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Executive Summary 
Adoption of rooftop solar in the United States primarily has been concentrated in higher-income 
households (Moezzi et al. 2017; Vaishnav et al. 2017). As technology costs decline and markets 
expand, however, focus is shifting to increasing solar access in underserved market segments—
particularly to low-to-moderate income (LMI) households, or those earning 80% or less of the 
area median income (AMI). A key policy goal is to expand solar access more equitably to ensure 
the benefits of solar, including reduced energy burden, increased resilience, and hedge against 
electricity rate changes are available to all ratepayers. To achieve this goal, a deeper 
understanding of the potential LMI market is needed. Although LMI households represent about 
43% of the U.S. population, it is unknown what proportion live in buildings suitable for PV, how 
this potential is distributed among the buildings they live in, or what fraction of their electricity 
needs could be met with rooftop solar. 

This report serves to expand upon previous NREL research investigating the technical potential 
of rooftop solar in the United States, aiming to improve the understanding in the residential 
sector, particularly for low-to-moderate income households. Technical potential is a metric that 
quantifies the maximum generation available from a technology for a given region and does not 
consider the economic or market viability. A unique contribution of this work is to estimate 
rooftop solar technical potential of residential buildings per U.S. Census Tract by income, 
building type, and tenure. The underlying data—as documented in Gagnon et al. 2016—are a 
series of light detection and ranging (LiDAR)–based scans of the building stock in 128 metro 
regions. Using LiDAR scans, as opposed to aerial imagery, allows researchers to infer the 
building footprint and the unshaded roof area, azimuth, and tilt for each distinct roof plane, 
although roof age or other structural concerns are not considered. This data then is intersected 
with U.S. Census Bureau socio-demographic and building stock data at the tract-level to better 
understand how rooftop solar technical potential is allocated among different building types. 
This research also uses statistical techniques to estimate rooftop potential in areas not covered by 
the LiDAR scans. Collectively, these data and methods are used to address three research 
questions. 

1. What is the quantity and spatial distribution of rooftop technical potential, 
stratified by income, building type, and tenure? At a gross level, these data enable 
improved estimates of the possible opportunity for deployment, as well as the magnitude 
of various policy interventions. 

2. Among low-to-moderate-income households, what is the feasibility of achieving 
parity in solar access across income groups? Compared to high-income households, 
LMI households disproportionately live in rental-occupied, multi-family buildings. 
Because of principal-agent issues in solar adoption, there are significant economic and 
regulatory barriers inhibiting the installation of solar equipment on buildings occupied by 
LMI households. This study investigates the feasibility of offsetting at least 33% of LMI 
household electrical consumption with solar energy and, where infeasible, highlight 
consideration of novel deployment models—such as community solar, virtual net 
metering, and other shared solar models. 

3. Finally, low- and moderate-income households interact with a vast web of nonprofit 
entities (e.g., places of worship and public schools). What is the quantity of technical 
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potential for these classes of buildings, and to what extent might these buildings 
“oversize” systems on their roofs to export excess generation to LMI households? 
Increasing access to solar for such third-parties could reduce these entities’ operational 
costs and indirectly provide roof space to households without access. 

National Residential Rooftop PV Technical Potential 
Over all tracts and all residential buildings in the United States, the estimated residential rooftop 
solar technical potential is nearly 1,000 terawatt-hour (TWh) of generation, or about 75% of 
residential consumption. Significant potential is found in every income group (Table ES-1), with 
the greatest overall potential in the non-LMI (>80% AMI) income group, and with 416 TWh for 
low-to-moderate (0% to 80% AMI) households over 25.5 million solar-suitable buildings. The 
LMI potential is approximately 42% of the total U.S. residential potential, a considerable portion 
of the overall rooftop opportunity (Figure ES-1). 

Table ES-1. National Residential PV Rooftop Technical Potential by Income Group 

Income Group 
Households 

(millions) 

Suitable 
Buildings 
(millions) 

Suitable 
Module 

Area 
(millions of 

m2) 

Capacity 
Potential 
(GWDC) 

Annual 
Generation 
Potential 

(TWh/year) 

LMI Very Low 
(0%–30% AMI) 

19.5 9.4 794.4 127.1 160.8 

Low 
(30%–50% AMI) 

11.5 5.7 472.8 75.6 95.3 

Moderate 
(50%–80% AMI) 

18.8 10.4 792.0 126.7 159.8 

Non-
LMI 

Middle 
(80%–120% 

AMI) 
21.1 12.3 900.4 144.1 180.8 

High 
(> 120% AMI) 

46.0 29.4 2,003.3 320.5 403.1 

All LMI Buildings 49.8 25.5 2,059.2 329.4 415.9 

All Residential Buildings 116.9 67.2 4,962.9 794.0 999.8 

A majority of the overall residential potential (683 TWh, 68.4%) is situated on single-family 
buildings, as compared to multi-family dwellings (316 TWh, 31.6%) and single-family potential 
exceeded multi-family potential for each income group. Similar ratios are seen for owner-
occupied and renter-occupied buildings as there is a strong correlation between multi-family 
occupancy and rental status. For LMI households specifically, the largest modality of potential is 
for single-family owner-occupied buildings (176.8 TWh), followed by multi-family renter-
occupied buildings (140.1 TWh). Though deployment of rooftop solar historically has been 
concentrated on single-family owner-occupied buildings, nearly 60% of potential for LMI 
buildings exists on renter-occupied and multi-family buildings. 
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Figure ES-1. County LMI rooftop technical potential as percent of total residential potential 

Feasibility of Parity in Adoption Rates 
The U.S. Department of Energy (DOE) Solar Energy Technology Office recently announced 
updated cost targets for solar energy, which could result in 971 GW of solar capacity, providing 
33% of electrical generation by 2050 (Cole et al. 2017). Inspired by this goal we investigate the 
feasibility of rooftop solar offsetting at least 33% of low- and moderate-income household 
electrical consumption in each U.S. county. Note that the data does not enable assessment of the 
feasible offset fraction at the household level, and instead should be interpreted in aggregate over 
the county. The analysis also only considers consumption offsets over an annual basis and does 
not consider hourly mismatches in generation and consumption—which could be substantial 
without energy storage or other load-shifting methods. 

Offsetting 33% of LMI household electrical consumption (“offset target”) with rooftop solar is 
technically feasible on a national scale when only considering households in single-family 
owner-occupied (SFOO) buildings, although to do so requires buildout on essentially all SFOO 
buildings—an impractical and unforgiving market challenge. In contrast, on a technical basis, 
there is more than sufficient roof space to meet the 33% offset target when including single-
family rental-occupied (SFRO), multi-family owner-occupied (MFOO), and multi-family renter-
occupied (MFRO) buildings (Figure ES-2). Specifically, the average fraction of generation 
potential to consumption nationally is 85% for the Very Low, 92% for Low, 80% for Moderate, 
and 70% for Non-LMI income groups. The lower per-capita levels of consumption for low-
income households makes offset targets more feasible for this group than for non-LMI 
households. 
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Figure ES-2. Technical feasibility of matching residential electrical consumption with 

rooftop solar (shown by income group) 

Not all counties can offset 33% of their LMI consumption with in-county rooftop solar. When 
considering only single-family owner-occupied buildings, 40% of U.S. counties have insufficient 
rooftop solar potential to offset 33% of LMI electrical consumption (Figure ES-3 left), though 
when including the remaining residential building stock this figure decreases to 1% (Figure ES-3 
right). In the latter condition, shortfalls are most significant for mobile homes (38 TWh)—whose 
roofs are typically not suitable for solar, followed by single-family (6 TWh) and multi-family 
(2 TWh) buildings. Spatial trends in the potential for solar to offset LMI consumption most-
strongly reflected regional variation in per-capita electricity consumed, primarily due to which 
fuels are used for building heating and cooling loads. Other trends include solar irradiance, 
building-stock composition, and the prevalence of solar-suitable rooftops. 

  

Figure ES-3. Percent of LMI electrical consumption that can be offset by rooftop solar 
generation—single-family owner-occupied LMI buildings only (left), all LMI buildings (right) 

From a technical basis alone, there is sufficient rooftop space for at least 33% of LMI 
consumption to be met with rooftop solar generation. Reaching this potential, however, requires 
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the deployment of models other than those commonly found today, particularly, models that can 
address coordination issues inherent to rental-occupied and multi-family buildings. Such models 
must ensure that rental-property owners are incentivized to install solar on their buildings—for 
example, by bundling utility expenses with rent payments as a means of passing solar costs and 
savings through to the renter. These models also would need to address the diverging 
requirements and energy burdens of owners and tenants. For example, California recently 
developed an incentive program dedicated to affordable multi-family housing, with requirements 
that at least half of energy generated onsite be used to serve tenants loads (CPUC 2017b). In 
Colorado, the Denver Housing Authority’s 2 MW low-income community solar garden has 
demonstrated a scalable model for offsite generation through utility partnerships (DOE 2017). 
Virtual net metering also can be effective in enabling building owners to provide surplus 
generation directly to their occupants (Feldman et al. 2015).  

Technical Potential for Buildings that Serve LMI Populations 
Low- and moderate-income households interact with a vast web of non-profit entities, and it is 
plausible that these buildings could “oversize” photovoltaic (PV) systems on their buildings to 
share solar generation with their communities. We estimate the generation potential within the 
cities of Chicago, Illinois; San Bernardino/Riverside, California; and Washington, D.C., for five 
building types: public sites, public housing, K–12 public schools, homeless shelters, and places 
of worship. These cities were selected for congruence with a forthcoming companion analysis of 
the technical, market, regulatory, and social factors affecting LMI solar markets in those three 
cities. Based on the building’s size and average electrical consumption per square foot for 
comparable buildings, each building’s electrical consumption was estimated, and thus the 
feasibility of oversizing systems to export excess generation to nearby LMI households. Based 
on these assumption, buildings in Chicago, San Bernardino/Riverside, and Washington, D.C. 
could feasibly oversize PV systems to provide 2.1%, 8.7%, and 1.3% of LMI consumption, 
respectively. None of the estimates include on-site ground-mounted systems. 

Schools, followed by places of worship had the greatest opportunity to export generation to the 
community of the five building classes considered. Schools typically have large flat roofs and 
decrease consumption in the summer, when solar irradiance is highest. Places of worship are 
favorable because they have low levels of electricity consumption year-round and moderately 
favorable roof characteristics. Unfortunately, public housing, public sites, and homeless shelters 
likely have insufficient rooftop space to offset 100% of their own on-site consumption. These 
results indicate that there is a modest, though not overwhelming, opportunity for buildings that 
serve LMI populations to oversize a PV system—and that projects are best evaluated on a case-
by-case basis. 

