Retail, % 
Counties 

NPV > 0, % 

PA 2027 -0.7 -127 13% 48% 
PA 2050 6.1 2,962 100% 100% 
RI 2027 9.0 2,058 100% 100% 
RI 2050 17.0 1,694 100% 100% 
SC 2027 0.9 -684 100% 30% 
SC 2050 6.7 1,062 100% 63% 
SD 2027 0.8 -2,722 100% 0% 
SD 2050 6.6 559 100% 74% 
TN 2027 0.6 -2,109 100% 0% 
TN 2050 6.3 920 100% 87% 
TX 2027 1.0 1,044 92% 83% 
TX 2050 6.2 4,017 100% 96% 
UT 2027 0.4 1,753 76% 97% 
UT 2050 5.8 898 100% 97% 
VA 2027 0.0 -1,490 47% 7% 
VA 2050 6.0 391 100% 61% 
VT 2027 5.0 -1,379 100% 0% 
VT 2050 12.6 1,826 100% 100% 
WA 2027 -3.9 -4,434 3% 3% 
WA 2050 2.1 -1,146 100% 8% 
WI 2027 1.9 1,037 100% 63% 
WI 2050 8.1 3,739 100% 100% 
WV 2027 -2.2 -576 2% 29% 
WV 2050 3.7 772 100% 89% 
WY 2027 -0.7 1,333 4% 83% 
WY 2050 4.7 6 100% 100% 
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Appendix C. High PV Cost Grid Parity Projections 
Table C-1 provides statewide metrics for average savings from LCOE relative to average retail 
rates and NPVs across all counties in each modeled state and year, assuming no PV cost 
reductions. The table also provides the percent of counties in the states that are in parity 
according to LCOE savings alone, a positive NPV alone, or the ability to satisfy at least one of 
these conditions in this scenario.  

Table C-1. Projected State-level Grid Parity Metrics for High Cost scenario 

State Year Avg. Retail—
LCOE (c/kWh) 

Avg. NPV ($) 
 

Counties 
LCOE < Avg. 

Retail (%) 

Counties 
NPV > 0 (%) 

AL 2027 -6.3 -7,676 0% 0% 
AL 2050 -3.7 -6,948 0% 0% 
AR 2027 -7.8 -7,770 0% 0% 
AR 2050 -5.6 -7,770 0% 0% 
AZ 2027 -1.2 -5,187 0% 0% 
AZ 2050 1.7 -4,005 100% 0% 
CA 2027 1.5 -1,750 95% 33% 
CA 2050 5.9 -1,011 100% 50% 
CO 2027 -3.0 -4,267 0% 0% 
CO 2050 -0.3 -4,267 39% 0% 
CT 2027 2.5 357 100% 100% 
CT 2050 7.4 357 100% 100% 
DC 2027 -2.1 -3,960 0% 0% 
DC 2050 1.3 -3,960 100% 0% 
DE 2027 -4.5 -8,801 0% 0% 
DE 2050 -1.3 -7,981 0% 0% 
FL 2027 -3.5 -4,798 0% 0% 
FL 2050 -0.5 -4,798 10% 0% 
GA 2027 -6.2 -10,924 0% 0% 
GA 2050 -3.5 -10,145 0% 0% 
IA 2027 -7.1 -6,306 0% 0% 
IA 2050 -4.8 -6,306 0% 0% 
ID 2027 -9.9 -10,873 0% 0% 
ID 2050 -7.6 -10,000 0% 0% 
IL 2027 -8.5 -8,175 0% 0% 
IL 2050 -5.9 -9,719 0% 0% 
IN 2027 -7.0 -8,107 0% 0% 
IN 2050 -4.5 -7,316 0% 0% 
KS 2027 -3.8 -4,670 0% 0% 
KS 2050 -0.9 -6,332 11% 0% 
KY 2027 -9.4 -8,480 0% 0% 
KY 2050 -7.1 -9,108 0% 0% 
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State Year Avg. Retail—
LCOE (c/kWh) 

Avg. NPV ($) 
 

Counties 
LCOE < Avg. 