Conclusions 
This report presents a first-of-its-kind assessment of the technical potential of rooftop solar for 
low- and moderate-income households, as well as providing insight on the distribution of solar 
potential by tenure, income, and other building characteristics. The findings show that a 
substantial fraction of the national rooftop solar potential is located on LMI buildings and, for all 
incomes, a substantial fraction is located on multi-family and renter-occupied buildings. The 
research also demonstrates that reaching substantial LMI deployment penetration requires 
deployment on multi-family and renter-occupied buildings. Traditional deployment models have 



9 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

insufficiently enabled access to solar for these income groups and building types and, without 
additional innovation either in regulatory, market, or policy arenas, a large fraction of the U.S. 
potential is unlikely to be met. Potential electric bill savings from rooftop solar would have the 
greatest material impact on the lives of low-income households as compared to their high-
income counterparts and could help mitigate the energy burden faced by these households.  

This report ultimately seeks to provide objective data for regulators, policymakers, nonprofits, 
and project developers to make informed decisions that are best for their own communities. To 
this effect, data used in this report are provided freely via NREL’s website in two formats. One 
format—an interactive web application using NREL’s OpenCarto platform—was developed to 
enable user to browse, visualize, and export results (https://maps.nrel.gov/solar-for-all). The 
other format is the Rooftop Energy Potential of Low Income Communities in America 
(REPLICA) data set (https:/data.nrel.gov/submissions/81) which contains the technical potential 
data used in this report, accompanied by several additional techno-economic variables (e.g. 
electricity expenditures ($/month), demographics, utility electric rates) which are available for 
download as flat files. 

  

https://maps.nrel.gov/solar-for-all
https://data.nrel.gov/submissions/81
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1. Introduction 
Residential solar offers a compelling opportunity for reducing the energy burdens faced by low-
income households, whose utility bills comprise a larger fraction of expenses than for high-
income households. Moreover, because residential solar has disproportionately been adopted by 
high-income households (Moezzi et al. 2017; Vaishnav et al. 2017), often benefiting from 
public-funded incentives, it is important to ensure that all utility ratepayers have access to solar 
benefits including reduced energy burden, increased resilience, and as a hedge against electricity 
rate changes.  

This report seeks to improve understanding of the technical potential of rooftop solar in the 
residential sector, particularly for low- to moderate- (LMI) income households. Technical 
potential is a metric that quantifies the maximum generation available from a technology for a 
given region and does not consider the economic or market viability. This report expands upon 
previous NREL research investigating the rooftop solar technical potential using light detecting 
and ranging (LiDAR) scans of individual rooftops in 128 metro regions (Gagnon et al. 2018; 
Margolis et al. 2017; Gagnon et al. 2016; Phillips and Melius 2016). Using LiDAR scans, as 
opposed to aerial imagery, allows us to infer the building footprint and the unshaded roof area, 
azimuth, and tilt for each distinct roof plane. A unique contribution of this work is to estimate 
rooftop solar technical potential of residential buildings per U.S. Census tract by income, 
building type, and tenure. To do so, the LiDAR data set is intersected with U.S. Census Bureau 
socio-demographic and building stock data at the tract-level to better understand how rooftop 
solar technical potential is allocated among different building types. Statistical techniques also 
are used to estimate rooftop potential in areas not covered by the LiDAR scans. Collectively, 
these data and methods enable the study to address three research questions: 

1. What is the quantity and spatial distribution of rooftop technical potential, 
stratified by income, building type, and tenure? At a gross level, these data allow 
improved estimates of the possible opportunity for deployment, as well as the magnitude 
of various policy interventions. 

2. Among low and moderate-income households, what is the feasibility of achieving 
parity in solar access across income groups? Compared to high-income households, 
LMI households disproportionately live in renter-occupied, multi-family buildings. 
Because of principal-agent issues in solar adoption, there are significant economic and 
regulatory barriers inhibiting LMI households from benefiting from the installation of 
solar on buildings they occupy. Recent U.S. Department of Energy (DOE) solar cost 
goals could result in solar penetration rates of 17% by 2030 and 33% by 2050 as a 
fraction of national electricity consumption. This report investigates the feasibility of 
reaching at least 33% solar penetration for LMI households and, where infeasible, 
highlights consideration of novel deployment models, such as community solar, virtual 
net metering, and other shared solar models. 

3. Finally, low- and moderate-income households interact with a vast web of nonprofit 
entities (e.g., churches, schools, public sites, homeless shelters, subsidized housing). 
What is the quantity of technical potential for these classes of buildings, and to what 
extent might these buildings “oversize” systems on their roofs to export generation 
to LMI households? Increasing access to solar for such third-parties could either 
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increase their operational efficiency by reducing operational costs, or indirectly provide 
roof space to households without access.  

On a technical basis, the potential for rooftop solar to serve a large fraction of the nation’s energy 
needs is well-recognized (Gagnon et al. 2016; Lopez et al. 2012; Denholm and Margolis 2008; 
Paidipati et al. 2008; Chaudhari et al. 2004). Rooftops provide a large and sparsely used space to 
install panels; onsite solar generation can reduce the building’s net demand for grid-sourced 
energy and can reduce losses associated with the distribution and transmission of electricity. 
Recent analysis has estimated that buildout of all suitable roof space could serve approximately 
38.6% of U.S. load (Gagnon et al. 2016). This potential is disproportionately located within the 
residential sector, with small buildings (<5,000 ft2) contributing nearly 65% of the nation’s 
potential (Gagnon et al. 2016). Previous work, however, has not explicitly considered the 
intersection of rooftop solar potential with income, building characteristics (e.g., rental versus 
owner-occupied), and other demographic factors. Though building tenure is not relevant on a 
technical basis alone, it is very significant from a market perspective.  

Adoption of distributed solar in the U.S. residential sector to date primarily has been 
concentrated among high-income households (Moezzi et al. 2017; Vaishnav et al. 2017). 
Unlocking technology access and demand from all households could substantially increase 
market potential—in 2015 43% of all households could be considered to have low to moderate 
income (<80% area median income(AMI)) and 18% to be middle income (80% to 120% AMI) 
(U.S. Census 2015). Further, it is not equitable for solar adoption to occur only among high-
income households. Recent studies have explored the transfer of wealth implied by technology 
incentives and net metering policies, finding that majority of public subsidies have been passed 
through to high-income households (Vaishnav et al. 2017; Borenstein 2017). Without recourse, 
rooftop solar risks a reputational backlash—in time, it could be perceived as solely the purview 
of the wealthy, and its deployment not seen as a public benefit. 

Ensuring access to affordable energy for all households is a policy mandate for federal, state, and 
local governments. Costs of energy for low-income households can comprise a substantial 
fraction of household income and, as a result, many programs exist to ensure its affordability. A 
notable example is the Low-Income Home Energy Assistance Program (LIHEAP) run by the 
U.S. Department of Health and Human Services. The program provides financial assistance for 
home energy bills, energy crises, and weatherization and energy-related minor home repairs 
(HHS 2017). The U.S. Department of Energy Weatherization Assistance Program also provides 
assistance for LMI households by increasing the energy efficiency of their homes (DOE 2018). 
A state-level model is the California Alternate Rates for Energy (CPUC 2017a) program, which 
gives low-income customers discounts on their electricity and natural gas rates. 

As the cost of solar energy continues to decline, many have begun to question what role solar can 
play in increasing energy affordability or as an efficient alternative or supplemental use of public 
funds for energy-assistance programs. For instance, use of funds to directly or indirectly 
incentivize solar deployment might be more cost-efficient than rate subsidization, because it 
creates a durable asset for low-income households and in the long term could lead to greater 
program effectiveness. The exact cost-benefit of diverting rate-assistance funds depends on 
program details and is beyond the scope of this study.  
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Incentivizing solar deployment in LMI communities requires a reimagination of traditional 
deployment models. These new models should address coordination issues inherent to rental-
occupied and multi-family buildings as well as LMI financing and affordability barriers (Cook 
and Bird 2018). Such models also should ensure that rental-property owners are incentivized to 
install solar on their buildings, for example, by bundling utility expenses with rent payments as a 
means of passing savings through to the renter. Alternatively, various shared solar models 
(Feldman et al. 2015), including virtual net metering, could be effective in allowing building 
owners to sell rooftop generation directly to the building occupants. Similar issues exist for 
multi-family buildings, where shared solar or community solar models could help to address 
tenant-owner coordination issues.  

This report ultimately seeks to provide objective data for regulators, policymakers, nonprofits, 
and project developers to make informed decisions that are best for their own communities; for 
example, to assess the potential for rooftop solar in their jurisdictions and perform policy cost-
benefit analyses. To that end, this report is accompanied by two supporting data products. One is 
an interactive web application that uses NREL’s OpenCarto platform; it was developed to enable 
users to browse, visualize, and export results (https://maps.nrel.gov/solar-for-all). Another is the 
technical potential data used in this report—accompanied by several additional techno-economic 
variables and aggregated at the tract-level—available for download at 
(https://data.nrel.gov/submissions/81). The Rooftop Energy Potential of Low Income 
Communities in America (REPLICA) data set includes measures of electricity expenditures 
($/month), demographics, utility electric rates, state-level photovoltaic (PV) incentives, measures 
of environmental quality, and locations of public housing, compiled from a variety of sources 
and tagged to each Census Tract.  

Many opportunities exist to improve the methods used in this report, but there are three 
important restrictions. One is that the geographic span of LiDAR aerial rooftop imagery is 
restricted to 128 metro regions, spanning approximately 40% of the U.S. population. A statistical 
model was developed and validated to estimate potential for unsampled areas, particularly for 
rural areas. Section 2.2.3 discusses efforts to train and validate this model. Future work could 
improve the geographic coverage of LiDAR scans in these areas. The second, is that the LiDAR 
data do not enable the direct observation of the true income, tenure, number of housing units, or 
income of the building occupants. Instead, these attributes are assigned from tract-level cross-
tabulation tables from the 2011–2015 U.S. Census American Community Survey using statistical 
techniques, including sampling from probability distributions. The final tract-level estimates are 
based on the median value of a 100-run Monte Carlo process (see Appendix B). This sampling 
process could be greatly improved with access to a national zoning or parcel data set, which 
would contain a richer set of property-level attributes. Finally, this analysis solely considers the 
technical potential of rooftop solar—or the total solar resource that could be captured given 
physically-available area and technology performance. Notably, this analysis does not consider 
the economic or market feasibly of solar installations, nor the feasibly of on-site use of the solar 
generation.  