Retail (%) 

Counties 
NPV > 0 (%) 

LA 2027 -7.6 -9,038 0% 0% 
LA 2050 -5.4 -8,616 0% 0% 
MA 2027 1.7 -7,978 100% 0% 
MA 2050 6.4 -6,626 100% 0% 
MD 2027 -2.4 -7,204 0% 0% 
MD 2050 1.0 -6,412 92% 0% 
ME 2027 -5.5 -9,843 0% 0% 
ME 2050 -1.9 -8,580 0% 0% 
MI 2027 -9.1 -8,297 0% 0% 
MI 2050 -6.1 -9,276 0% 0% 
MN 2027 -6.4 -6,980 0% 0% 
MN 2050 -3.7 -6,980 0% 0% 
MO 2027 -5.9 -8,217 0% 0% 
MO 2050 -3.3 -7,482 0% 0% 
MS 2027 -6.4 -9,574 0% 0% 
MS 2050 -3.8 -8,902 0% 0% 
MT 2027 -7.3 -6,001 0% 0% 
MT 2050 -4.8 -6,001 0% 0% 
NC 2027 -6.0 -7,932 0% 0% 
NC 2050 -3.4 -7,932 0% 0% 
ND 2027 -7.6 -7,866 0% 0% 
ND 2050 -5.2 -7,866 0% 0% 
NE 2027 -5.6 -5,167 0% 0% 
NE 2050 -3.1 -7,449 0% 0% 
NH 2027 -2.6 -5,501 0% 0% 
NH 2050 1.9 -7,933 100% 0% 
NJ 2027 -1.4 -4,974 0% 0% 
NJ 2050 2.4 -4,144 100% 0% 
NM 2027 -2.0 -2,577 0% 0% 
NM 2050 0.7 -2,577 97% 0% 
NV 2027 -4.2 -7,838 0% 0% 
NV 2050 -1.5 -6,965 0% 0% 
NY 2027 -1.8 -7,344 10% 0% 
NY 2050 2.4 -6,697 100% 0% 
OH 2027 -9.0 -5,855 0% 0% 
OH 2050 -6.2 -5,855 0% 0% 
OK 2027 -7.2 -7,572 0% 0% 
OK 2050 -5.0 -7,572 0% 0% 
OR 2027 -8.0 -8,018 0% 0% 
OR 2050 -5.5 -7,402 0% 0% 
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State Year Avg. Retail—
LCOE (c/kWh) 

Avg. NPV ($) 
 

Counties 
LCOE < Avg. 

Retail (%) 

Counties 
NPV > 0 (%) 

PA 2027 -9.3 -6,831 0% 0% 
PA 2050 -6.4 -6,831 0% 0% 
RI 2027 2.0 -3,922 100% 0% 
RI 2050 6.8 -6,054 100% 0% 
SC 2027 -6.0 -7,034 0% 0% 
SC 2050 -3.3 -7,800 0% 0% 
SD 2027 -6.1 -8,893 0% 0% 
SD 2050 -3.5 -7,755 0% 0% 
TN 2027 -6.4 -8,111 0% 0% 
TN 2050 -3.8 -7,446 0% 0% 
TX 2027 -5.2 -5,041 0% 0% 
TX 2050 -2.8 -4,538 0% 0% 
UT 2027 -6.0 -4,639 0% 0% 
UT 2050 -3.6 -7,674 0% 0% 
VA 2027 -7.4 -7,923 0% 0% 
VA 2050 -4.8 -8,597 0% 0% 
VT 2027 -2.9 -7,213 0% 0% 
VT 2050 1.1 -6,053 100% 0% 
WA 2027 -12.6 -10,123 0% 0% 
WA 2050 -10.5 -9,580 0% 0% 
WI 2027 -5.2 -4,942 0% 0% 
WI 2050 -2.2 -4,942 0% 0% 
WV 2027 -10.2 -6,922 0% 0% 
WV 2050 -7.9 -8,121 0% 0% 
WY 2027 -7.4 -4,996 0% 0% 
WY 2050 -5.2 -4,996 0% 0% 
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Appendix D. dGen 2050 DPV Projections 
Table D-1. dGen 2050 DPV Projections 