  

https://maps.nrel.gov/solar-for-all
https://data.nrel.gov/submissions/81
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2. Methods 
This section describes the methods used to estimate PV rooftop technical potential by Census 
tract, stratified by income, building type, and tenure. It includes methods to process LiDAR 
rooftop scans in the 128 metro regions with coverage (Section 2.1) and estimate their generation 
productivity (Section 2.1.2). Next, it discusses the intersection of tract-level technical potential 
and demographic cross-tabulations (Section 2.2.1 and Section 2.2.2). Finally, a statistical model 
of rooftop potential for the remaining regions of the United States (Section 2.2) is estimated by 
training it on sampled areas (i.e., those with LiDAR rooftop observations). Additional details on 
methods are described in the appendices: Allocation of Demographic Attributes (Appendix A); 
Validation of Monte Carlo Simulations for Building Sampling (Appendix B); Predictive 
Modeling Framework for Imputing Solar Suitability (C1–C4).  

2.1. Using LiDAR Data to Estimate PV Rooftop Technical Potential 
This analysis builds upon previous work pioneered by NREL (Gagnon et al. 2016) using LiDAR 
data to model rooftop suitability for solar photovoltaics. Light Detection and Ranging (LiDAR) 
is a remote-sensing method that uses pulsed laser beams to measure distances to the ground. The 
LiDAR sensing algorithms can be used to infer (1) the presence of individual buildings and their 
footprint within a city, and (2) the area, tilt, azimuth, and shading of each distinct geometric roof 
plane on a building’s roof. Based on these roof characteristics, the NREL PVWatts (NREL 2017) 
tool is used to estimate the technical performance for the individual building and thus the 
collective tract-level building stock. 

This work relies on LiDAR data sets provided by the U.S. Department of Homeland Security 
(DHS) Homeland Security Infrastructure program for 2006–2014. This data set consists of first-
return rasters of 1 m2 resolution and building footprint vectors for 128 metropolitan areas across 
the nation. Figure 1 shows the metro regions with LiDAR coverage, where the blue polygons are 
the areas with observed data. In total, this data includes 26.9 million buildings, or about 23% of 
U.S. buildings (EIA 2013) and covers an area that representing about 40% of the U.S. 
population. 
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Figure 1. LiDAR data coverage 

Using these LiDAR data, Gagnon et al. (2016) developed a geospatial model to identify rooftop 
planes suitable for rooftop-mounted solar PV given the roof’s orientation (tilt and azimuth) and 
shading characteristics. To account for potential shading from adjacent buildings, trees, or other 
obstacles, NREL researchers generated hourly hillshades that identify roof square-pixel areas 
with sufficient sunlight illumination. To identify developable surfaces for PV installment, a zonal 
mean neighborhood function was used to identify and remove data noise and complex features 
on roofs (e.g., peaks, edges, chimneys, steeples, facades). Finally, roofs were filtered for rooftop 
developable surfaces that met basic PV suitability requirements, such as being south-facing and 
having a minimum area of 10 m2 (Table 1). The end result is a database of rooftop plane-level 
data with detailed attribution regarding the slope, tilt, azimuth, installed capacity, and annual 
generation potential (kWh/year) (discussed in more detail in Section 3.1.2) of all suitable 
surfaces on all rooftops in the 128 LiDAR–covered metropolitan areas. This data set was an 
important milestone in the distributed PV field and has paved the way for many subsequent 
analyses, including the work presented in this report. 
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Table 1. Requirements for Solar Suitable Surfaces 

Requirement Description 

Shading Seasonal requirements1: March requires 60% illumination, June requires 70% 
illumination, September requires 60% illumination, and December requires 50% 
illumination. 

Azimuth East, Southeast, South, Southwest, or West-facing 

Tilt Average surface tilt <= 60 degree. 

Minimum Area2  >= 10 m2 

Source: Gagnon et al. (2016). 

2.2. Simulating PV Productivity Using reV and PVWatts 
Simulations of solar generation were conducted at the tract-level and for 21 tilt-azimuth 
combinations using the NREL reV tool.3 The Renewable Energy Potential (reV) model’s 
generation module is a complex wrapper that enables distributed generator performance 
modeling using NREL’s PVWatts model with large renewable resource databases in a parallel 
computing environment. To simulate PV productivity, reV uses multiple historic solar irradiance 
time series data from the National Solar Radiation Database (NSRDB), producing generation and 
capacity factor profiles for a typical meteorological year (TMY). Generation profiles based on 
TMY data capture hourly variability of an average year and are estimates of the long-term 
performance of a solar system, though they do not capture significant annual variation in 
generation due to weather/storm events. 

The solar resource and meteorological data used by reV/PVWatts for this analysis are from the 
National Solar Radiation Database TMY3 data (Wilcox and Marion 2008). These data include 
hourly representative profiles for 1,001 stations throughout the United States. Each Census Tract 
is assigned the TMY3 irradiance profile for the weather station closest to the tract’s centroid. We 
also relied on the set of standard technical assumptions used by Gagnon et al. (2016) 
representing the 2015 average performance of PV systems (Table 2). 

                                                             

1 Seasonal shading requirements, as defined by Gagnon et al. (2016), are used to identify suitable rooftops with 
adequate percent sunlight illumination throughout the year. Refer to Gagnon et al. (2016) for further details. 
2 Based on current panel power density, 10 m2 provides sufficient area to install a 1.5 kW system. This minimum 
area threshold was chosen to represent a conservative lower-end estimate of viable PV system sizes based on current 
PV performance and historic patterns in reported PV sizing. 
3 Documentation for reV did not exist at the time of writing, but additional information is available at 
https://www.nrel.gov/gis/modeling.html. 
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Table 2. Assumptions for PV Performance Simulations 

PV System Characteristics Value for Flat Roofs Value for Tilted Roofs 

Tilt 15 degrees Midpoint of tilt class 

Ratio of module area to roof area4 0.70 0.98 

Azimuth 180 degrees (south facing) Midpoint of azimuth class 

Module power density 160 W/m2 

Total system losses 14.08% 

Inverter efficiency 96% 

DC-to-AC ratio5 1.2 

Source: Gagnon et al. (2016). 

2.3. Estimating National LMI PV Rooftop Technical Potential by Tract 
From the LiDAR PV rooftop data set described in Section 2.2, we extend the data set to estimate 
tract-level solar technical potential by building income, tenure, and building size. This consists of 
three broad steps: (1) Intersecting individual building technical potential estimates with 
demographic factors from the Census Bureau 2011–2015 American Community Survey; (2) 
Aggregating the building-level estimates to the tract, county, and state level and conducting 
Monte Carlo runs to determine the median estimate; and (3) Training a statistical model on tracts 
with LiDAR coverage and imputing technical potential for tracts outside of LiDAR coverage. 

2.3.1. Estimating Number of LMI Households by Building Type and by Tenure 
For the 128 metro regions with LiDAR-derived PV rooftop technical potential, we overlaid 
demographic data to estimate the total technical potential for residential buildings, per income group, 
per building type, and per tenure. This work relies on demographic data from the American 
Community Survey’s (ACS) 2011–2015 5-year estimates; see Table 3 for a detailed account on 
tables used in this analysis. The ACS publishes these data as smaller crosstabs, with much of the 
detail available only at the larger (i.e., county) geographic levels.6 To account for this, we use 
random weighted sampling and proportional allocation methods to disaggregate demographic data 
into a tract-level cross-tabulation of household counts by AMI income group, per building type and 
tenure. Additional details on the demographic cross-tabulation process are provided in Appendix A.  

                                                             

4 For flat roofs, the ratio of module area to roof area was assumed to 0.7 to reflect the row spacing necessary to incur 
only approximately 2.5% losses from self-shading for south-facing modules at a 15-degree tilt. For tilted roofs, the 
value was assumed to be 0.98 to reflect the 1.27 cm spacing between each module for racking clamps. 
5 A system’s direct current to alternating current (DC-to-AC) ratio is the ratio of the nameplate capacity of the PV 
modules to the AC-rated capacity of the inverters.  
6 Though much of the data is available at the county level, Census Tracts were chosen as the unit of analysis in this 
report for a few reasons. First, Census Tracts are more homogenous than the larger county and therefore are better 
areas for delineating between income groupings within a city or region. Second, the underlying LiDAR data is 
available at the sub-tract level at a 1-meter resolution. Finally, Census Tracts provide a better unit of analysis from a 
policy and planning perspective, which is the target audience of this report and data. 
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Table 3. 2015 Five-Year American Community Survey Published Tables Used 

Table Source Code Universe Geography 

Household Income in the Past 12 Months 
(in 2015 Inflation-Adjusted Dollars) 

B19001 Households Tract 

Tenure by Household Income in the Past 12 
Months (in 2015 Inflation-Adjusted Dollars) 

B25118 Occupied housing units County 

Tenure by Units in Structure B25032 Occupied housing units County 

Tenure by Household Size by Units in 
Structure 

B25124 Occupied housing units County 

Source: U.S. Census 2015a, 2015b, 2015c.7 

This work defines LMI based on the Department of Housing and Urban Development’s (HUD) 
2016 Area Median Income (AMI) income limits (HUD 2016). These AMI income limits are 
used to determine the eligibility of applicants for federal assistance programs. They are based off 
the median income for Fair Market Rent (FMR) areas (i.e., metropolitan areas, parts of some 
metropolitan areas, and non-metropolitan counties) and are adjusted based on the family size8 
(HUD PD&R). Using these AMI income limits and the generated ACS crosstab described above, 
we categorize households into the following low- to moderate-income groups, as defined by the 
Community Development Block Grant (CBDG),9 based on household income and the number of 
people in the household: 

• Very Low Income: 0% to 30% of AMI10 

• Low Income: 30% to 50% of AMI 

• Moderate Income: 50% to 80% of AMI 

• Middle Income: 80% to 120% of AMI 

• High Income: >120% of AMI 

                                                             

7 Data extracted using NHGIS (Manson et al. 2017). 
8 The HUD baseline numbers for each income limit are based off the 4-person family size. For households with 
larger or smaller sizes, percentage adjustments are made to the income break limits based off the number of people 
in the household (HUD PD&R 2016). 
9 The income categories used in this report are derived from the Community Development Block Grant (CDBG). 
Though there are many ways in which low- and moderate-income thresholds could be defined, we use the CDBG 
definition because (1) it includes a class for moderate income, whereas the standard Section-8 definition does not, 
and (2) it estimates income based on the local geography and the relative cost of living in a particular location. It is 
important to note that LMI can best be described as a gradient and that delineating between groups does not capture 
the whole story. Indeed, many assistance programs define “moderate” as a range that extends into what we classify 
as middle income (up to 120% of AMI) in this report. 
10 The Very-Low Income break limit is based on the greater of the two: (1) 30% AMI or (2) the Federal Poverty 
Level (FPL), defined by the Department of Health and Human Services (HHS), capped at the low-income limit 
(50% of AMI) (HUD PD&R 2016). As a result, this leads to fewer households reported in the low-income bin as 
compared to the very-low income bin. For example, in tracts where the 30% AMI is less than the FPL, the FPL 
(capped at the low income 50% AMI level) is used as the break limit. 
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To allocate from ACS income bins to the above income categories we discretize the standard 
ACS income bins into $1,000 increments and apply the HUD income breakpoints. This allows us 
to align different ACS crosstabs with different income bins and classify households into the five 
AMI income groups described above using the AMI breakpoints associated with each household 
size class. Using a random weighted sampling and proportional allocation approach, we 
disaggregate county-level tenure and building-type estimates by income group. Further details on 
these data manipulations and key sampling assumptions are outlined in Appendix A. The result 
is a data set with total number of households per income group, per building type, and per tenure 
for all 72,760 tracts in the United States. The next section describes how this data set is joined 
with solar-generation estimates. 

2.3.2. Estimating LMI Technical Potential for LiDAR Covered Tracts 
We developed a model to estimate the number of occupied residential buildings and gross rooftop 
technical potential for tracts with LiDAR coverage.11 In total, LiDAR-covered tracts comprise 
approximately 32% of the total U.S. Census Tracts. Starting with the demographic crosstab 
described above, we rely on a series of methods tailored toward translating the counts of 
households per building type (e.g., single-family detached, 2–4 units, 5+ units) into estimates of 
building counts by building size class (i.e., small, medium, large). This crosstab ultimately is used 
to assign building attributes to the individual building IDs from the LiDAR database; LiDAR data 
alone cannot identify characteristics of building occupants for individual buildings (e.g., residential 
or not, multi-family or not, low-income or not). To address this challenge, we rely on a few core 
assumptions and leverage a variety of data to improve the precision of the sampling and allocation 
process. Note that parcel data—such as property tax assessment—would be a more accurate 
alternative although no such public data set exists with detailed attribution at a national level. 

First, we define a schema of building type to building size (Table 4) to map from building types 
(e.g., 2- to 4-unit buildings, single family) as reported in the American Community Survey to 
building sizes in the LiDAR data (e.g., small buildings; 0 to 5,000 ft2). This schema was derived 
from the 2009 EIA Residential Energy Consumption Survey (RECS) microdata (EIA 2013), 
which reports frequencies of total floor space, number of stories, and building types. To estimate 
the building footprint area, the amount of floor space is divided by the number of building 
stories. From these calculations, we identified that 99.8% of residential buildings in the United 
States belong to either the small (< 5,000 ft2 footprint) or medium (5,000 to 25,000 ft2 footprint) 
building classes, 99% of single family buildings are small, 87% of multi-family buildings are 
small and, 13% are medium. Technical potential for mobile homes is assumed to be null—as the 
roofs are typically not suitable for solar. These national probabilities are used as weighting 
factors for sampling residential buildings by building type. 

                                                             

11 Tracts were determined to be covered if there was at least a 90% spatial intersect requirement with the LiDAR 
extent. 
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Table 4. Building Type to Building Size Schema 

Building Type Building Size Class12 Rooftop Area (ft2) 

Single-Family Detached Small 0 to 5,000 ft2 

Single-Family Attached Small or Medium 0 to 25,000 ft2 

Multi-Family 2–4 Units Small or Medium 0 to 25,000 ft2 

Multi-Family 5–19 Units Small or Medium 0 to 25,000 ft2 

Multi-Family 19+ Units Medium or Large > 5,001 ft2 

Next, we generate a cross-tabulation of possible building count combinations from the ACS 
household counts by building type (e.g., four housing units in 2- to 4-unit buildings could either 
be two 2-unit buildings, or one 4-unit building). This array of combinations is narrowed down by 
removing Census Blocks reported by the HAZUS model13 (FEMA 2016) to have no residential 
buildings. We then generate an array of actual building IDs that meet the size criteria of the 
building-type combinations.14 In cases where building IDs do not satisfy the criteria of the 
building-type combinations,15 we downgrade the building type requirements by the smallest 
percentage possible. We then bootstrap actual buildings for each building type using our 
randomly sampled household-to-building count combination as the sampling rate. The sums of 
the sampled building technical potentials are generated per tract and the income and tenure 
estimates are stratified using a proportional allocation approach.  

The process described above is a stochastic process; the final tract-level and national-level 
results are determined based on the median of a 100-sample Monte Carlo simulation. The 
coefficient of variance between samples for each tract and each city were computed for 
validation purposes, and the tract averages of the 100 runs were calculated. Overall, we found the 
sampling error to be low, with a mean coefficient of variance of 6.8% and 1.1% for tracts and 
cities. Further details on the Monte Carlo simulation are covered in Appendix B. The result is a 
data set of tract-level estimates of suitable buildings and their technical potentials per income 
group, building type, and tenure for the 37% of U.S. tracts with LiDAR coverage. 

These methods rely on a few key assumptions with notable limitations. One is that the 
proportional allocation approach used to estimate the technical potential by income and tenure 
assumes that LMI and non-LMI groups (or renter and owner groups) residing in the same 
building type are equally as likely to be suitable. Suitability in this report is based only on the 
size, shading, and orientation the roof planes. Other factors such as roof age or roof material, 
however, are likely to disproportionately affect low-income households and could affect building 
                                                             

12 Small, medium, and large building sizes area convention defined by Gagnon et al. (2016). 
13 HAZUS is a GIS-based natural hazard analysis tool developed by the Federal Emergency Management Agency. 
14 For cases in which the sampling pool of buildings does not satisfy the criteria of the building-type combinations, 
we downgrade the building-type requirements by the smallest percentage possible.  
15 For any given tract, there are potentially three reasons why the pool of potential residential buildings does not 
satisfy the building type combinations: (1) the LiDAR data might be outdated (years vary for each city and range 
from 2006–2014) and new builds could have occurred since the LiDAR scan was collected, (2) the HAZUS General 
Building Stock reports of residential blocks could be inaccurate or outdated (i.e., residential buildings could exist in 
blocks reported to only contain non-residential buildings), and (3) the random weighted sampling methodology used 
in the ACS county-to-tract building type disaggregation might not accurately reflect the building stock in the tract.  
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solar suitability. Additionally, due to data limitations, the model is unable to identify building 
occupants’ demographics, and this biases intra-tract estimates. That is, although the algorithm 
does consider inter-tract variance (i.e., smaller homes in low-income tracts), it cannot distinguish 
intra-tract variance of building size. Notably, we would expect a positive correlation between 
income and building size or, on a per-capita basis, for owner-occupied buildings to be larger than 
renter-occupied buildings. These potential biases are offset by the expectation that demographics 
are mostly homogeneous within a tract because a tract contains about 4,000 people. Another 
related assumption is that the algorithm does not distinguish between occupants’ incomes or 
tenures living within the same building.  

Other limitations of these methods are related to data availability. The lack of access to a 
national parcel data set that can be used to identify an individual building’s true characteristics 
means that the methods used must rely on FEMA’s HAZUS model (FEMA 2016)—a modeled 
block-level general building stock data set to filter blocks without residential buildings. 
However, HAZUS itself is an estimated model, and could have zoning inconsistencies. 
Additionally, the most-recent version of HAZUS is based on data from the 2000 Decennial 
Census and there might be inconsistencies between residential tracts reported in HAZUS and the 
2011–2015 ACS data for tracts with new building construction. Finally, not having parcel data 
that enables identification of a building’s type (i.e., single-family detached, multi-family 2–4 
units) and the roof size of different building types, means relying on a schema of building type to 
building size. This schema of building type to building size (Table 4) is based on data from the 
2009 Residential Energy Consumption Survey (RECS) (EIA 2013) to sample buildings for each 
building type from a pool of LiDAR building footprints based on the building’s size. Future 
work should attempt to use parcel data—including representation of building and roof age—
which would permit more-precise identification. 

2.3.3. Imputing LMI Technical Potential for Tracts Outside of LiDAR Coverage 
To determine the technical potential of the remaining 63% of tracts without LiDAR data we 
developed a statistical model, trained on the tracts with observed data,16 to predict tract-level 
characteristics. The imputation model used largely follows the same methodological framework 
used in Gagnon et al. (2016, Appendix A–D) but is applied at the tract-level and with additional 
processes to disambiguate the number and size of buildings from ACS household totals by number 
of units. This adjusted predictive modeling framework consists of four sub-models, namely: 

1. Household-to-Building Model, 

2. Small Building Suitability Model, 

3. Rooftop Tilt and Azimuth Model, and 

4. Rooftop Plane Area Model. 

Each model predicts median and upper- and lower-bound estimates for individual components 
defining the suitable rooftop area. The complete model combines the four component models to 
estimate median and confidence intervals for tracts without LiDAR coverage. Appendix B 
details this four-model predictive modeling framework. Coupled with the LiDAR covered tracts 
                                                             

16 Tracts used for the training set were only used if at least 90% of area was covered by the LiDAR raster extent. 
therefore, weighting of tracts by their coverage is not needed for out-of-sample prediction. 
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from Section 3.2.2, this provides complete coverage of LMI technical potential across all tracts 
in the United States. 

There are three main limitations with this imputation approach. First, because the LiDAR area 
estimates for residential buildings are based on the median of sampled runs, the imputation 
estimates out-of-tract technical potential using modeled inputs. Next, as with the estimates for 
LiDAR-covered areas, although counts of households by income at the tract-level were available, 
we do not have direct observations of the cross-tabulation of building income-type-tenure 
combinations by tract. Instead, these counts are simulated based on the observed proportion at 
the county level and using income-tenure relationships. In effect, this means that the model does 
not represent inter-tract differences in proportion of, for example, rental versus owner-occupied 
buildings within the county. Third, imputed results for rural areas likely are biased because most 
of the observed LiDAR data is in urban areas. This bias is mitigated, however, by use of urban-
rural isolating variables as independent variables (i.e., locale and land use and land cover) in our 
predictive modeling. 

2.4. Model Uncertainty and Caution in Interpreting Results 
Results presented in this report are based on a series of statistical processes, often with varying 
degrees of certainty. For reasons described below, this report is unable to provide 95% 
confidence intervals for all of the estimates, although the authors acknowledge this 
unintentionally could overstate the certainty of the results. Thus, readers are urged to use caution 
when interpreting results—particularly for policy-planning or regulatory considerations. Two 
dimensions of uncertainty within the data are highlighted. 