Scenario 
Sector 

Customer 
Base 

(1000s) 

Number of 
Adopters 
(1000s) 

Developable 
Market 

Adoption 
(%) 

Total Market 
Adoption 

(%) 
Capacity(GW) 

Yearly 
Energy 
(TWh) 

Reference 
Commercial 6,643 1,213 20 18 42.6 59.8 

Industrial 902 176 21 20 9.2 12.7 

Residential 78,713 20,917 32 27 96.0 129.2 

 86,258 22,306 31 26 148 202 

No CPP 
Commercial 6,885 1,171 19 17 40.8 57.0 

Industrial 918 170 20 18 8.9 12.2 

Residential 78,713 19,236 30 24 91.7 122.1 

 86,516 20,577 29 24 141 191 

Low Oil/Gas 
Price 

Commercial 6,670 1,198 20 18 42.1 59.0 

Industrial 887 170 21 19 9.0 12.3 

Residential 78,713 20,397 32 26 93.7 125.6 

 86,270 21,765 30 25 145 197 

High Oil/Gas 
Price 

Commercial 6,569 1,295 22 20 46.2 65.2 

Industrial 958 196 22 20 10.2 14.2 

Residential 78,713 22,841 35 29 104.2 140.8 

 86,240 24,332 34 28 161 220 

Low Economic 
Growth 

Commercial 6,377 1,188 21 19 41.8 58.8 

Industrial 784 167 23 21 8.8 12.2 

Residential 78,713 20,625 32 26 93.9 126.2 

 85,874 21,980 31 26 145 197 

High Economic 
Growth 

Commercial 6,892 1,259 20 18 44.5 62.6 

Industrial 1,045 188 20 18 9.7 13.4 

Residential 78,713 21,613 33 27 100.4 135.3 
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Scenario 
Sector 

Customer 
Base 

(1000s) 

Number of 
Adopters 
(1000s) 

Developable 
Market 

Adoption 
(%) 

Total Market 
Adoption 

(%) 
Capacity(GW) 

Yearly 
Energy 
(TWh) 

 86,650 23,060 32 27 155 211 

Low Oil/Gas 
Resource and 
Technology 

Commercial 6,565 1  ,357 23 21 49.7 70.2 

Industrial 898 198 24 22 10.4 14.6 

Residential 78,713 24,487 38 31 110.8 150.7 

 86,176 26,042 37 30 171 235 

High Oil/Gas 
Resource and 
Technology 

Commercial 6,738 1,105 18 16 37.8 53.3 

Industrial 898 159 19 18 8.2 11.2 

Residential 78,713 18,850 29 24 86.5 115.7 

 79,611 20,114 28 23 133 180.2 
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Appendix E. EIA Cash Flow Adoption Model 
DPV Projections 

Table E-1. EIA Cash Flow Adoption Model DPV Projections 

Scenario Sectora 
Number of 
Adopters 
(1000s) 

Capacity 
(GW) 

Annual 
Generation 

(TWh) 

Annual 
Utility 

Electricity 
Sales 
(TWh) 

Percent of 
Electricity 

Demand Met 
through DPV 

(%) 
Results with Residential Cash Flow Adoption Model Applied 

Reference Residential 13,231 116 169 1,602 8%  
Commercial 1,110 49 70 1,620 4%  
Total 14,341 165 239 3,222 6% 

Reference-No 
CPP 

Residential 12,385 107 157 1,694 7% 
 

Commercial 1,066 48 67 1,684 4%  
Total 13,451 155 225 3,377 6% 

High Oil and Gas 
Resource and 
Tech. 