2.4.1 Uncertainty of solar potential for LiDAR-covered and non-covered areas.  
The primary data used in this report are a series of LiDAR scans of individual buildings for 128 
metro regions, spanning 40% of the U.S. population. For these regions the LiDAR data enables 
the accurate assessment of the total number of buildings in the tract, their area, and the fraction 
of buildings with solar-suitable roofs (solar suitability). Summing over all the buildings gives a 
high degree of confidence of the total residential potential in these tracts. Assigning these 
buildings to the residential sector, estimates of the ratio of the number of buildings per building 
type, and estimates of building size to building type also makes assumptions documented in the 
Methods section. The process uses several sub-models, and the estimates do not have a 
composite confidence internal because the data required to quantify the composite error is 
unavailable. We were able to quantify the error of the LiDAR-covered areas in an indirect way, 
however, by rerunning the model 100 times with different random seeds. When doing so, we 
found that the average tract-level estimates had a coefficient of variance of 6.8%. That is, the 
standard deviation of the 100 runs was 6.8% of the mean estimate. For cities, which are 
composed of several tracts, the mean coefficient of variance was 1.1%. Both statistics give 
assurance that the error of the various sampling methods is acceptably low.  

We then trained statistical models to impute the gross solar potential for the building stock in 
each non-LiDAR tract. By its nature, this statistical process is less accurate than having directly-
observed data. The imputation process uses sub-models to individually estimate the ratio of 
households to buildings, the fraction of solar-suitable buildings, the distribution of rooftop tilts 
and azimuths, and the distribution of rooftop plane areas. Because we don’t have direct 



13 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

observations of rooftops in the non-LiDAR covered areas we are not able to directly estimate the 
error. However, we did validate the statistical model by training it on 75% of the LiDAR-
covered areas, to test its accuracy when applied to the remaining 25%. Comparing the gross 
predicted LMI technical potential for the tract to the actual value shows that 68% of the estimates 
are within 10% of the actual values and 90% of the predicted values are within 20% of actual 
values. Tract-level variance of this magnitude could be unacceptable for planning purposes, 
although the accuracy increases when moving to sequentially larger geographic areas (cities, 
counties, states). 

2.4.1 Uncertainty of distribution of solar potential by income-tenure-types  
A key purpose of this report is to estimate solar technical potential for different income-tenure-
type combinations (e.g. 50% to 80% AMI, owner-occupied single-family buildings). The LiDAR 
data does not allow us to directly observe the zoning, income level, tenure, or building type of 
individual buildings. To estimate the frequency of these different combinations for tracts with 
LiDAR coverage, the LiDAR data is intersected with various Census American Community 
Survey data. The justification is that, although the estimate of income-tenure-type for any 
individual building cannot be estimated, the accuracy at a tract or county level improves when 
averaged over thousands of buildings. For tracts with hundreds of buildings or fewer, then this 
source of error could be greater. 

Another important note is that the Census does not publish direct observations of income-tenure-
type counts at the tract-level. Instead, the estimates herein are compiled from a variety of 
sources. At the tract-level, there is observed data on the count of households by income group. 
Cross-tabulations of tenure by income, however, and tenure by household size by housing units 
in a building all are observed at the county level. To disaggregate to the tract level, we used 
proportions of income at the tract level to proportionally disaggregate the income-tenure counts 
from the county. These estimates could be biased whenever a specific tract has substantially 
different proportions of income-tenure-housing type combinations than the county does. For this 
reason, income-tenure tract combinations only are presented in tabular results at the national 
level, where the bias should be minimized by aggregation. In the interest of transparency, 
however, these values are presented at the tract level in the Solar for All web application and the 
REPLICA data set with appropriate disclosure.  
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3. Results 

This section quantifies the technical potential of roof-mounted solar photovoltaic systems, 
stratified by the income of the building occupants, tenure, and size of the building. In particular, 
this report provides two novel contributions. One is that it estimates the intersection of rooftop 
potential with the above building demographics. Another is that the data is aggregated at the U.S. 
tract and county-level, instead of by zip code, which is more congruent with Census Bureau, 
HUD, and other socio-demographic analyses. In Section 3.1 the quantity and spatial distribution 
of rooftop technical potential across various building characteristics is estimated. In 3.2 the 
feasibility of rooftop solar offsetting 33% of residential electricity consumption is explored, with 
a focus on the feasibility of reaching parity in adoption levels across income. Finally, in Section 
3.3, the report diverges from a national analysis to explore the rooftop technical potential in more 
depth in Chicago, Illinois; San Bernardino/Riverside, California; and Washington, D.C., to 
understand the spatial distribution of potential within these cities as well as the potential on non-
residential buildings that serve low-income populations. 

3.1. National Residential Rooftop PV Technical Potential 
Over all tracts and all residential buildings in the United States, the gross annual residential 
rooftop solar technical potential is nearly 1,000 TWh, or about 75% of residential consumption 
(DOE EERE 2017). Significant potential is found in every income group (Table 5), with the 
greatest overall potential in the non-LMI income group, and with 416 TWh for low-to-moderate 
(0% to 80% AMI) households over 25.5 million solar-suitable buildings. The LMI opportunity is 
approximately 42% of the total U.S. residential potential, indicating that it is a non-trivial portion 
of the suitable rooftop space. These estimates should be interpreted as the gross technical 
potential of all residential buildings, i.e. they do not consider existing residential PV; in 2016, 
approximately 1% of residential buildings have installed rooftop PV (EIA 2017). 

The gross technical potential by income group was primarily proportional to the number of 
buildings, though there are differences on a per-capita basis between the groups. Nationally, the 
average technical potential was 14,878 kWh per building. However, the per-building technical 
potential is inversely associated with income (17,106 to 13,711 kWh per building for Very Low 
to High) because of the higher rate of occupancy in multi-family buildings among LMI 
households, which tend to have larger, flatter roofs than their single-family counterparts. On a 
per-household basis, however, the technical potential is positively correlated with income 
because the same multi-family buildings have higher household-to-roof area ratios (8,246 to 
8,763kWh per household for Very Low to High; 8,553 kWh per household nationally). Taken 
together, these results demonstrate that there is significant per-capita technical potential for all 
income groups, although—as is demonstrated in Section 3.1.2—much of the LMI potential is 
sited on rental-occupied and multi-family buildings.  
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Table 5. National Residential PV Rooftop Technical Potential by Income Group  

Income Group 
Households 

(millions) 

Suitable 
Buildings 
(millions) 

Suitable 
Module 

Area 
(millions of 

m2) 

Capacity 
Potential 
(GWDC) 

Annual 
Generation 
Potential 

(TWh/year) 

LMI— Very Low 
(0%–30% AMI) 

19.5 9.4 794.4 127.1 160.8 

Low 
(30%–50% 

AMI) 
11.5 5.7 472.8 75.6 95.3 

Moderate 
(50%–80% 

AMI) 
18.8 10.4 792.0 126.7 159.8 

Non-LMI Middle 
(80%–120% 

AMI) 
21.1 12.3 900.4 144.1 180.8 

High 
(> 120% AMI) 

46.0 29.4 2,003.3 320.5 403.1 

All LMI Buildings 49.8 25.5 2,059.2 329.4 415.9 

All Residential Buildings 116.9 67.2 4,962.9 794.0 999.8 

 
These estimates are congruent with previous estimates of the total U.S. rooftop technical 
potential, though none of the previous studies explicitly estimate the distribution among income, 
building types, and tenures. Gagnon et al. (2016), for instance, estimated 1,432 TWh of rooftop 
potential across small, medium, and large building types and 926 TWh for small buildings only. 
Differences between the results presented in this report and those presented in Gagnon et al. 
(2016) can be attributed to differences in scope. Specifically, this report seeks to estimate the 
total residential technical potential, whereas the previous work estimates potential by building 
size class (i.e., small, medium, large). Most small buildings are single-family residential (94%) 
(Gagnon et al. 2016), though not all residential buildings are small; 13% of multi-family 
residential buildings are medium or large (EIA 2013). Thus, the estimate for the residential 
sector (999.8 TWh) is a mixture of the Gagnon et al. (2016) estimates of small (926 TWh) and 
medium and large buildings (506 TWh). In contrast, Denholm and Margolis (2008) estimated 
419 TWh for the residential sector, though this study relied on coarser methods. Additionally, 
these technical potential estimates only include roof-mounted systems on residential buildings; 
for context, previous estimates of the technical potential for ground-mounted systems are vastly 
larger (281,000 TWh) due to the greater area available for deployment (Lopez et al. 2012). 

3.1.1. Spatial Trends in LMI Technical Potential 
Figure 2 demonstrates the overall quantity of residential potential by U.S. county in gigawatt-
hours. We find that the quantity of technical potential is highly concentrated amid urban and 
other densely-populated areas with more building stock. Many of the areas with high levels of 
potential already have significant levels of residential solar deployment (e.g. Arizona, California, 
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Maryland, Massachusetts, New Jersey), although there also are several states with high solar 
potential with currently-low levels of solar deployment (e.g. Illinois, Ohio, Florida, 
Pennsylvania, Texas) (GTM 2017)—indicating the opportunity for future growth.  

 
Figure 2. County residential technical potential (GWh) 

Figure 3 shows the county-level technical potential, normalized as the percent of county 
residential generation potential provided by LMI-occupied buildings. Compared to Figure 2—
which demonstrates the areas with the greatest overall LMI potential—Figure 3 shows areas with 
disproportionately high LMI potential after normalizing for population. We find that in 437 
counties (14%) LMI technical potential comprises at least half of the county’s rooftop solar 
potential. Spatial trends in the fraction of LMI potential are substantially different than those of 
the absolute amount. At a high-level, patterns of LMI potential mirror overall income trends in 
the United States. LMI potential percentages are greatest in lower-income counties and are also 
distinctly higher in rural or semi-rural counties. Areas with disproportionately greater fractions 
of LMI potential are seen in the Southeast (i.e., Alabama, Arkansas, Kentucky, Louisiana, 
Mississippi, West Virginia) and portions of Midwest and Mountain West. 
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Figure 3. County LMI rooftop technical potential as percent of total residential potential 

Previous national maps (i.e., Figure 2, Figure 3) are represented at the county-level, though the 
underlying data is tract-level, because tract-level maps are too finely resolved to show 
meaningful spatial trends at a national scale. Tract-level maps, however, are well-suited to 
demonstrate community-level patterns within a city. As a demonstration we mapped solar 
technical potential for LMI households at the tract level for four cities—Chicago, Illinois; San 
Bernardino/Riverside, California; and Washington, D.C. (Figure 4), normalized by the tract’s 
total residential generation potential. These cities were selected for congruence with a 
forthcoming companion analysis of the technical, market, regulatory, and social factors affecting 
LMI solar markets in those three cities. Unsurprisingly, LMI generation is strongly correlated 
with lower-income neighborhoods in each city. Moreover, the results demonstrate that a 
substantial portion of each city’s solar technical potential is in LMI neighborhoods. Therefore, 
lower deployment of solar in lower-income neighborhoods would substantially limit the overall 
deployment potential in these cities. 

For additional analysis opportunities at the city-level, readers are invited to explore the 
accompanying web app (https://maps.nrel.gov/solar-for-all), which can be used to explore 
additional dimensions of the underlying data. 

https://maps.nrel.gov/solar-for-all
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Figure 4. Percentage of tract-level rooftop solar potential (MW) on LMI buildings  

3.1.2. Technical Potential by Tenure, Building Type, and Income 
This section discusses a first-of-kind estimate of the distribution of rooftop PV technical potential 
by building tenure, housing unit type, and income in the U.S. residential sector. The current U.S. 
residential rooftop PV market largely is concentrated among high-income households and for 
single-family owner-occupied homes (Moezzi et al. 2017; Vaishnav et al. 2017). Solar deployment 
on renter-occupied buildings is low because of principal-agent issues in the motivation for building 
owners to install solar. Namely, because most tenants (88%) directly pay for their utility expenses 
(EIA 2013), there is reduced incentive for building owners to invest in solar or other building 
improvements. Building owners need reasonable confidence that these investments could be 
recouped through higher rent payments, which could be untenable for affordable housing. Similar 
coordination issues exist for multi-family buildings. LMI households face other unique barriers to 
solar adoption, including limited access to financing and available funds (Cook and Bird 2017). If 
unresolved through policy, market, or regulatory measures, these coordination and financing issues 
will inhibit solar deployment on a large fraction of the U.S. building stock. 

Figure 5 illustrates the distribution of generation potential by income group and building type. 
We estimate that a majority of the residential potential (683 TWh, 68.4%) is situated on single-
family buildings, as compared to multi-family buildings (316 TWh, 31.6%) and single-family 
potential exceeded multi-family potential for each income group. Within LMI households, 
however, the distribution is more uniform, with multi-family buildings comprising 40.1% of the 
LMI-specific potential.  
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Figure 5. Generation potential by income group and building type 

Similar trends are seen for the segmentation of potential between owner-occupied and renter-
occupied buildings (Figure 6) as there is a strong correlation between occupancy in multi-family 
buildings and rental status. We estimate that 659 TWh (65.9% of the residential potential) is 
situated on owner-occupied buildings, as compared to 341 TWh for renter-occupied buildings 
(34.1%). For LMI households, potential on renter-occupied buildings (212.7 TWh) slightly 
exceeds that of LMI owner-occupied buildings (203.3 TWh). 

 
Figure 6. Generation potential by income group and building tenure 

Taken together, Figure 7 shows the intersection of potential by both tenure and building type for 
LMI families. The largest modality of potential is for single-family owner-occupied buildings 
(176.8 TWh), followed closely by multi-family renter-occupied buildings (140.1 TWh). Though 
deployment of rooftop solar historically has been concentrated on single-family, owner-occupied 
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buildings, these results indicate that nearly 60% of potential for LMI buildings exists on these 
other underrecognized tenure-type combinations. Table 6 shows the national technical potential 
estimates for all income-tenure-type combinations. 

 
Figure 7. Generation potential (TWh) by building type and tenure  
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Table 6. National residential PV rooftop technical potential by income group 

Income 
Group Tenure Building 

Type 
Suitable 

Buildings 
(millions) 

Suitable 
Module Area 
(millions of 

m2) 

Capacity 
Potential 
(GWDC) 

Annual 
Generation 
Potential 

(TWh/year) 

Very Low 
(0%–30% 
AMI) 

Owner-
Occupied 

Multi-
Family 0.1 38.3 6.1 7.8 

Single-
Family 5.1 274.7 43.9 55.7 

Renter-
Occupied 

Multi-
Family 1.0 311.8 49.9 62.4 

Single-
Family 3.1 169.5 27.1 34.9 

Low 
(30%–
50% AMI) 

Owner-
Occupied 

Multi-
Family 0.1 34.2 5.5 6.9 

Single-
Family 3.7 198.3 31.7 40.0 

Renter-
Occupied 

Multi-
Family 0.6 168.0 26.9 33.6 

Single-
Family 1.3 72.3 11.6 14.9 

Moderate 
(50%– 
80% AMI) 

Owner-
Occupied 

Multi-
Family 0.2 59.6 9.5 11.9 

Single-
Family 7.4 402.7 64.4 81.1 

Renter-
Occupied 

Multi-
Family 0.7 219.9 35.2 44.1 

Single-
Family 2.0 109.9 17.6 22.7 

Middle 
(80%–
120% 
AMI) 

Owner-
Occupied 

Multi-
Family 0.3 84.2 13.5 16.7 

Single-
Family 9.7 527.6 84.4 105.8 

Renter-
Occupied 

Multi-
Family 0.6 196.4 31.4 39.3 

Single-
Family 1.7 92.2 14.7 19.1 

High 
(>120% 
AMI) 
 

Owner-
Occupied 

Multi-
Family 0.8 234.2 37.5 46.2 

Single-
Family 25.9 1424.7 227.9 286.8 

Renter-
Occupied 

Multi-
Family 0.8 237.7 38.0 47.8 
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Single-
Family 1.9 106.8 17.1 22.3 

3.2. Feasibility of Parity in Solar Adoption Rates 
The U.S. Department of Energy Solar Energy Technology Office recently announced updated 
cost targets for solar energy of $0.05/kWh for residential-scale solar systems by 2030. Using the 
Regional Energy Deployment System (ReEDS) capacity expansion model, NREL estimated that 
achieving these costs could result in 405 GW of PV capacity in 2030, which would provide 17% 
of contiguous U.S. electricity generation (Cole et al. 2017). By 2050, deployment could increase 
to 971 GW, which would provide 33% of generation. These projections do not explicitly 
delineate between utility-scale and distributed-scale solar, nor do they impose constraints of 
minimum regional penetration levels. 

This report investigates the technical feasibility of reaching parity in adoption rates of distributed 
solar in the residential sector, regardless of socioeconomic status. Because of the ambiguity of the 
announced goals, the authors interpret this to mean, “Is there sufficient technical potential for 
rooftop solar to offset 33% of low- and moderate-income household annual electrical consumption 
in each U.S. county?” In counties where technical or market barriers prevent reaching the 
consumption-offset goal, we also investigate what types of new business models would be required, 
such as community solar, or virtual net metering (Feldman et al. 2015; Cook and Bird 2018). 

To assess the viability of the consumption offset targets we first estimated the total electric 
consumption of low- and moderate-income households aggregated by county. To do so, we start 
with the Low-Income Energy Affordability Data (LEAD) residential energy expenditure data set 
which estimates average annual energy expenditures per Census tract, AMI income group,17 
tenure, and building type (among other breakdowns) (DOE EERE 2017). The LEAD data set is 
based off the 2011–2015 American Community Survey Public Use Microdata Samples (PUMS) 
of self-reported monthly household electricity expenditures. Using this data, the yearly 
household expenditure18 is divided by the average cost of electricity per tract,19 to get the per-
household yearly electrical consumption at the tract level. This number then is multiplied by the 
number of households in the tract to derive the total residential energy consumption by tract. Due 
to high variability within the expenditure data at the tract level, we aggregate these results to the 
county level to gain more confidence in the results.20 Table 6 demonstrates key national statistics 
                                                             

17 Note that due differences in the way the AMI incomes are grouped in the LEAD data, we are unable to separately 
identify electrical consumption for the ‘Middle’ (i.e., 80%–120% AMI) and High (i.e., 120%+) income groups, so 
they are reported combined as “Non-LMI” (i.e., 80%+) in this section of the report. 
18 A slight mismatch exists when aligning the LEAD data with the data from the present research. This mismatch is due 
to differences in disaggregation methods used for each analysis. Though the mismatch is minimal, there are tract 
instances where LEAD reports no households (of a building type, tenure, and income group) where we report 
household counts. These instances use the state averages of LEAD energy expenditures, per group, to backfill the data.  
19 Average cost of electricity per tract was calculated using the 2016 EIA 861 (EIA 2016b) utility survey reporting 
total kilowatt-hours sold divided by the number of customers served, per utility and state, for bundled utilities only. 
Tracts were geospatially tagged to each utility territory using Ventyx ABB electric utility territory geometries (ABB 
Energy 2017) and ties were broken using NREL’s standard methodology. In cases where no data was reported by 
the EIA 861 for a tract, the state average was used. 
20 Validations of LEAD data were performed at the aggregate by comparing national results to RECS estimates. The 
RECS data is insufficiently resolved to permit comparison at the tract or county level.  
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of residential energy consumption, where the total residential annual consumption is estimated at 
1,325 TWh and the consumption for LMI (0%–80% AMI) households is estimated at 493 TWh. 

Table 7. Annual Residential Electricity Consumption by Income, Building Tenure, and Type  

Income Group Building Tenure Building Type 
Annual Electricity 

Consumption (TWh) 

Very Low  
(0%–30% AMI) 

Owner-Occupied Multi-Family 1.1 

 Other 8.0 

  Single-Family 76.6 

 Rental-Occupied Multi-Family 41.7 

  Other 8.2 

  Single-Family 52.6 

Low (30%–50% AMI) Owner-Occupied Multi-Family 1.6 

  Other 3.6 

  Single-Family 51.4 

 Rental-Occupied Multi-Family 23.5 

  Other 2.6 

  Single-Family 21.1 

Moderate (50%–80% 
AMI) 

Owner-Occupied Multi-Family 3.0 

  Other 10.3 

  Single-Family 113.9 

 Rental-Occupied Multi-Family 32.7 

  Other 5.3 

  Single-Family 35.3 

Non-LMI (80%+ AMI) Owner-Occupied Multi-Family 19.8 

  Other 47.9 

  Single-Family 620.2 

 Rental-Occupied Multi-Family 67.9 

  Other 9.3 

  Single-Family 67.0 

Total LMI   492.7 

Total Residential   1324.6 
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Income Group Building Tenure Building Type 
Annual Electricity 

Consumption (TWh) 

Very Low  
(0%–30% AMI) 

Owner-Occupied Multi-Family 1.1 

 Other 8.0 

  Single-Family 76.6 

 Rental-Occupied Multi-Family 41.7 

  Other 8.2 

The method of matching generation potential to household consumption makes three 
assumptions. First, because the LiDAR data does not enable the identification of consumption at 
the individual-building level, the analysis does not explicitly consider mismatches of generation 
potential and consumption at the individual household level, only in aggregate at the county 
level. Multiple factors explain variance in household electrical consumption (e.g., number of 
occupants, building efficiency, fuels used for heating) as well as variance in the building-level 
solar suitability (e.g., unshaded roof area, tilt, azimuth). Next, use of the average cost of 
electricity could underestimate the electrical consumption since some utilities offer below-
market electricity rates for low-income and elderly subscribers. Despite this potential bias, 
average electrical rates were used because a county-level database of low-income rates was not 
available. Finally, although use of fuels such as natural gas and fuel oil are a significant portion 
of energy expenditures for some households, the present work only considers offsetting existing 
electrical consumption; considering the electrification of these end uses is beyond the scope of 
this study. 