Residential 12,242 106 155 1,666 7% 

 
Commercial 1,056 47 67 1,648 4%  
Total 13,298 153 222 3,314 6% 

Low Oil and Gas 
Resource and 
Tech. 

Residential 14,768 130 190 1,523 10% 

 
Commercial 1,182 53 74 1,597 4%  
Total 15,950 183 265 3,120 7% 

High Oil and Gas 
Price 

Residential 13,861 122 178 1,551 9% 
 

Commercial 1,142 51 72 1,604 4%  
Total 15,003 173 250 3,155 7% 

Low Oil and Gas 
Price 

Residential 13,107 114 167 1,622 8% 
 

Commercial 1,094 49 69 1,628 4%  
Total 14,201 163 236 3,251 6% 

Low Economic 
Growth 

Residential 10,601 91 133 1,533 7% 
 

Commercial 1,074 48 67 1,555 4%  
Total 11,676 139 200 3,088 6% 

High Economic 
Growth 

Residential 13,914 122 179 1,673 8% 

 Commercial 1,155 52 73  1,684 4% 
 Total 15,068 174 252 3,357 6% 

a The industrial sector does not model DPV generation in NEMS; it is assumed that all non-residential DPV is 
allocated to the commercial sector. 
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Appendix F. EIA Hurdle Rate Adoption Model 
DPV Projections 

Table F-1. EIA Hurdle Rate Adoption Model DPV Projections 

Scenario Sectora 
Number of 
Adopters 
(1000s) 

Capacity 
(GW) 

Annual 
Generation 

(TWh) 

Annual 
Utility 

Electricity 
Sales (TWh) 

Percent of 
Electricity 
Demand 

Met 
through 
DPV (%) 

Results with Residential Hurdle Rate Adoption Model Applied 
 

Reference Residential 35,484 177 263 1,519 13%  
Commercial 1,110 49 70 1,620 4%  
Total 36,594 227 333 3,139 9% 

Reference-No CPP Residential 35,082 175 260 1,598 13% 

 Commercial 1,066 48 67 1,684 4% 

 Total 36,148 223 328 3,282 8% 

High Oil and Gas 
Resource and 
Tech. 

Residential 35,671 178 265 1,569 13% 

 Commercial 1,056 47 67 1,648 4% 

 Total 36,727 226 332 3,216 8% 
Low Oil and Gas 
Resource and 
Tech. 

Residential 35,536 178 263 1,460 13% 

 Commercial 1,182 53 74 1,597 4% 

 Total 36,718 230 338 3,057 9% 

High Oil and Gas 
Price 

Residential 34,503 173 256 1,483 13% 

 Commercial 1,142 51 72 1,604 4% 

 Total 35,645 223 328 3,087 9% 

Low Oil and Gas 
Price 

Residential 36,292 181 269 1,532 13% 
 

Commercial 1,094 49 69 1,628 4%  
Total 37,386 230 338 3,161 9% 

Low Economic 
Growth 

Residential 27,703 139 203 1,469 11% 
 

Commercial 1,074 48 67 1,555 4%  
Total 28,777 186 271 3,024 8% 
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Scenario Sectora 
Number of 
Adopters 
(1000s) 

Capacity 
(GW) 

Annual 
Generation 

(TWh) 

Annual 
Utility 

Electricity 
Sales (TWh) 

Percent of 
Electricity 
Demand 

Met 
through 
DPV (%) 

High Economic 
Growth 

Residential 40,509 203 302 1,566 14% 

 Commercial 1,155 52 73 1,684 4% 

 Total 41,664 254 375 3,250 9% 
a The industrial sector does not model DPV generation in NEMS; it is assumed that all non-residential DPV is 
allocated to the commercial sector. 
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