Using these techniques, Figure 8 compares estimates of the solar technical potential with 
electrical consumption by income group, for the single-family owner-occupied (SFOO) building 
stock only. We start with this intentionally conservative comparison because, as described 
earlier, there are currently significant barriers to deploying residential solar on renter-occupied 
and multi-family buildings. Under this assumption we find that offsetting at least 33% of LMI 
electrical consumption with rooftop solar only on SFOO buildings is technically feasible on a 
national scale for all income groups except the Very-Low (0% to 30% AMI) group. However, 
this feasibility belies a few practicalities. First, it implies buildout of nearly all SFOO roof 
space—an impractical and unforgiving market challenge. Second, deployment on SFOO 
buildings alone implies that residents of renter-occupied and multi-family buildings would not be 
served, counter to the goal of increasing widespread solar access. Notably, the fraction of 
consumption that can be offset with SFOO buildings is inversely correlated with income group 
because of lower occupancy in SFOO by LMI households. This means that deployment on 
SFOO-only buildings leads to lower consumption-offset levels for the lowest-income 
households. We note that these calculations exclude the effects of roof age or measures needed to 
improve roof structural suitability as these were classified as economic, rather than technical, 
factors. 
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Figure 8. Comparison of fraction of consumption met by generation potential for single-family 

owner-occupied buildings alone, by income group 

Next, we estimate the feasibility of solar consumption offset targets when considering the entire 
residential building stock. We find that there is more than sufficient roof space, on a technical 
basis, to offset 33% of LMI electricity consumption, although to do so would require deployment 
on rental-occupied and multi-family buildings. Deployment on these classes of buildings likely 
would require development of new business models or other regulatory changes. Figure 9 
demonstrates the combined national technical potential for the four tenure-type combinations, 
single-family owner-occupied (SFOO), single-family renter-occupied (SFRO), multi-family 
owner-occupied (MFOO), and multi-family renter-occupied (MFRO), as compared to the 
electricity consumed for each group, both on a national basis. For the Very Low, Low, Moderate, 
and Non-LMI income groups the percent of generation potential to electrical consumption is 
85%, 91%, 80%, and 70%, respectively. Due to lower per-capita levels of consumption for low-
income households, the fraction of consumption that can be offset is greater for LMI households 
than for non-LMI households. Note that none of the income groups are projected to have a 
technical potential that exceeds the group’s consumption level. 
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Figure 9. Technical feasibility of matching residential electrical consumption with rooftop solar, by 

income group 

• Though there is sufficient roof space on a national basis to offset 33% of electricity 
consumed for LMI buildings, the roof space is insufficient in all counties. Table 8 
demonstrates, on a national basis, the sum of the discrepancy between generation 
potential and a 33% offset for each building type for LMI households. Shortfalls are most 
significant for mobile homes (38 TWh)—whose roofs are typically not structurally 
suitable for solar, followed by single-family (6 TWh) and multi-family (2 TWh) 
buildings. Therefore, many occupants of mobile homes—who are disproportionately low-
income—face significant challenges in gaining access to solar energy. 

Table 8. Estimates of National Shortfall in Rooftop Solar Generation Needed to Nationally Offset 
17% and 33% of LMI Consumption 

Goal Building Type GWh Needed 

17% Multi-Family 789.9 

 Single-Family 1,224.8 

 Other21 38,026.8 

33% Multi-Family 1,905.2 

 Single-Family 6,085.5 

 Other 38,026.8 

                                                             

21 “Other” building types primarily include mobile homes, but also include other miscellaneous residential electricity 
uses (e.g., boats, recreation vehicles).  
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Figure 10 shows the maximum ratio of LMI electrical consumption that could be offset with 
rooftop solar from all LMI buildings in the county. When allowing deployment on LMI rental-
occupied and multi-family buildings, there are 31 counties with insufficient technical potential to 
offset at least 33% electrical consumption, or about 3 TWh shortfall. When allowing deployment 
only on single-family owner-occupied LMI buildings (Figure 11), however, there are 1,257 
counties (40% of all U.S. counties) with insufficient potential to reach at least 33% consumption 
offset, or about 202 TWh shortfall. Again, note that the statistics in Figure 10 and Figure 11 
represent the average penetration achievable for the entire building stock in the county; there are 
likely to be significant variance in the achievable penetration for individual buildings based on 
the roof characteristics and occupants’ energy use. 

Spatial trends in generation penetration largely mirror regional variation in per-capita electricity 
consumed, primarily due to which fuels are used for building heating and cooling loads. For 
instance, per capita electricity consumption is greater in the Southeast because electricity is the 
predominant fuel for heating and cooling loads in that region, whereas natural gas is the 
predominant fuel in California and Southwest, and fuel oil is predominant for the Northeast. In 
effect, this means that more solar generation is needed to offset the 33% of consumption in the 
Southeast, but less is required in California, the Southwest, and the Northeast. 

 
Figure 10. Percent of LMI electrical consumption that can be offset by rooftop solar generation 

(county)—all LMI buildings 
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Figure 11. Percent of LMI electrical consumption that can be offset by rooftop solar generation 
(county)—single-family owner-occupied LMI buildings only 

From a technical basis alone, there is sufficient rooftop space on LMI buildings for at least 33% 
of their electrical consumption to be met with rooftop solar generation. However, reaching this 
penetration level would require alternative deployment models than commonly found today. 
These models should address coordination issues inherent to rental-occupied and multi-family 
buildings as well as LMI financing and affordability barriers (Cook and Bird 2018). Such models 
should also ensure that rental property owners are incentivized to install solar on their 
buildings—for example, by bundling utility expenses with rent payments as a means of passing 
through savings to the renter. Alternatively, various shared solar models (Feldman et al. 2015), 
including virtual net metering, could be effective in allowing building owners to sell rooftop 
generation directly to their occupants. Similar issues exist for multi-family buildings, where 
shared solar or community solar models could help to address tenant-owner coordination issues. 
Some of the coordination issues, however, might be too intractable to resolve. For this reason, 
this report also includes penetration statistics considering only single-family owner-occupied 
buildings, which essentially identifies the quantity of off-site solar generation (e.g., community 
solar or utility-scale solar) that is needed for the penetration target. 

Calculations of the potential for solar generation to offset electrical consumption are based on 
annual generation and consumption levels and do not consider potential mismatches at the hourly 
level. For many buildings, and without energy storage, these mismatches are likely to be 
substantial. For instance, buildings might generate more energy than consumed during midday, 
when irradiance is highest, resulting in excess energy exported to the grid. In contrast, during 
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periods of peak demand (e.g., afternoons and evenings), consumption could exceed generation, 
resulting in energy delivered from the grid. There are a few important implications of this 
phenomena for policymakers. One is that retail tariff design and other associated policies 
influence the economic value of distributed solar to LMI households, particularly, the value of 
excess generation exported to the grid. Without careful thought, this could limit the nominal 
purpose of LMI programs—energy burden reduction. Another is that these consumption and 
generation mismatches, sans energy storage, limit the ability for distributed solar to provide 
resiliency benefits, which also could be a policy goal. Finally, LMI solar should be considered 
more broadly in the perspective of transmission and distribution grid-integration issues, such as 
the energy and capacity value of solar energy, potential for solar overgeneration, and the hosting 
capacity of local distribution networks. For more details on some of these issues see Denholm et 
al. (2016) and Palmintier et al. (2016).  

3.2.1. Additional Factors Impacting Building Technical Suitability 
Although the LiDAR method for assessing technical potential accounts for several important 
factors that can affect rooftop suitability (e.g., unshaded area, tilt, azimuth), it excludes other 
factors that also might matter. For instance, it is generally not advised to install solar panels on 
older roofs, because it is costly to uninstall solar panels prior to replacing the roof. Thus, 
although roof age is categorized as an economic factor and not a technical factor, it impacts the 
building suitability and overall market potential. Other salient factors that could impact a 
building’s suitability can include electrical code or interconnection issues, unsuitability of the 
roof to support the weight of the panels and racking (e.g. flat roof without enough support or a 
mobile home), and existing violations of building codes that are cost-prohibitive to address in the 
installation.  

To estimate what proportion of LMI buildings might face these types of challenges, we analyzed 
historical data from GRID Alternatives installations, a non-profit provider of solar to low-income 
households. Because the data are collected primarily for single-family homes in California, the 
descriptive statistics are not intended to be representative of other geographies or for multi-
family buildings. Nevertheless, these data provide a first-of-kind insight into the frequency of 
additional barriers to solar deployment. Determining the economic feasibility of preparing a roof 
for solar installation often requires physical inspection and is beyond the scope of this report to 
conclusively address.  

Based on a sample of 24,269 potential solar installations (“leads”), we identified 10 reasons why 
a building was determined—either by physical inspection or in conversation—to be unsuitable 
for solar: Old roof (n = 1,474), excessive (unspecified) upgrades required (n = 552), building 
code issues (n = 340), roof shading (n = 314), electrical service issues (n = 187), unsafe roof 
pitch (n = 152), insufficient roof space (n = 137), mobile home (n = 117), roof orientation (n = 
47), and roof type (n = 31). Of these 10 reasons, “roof space,” “roof orientation,” “roof shading,” 
and “unsafe roof pitch” are excluded, as these factors already are considered in the LiDAR 
method. “Mobile home” also is excluded because these buildings already were excluded from the 
present technical potential analysis. Additionally, of the 24,269 leads, 10,781 were excluded for 
non-technical reasons (disinterest in solar n = 4,224; ineligibility to receive low-income solar 
grants n = 6,557) and did not receive technical evaluations, so it is undetermined whether these 
leads would have been technically suitable. Thus, it’s estimated that 10.5% to 18.9% of low-



30 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

income buildings could face additional techno-economic barriers to solar beyond those 
considered in the LiDAR method alone. Readers are urged to use caution in interpreting this data 
due to representativeness issues. Future work should couple physical inspections with technical 
potential assessments. 

3.3. Technical Potential for Select Buildings that Serve LMI 
Households 
Next, we investigate the possible role for third-party buildings that serve low-income populations 
to host solar on their roofs. Solar deployed on these third-party buildings could either reduce 
operational costs, thereby helping to expand mission-related activities, or capacity could 
explicitly be designated to offset local electrical consumption via a virtual net metering 
arrangement. The specific building classes investigated are public sites (e.g., libraries, police 
stations, local government), public housing (i.e., federally assisted rental housing), K–12 public 
schools, homeless shelters, and places of worship. These building classes are not intended to be 
comprehensive of all third-party buildings that could deploy solar. Results for this section are 
presented for the three cities analyzed in greater depth in the forthcoming companion report 
(Chicago, Illinois; San Bernardino/Riverside, California; and Washington, D.C.). Methods for 
collecting the data involved manual effort (see Appendix D), so at this time we are unable to 
present a national assessment of the five building types.  

To quantify the technical potential of LMI-serving buildings in the cities, we obtained GIS data 
for each building type and spatially tagged these layers to the LiDAR buildings database. The 
LMI-serving building data is an agglomerate data set from a variety of sources. Because the data 
consists of varied data sets and formats, multiple methods were used to tag each building 
geometry to one or more LiDAR building footprint. Jointly, this enabled identification of the 
total technical potential for each building type in each city. Appendix D provides further detail 
on methods and data sources. 

Over the five building classes, schools have the greatest technical potential opportunity by far, 
although there are substantial opportunities for all the classes examined (see Table 8). 
Collectively the gross generation potential for the five building classes is estimated to be 
1,012.2 GWh, 311 GWh, and 377.1 GWh for Chicago, San Bernardino/Riverside, and 
Washington, D.C. respectively. These generation estimates are based on the solar suitability 
criteria (i.e., non-North facing) and do not include the possible on-site area available for ground-
mounted systems. To put these values in context, they represent approximately 13%, 29%, and 
9% of the estimated annual electricity consumption of low- to moderate-income households in 
the city. 
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Table 9. Annual Generation Potential for Select Third-Party Buildings in Chicago, 
Washington D.C., and San Bernardino/Riverside (GWh) 

 Chicago San Bernardino/ Riverside Washington, D.C. 

Public Housing 62.8 16.6 31.0 

Public Sites 51.9 24.422 41.1 

K–12 Schools 306.4 106.2 73.0 

Homeless Shelters 5.3 0.6 5.6 

Places of Worship 108.1 7.3 32.8 

Total (GWh) 1072.3 311.0 377.1 

Next, on-site electrical consumption of each of the third-party buildings is estimated to determine 
the feasibility of oversizing a PV system with the purpose of using excess solar generation to 
offset nearby LMI households. To estimate the on-site consumption, each building was matched 
with a comparable representative building in the EIA Residential and Commercial Building 
Energy Consumption Surveys and—to match local climate-related consumption patterns—to the 
nearest Census Division (EIA 2013; EIA 2016a). This allows us to derive the average electrical 
consumption per square foot of building footprint for each building type, which then is 
multiplied by the building footprint of each of the third-party buildings in the LiDAR database. 
When sizing the PV system for each building the same suitability criteria is used (e.g., no 
installation on north-facing roof planes), and it is assumed that each building offsets 100% of its 
on-site consumption before exporting generation to the community. Finally, this method only 
considers generation and consumption on an annual basis and does not consider potential 
mismatches in the hourly profiles. Appendix D describes this process in more detail. 

We find that, after accounting for on-site consumption, the five third-party building types 
considered could feasibly oversize PV systems on their roofs such that excess generation 
accounts for 1.3% to 8.7% of LMI consumption in the city (Table 9), and the opportunity 
differed substantially between cities. Due to the greatest solar resource of the three regions, San 
Bernardino/Riverside had the highest generation excess fraction, and it is estimated that third-
party buildings’ excess could account for 8.7% of LMI consumption. For Washington, D.C.—the 
smallest fraction—it is estimated third-party buildings excess could account for 1.3% of LMI 
consumption. 

Schools, followed by Places of Worship were consistently the highest opportunity of the five 
building classes considered. Both buildings typically are in residential neighborhoods. Schools 
usually have large flat roofs and low consumption in the summer, when solar irradiance is 
highest. Places of Worship had low levels of electricity consumption and moderately favorable 
roof characteristics. The results also indicate that Public Housing, Public Sites, and Homeless 
Shelters likely have insufficient rooftop space to offset 100% of their own on-site consumption—
though actual values could vary for individual buildings. 

                                                             

22 Due to data limitations, generation potential for San Bernardino public sites was not estimated. 
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Table 10. Net Excess Rooftop Potential Accounting for Building Self-Consumption by  
Building Class and City 

 Chicago San Bernardino/ Riverside Washington, D.C. 

Public Housing (GWh) 0.0 0.0 0.0 

Public Sites (GWh) 0.0 0.0 0.0 

K-12 Schools (GWh) 19.8 19.6 5.5 

Homeless Shelters (GWh) 0.0 0.0 0.0 

Places of Worship (GWh) 31.5 3.2 4.6 

Total (GWh) 51.4 22.8 10.1 

Total (% of LMI 
Consumption in City) 

2.1% 8.7% 1.3% 
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4. Conclusion 
This report presents a first-of-kind assessment of the technical potential of rooftop solar for low- 
and moderate-income households and provides insight on the distribution of solar potential by 
tenure, income, and other building characteristics. The research indicates that a substantial 
fraction (42%) of the national residential rooftop solar potential is located on LMI buildings and, 
for all incomes, a substantial fraction is located on multi-family and renter-occupied buildings.  

We also find that rooftop solar can significantly contribute to meeting U.S. electricity demand. 
Specifically, from a technical basis there is sufficient rooftop space to ensure that at least 33% of 
U.S. residential electrical consumption is offset by rooftop solar—although to do so requires 
deployment on multi-family and renter-occupied buildings. Reaching this level of offset is most 
feasible in Northeast and Southwest portions of the United States, where per-capita electricity 
use is lowest. This report also highlights the importance of ensuring solar access for mobile 
home residents, who are disproportionately low-income yet typically cannot install rooftop solar 
because of structural concerns.  

In cases where LMI households are unable to adopt solar for their own homes, non-profit entities 
might enter agreements to host solar on their own roofs. This study investigated the feasibility 
for five classes of buildings in Chicago, San Bernardino/Riverside, and Washington, D.C., 
finding that the buildings likely could oversize PV systems on their roofs equivalent to offsetting 
1.3% to 8.7% of local LMI consumption. This fraction is significant but is unlikely to be a 
leading mechanism for increasing LMI access to solar. Future research could explore the 
feasibility of ground-mounted systems at strategic locations (i.e., community solar) or 
installation on for-profit buildings.  

Traditional deployment models have insufficiently enabled access to solar for low- and 
moderate-income households. In part, this is because there are significant economic and financial 
barriers to LMI solar adoption without policy action. These include poor access to credit, low 
capital availability, housing uncertainty, and many more. Without innovation either in 
regulatory, market, or policy factors, a large fraction of the U.S. potential is unlikely to be met. 
Potential electric bill savings from rooftop solar would have the greatest material impact on the 
lives of low-income households as compared to their high-income counterparts and could help 
mitigate the energy burden faced by these households.  

4.1.  Data for Public Use 
This report ultimately seeks to provide objective data for regulators, policymakers, nonprofits, 
and project developers to make informed decisions that are best for their own communities, for 
example to assess the potential for rooftop solar in their jurisdictions and perform policy cost-
benefit analysis. To this effect, data used in this report is provided freely via NREL’s website in 
two formats. One format is an interactive web application using NREL’s OpenCarto platform, 
and was developed to enable user to browse, visualize, and export results 
(https://maps.nrel.gov/solar-for-all). Secondly, the technical potential data used in this report, 
accompanied by several additional techno-economic variables, and aggregated at the tract-level, 
is available for download at (https://data.nrel.gov/submissions/81). The Rooftop Energy Potential 
of Low Income Communities in America (REPLICA) data set includes measures of electricity 

https://maps.nrel.gov/solar-for-all
https://data.nrel.gov/submissions/81
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expenditures ($/month), demographics, utility electric rates, and other important variables 
compiled from a variety of sources and tagged to each Census tract.  

4.2.  Future Work 
Three topics for future research are suggested to extend and improve this work. First, this work 
uses limited building-level attributes within the analysis, except for rooftop planes obtained via 
LiDAR. Many local governments, however, increasingly make building-level GIS files available 
for free or for a modest fee (i.e., tax rolls). Building-level models would permit substantially 
more-nuanced assessments of the technical, economic, market, and behavioral aspects of rooftop 
solar deployment.  

Future research also could improve the representation of low-income energy consumption, 
perhaps also at the building level. This analysis does not identify building-level variation in 
consumption, which is significant. We also acknowledge our limitation in not considering hourly 
mismatches between consumption and solar generation, which can be significant. These 
mismatches—and the value of excess generation exported to the electric grid—are an important 
dimension of the economic evaluation.  

Finally, although this analysis does identify differences in technical potential between single-
family and multi-family buildings, there is room for improvement. Specifically, future research 
could use building-level data sets to more precisely identify the locations of multi-family low-
income buildings. Future work also could improve the representation of tenant-level electrical 
loads versus communal building loads, as well as publish additional data distinguishing how 
income affects electricity consumption patterns. 
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Appendix A. Allocation of Demographic Attributes 
This appendix describes the series of data transformation steps used to identify cross-tabulations 
(i.e., “crosstabs”) of demographic attributes at the Census tract level by income, building type, 
and tenure. This process relies on a set of tables (Table 3) from the 2011–2015 5-year American 
Community Survey (ACS). In general, we rely on four major steps when generating a tract-level 
crosstab of household counts by income, building type, and tenure, namely: 

1. Calculate the number of households belonging to each $1,000 income group, at the tract 
level. 

2. Disaggregate from county data to estimate the number of households, per $1,000 income 
group, per tenure, at the tract level. 

3. Disaggregate from county data to estimate the number of households, per $1,000 income 
group, per tenure, per dwelling type, per household size.  

4. Aggregate tract estimates by AMI income group. Create final data set of number of 
households by AMI income group, by building type, and by tenure, per tract. 

Each of these steps involves a series of data transformations and relies on a set of statistical 
sampling assumptions. Described below are these methods and assumptions for each step in 
more detail. 

A.1. Calculate the Number of Households Belonging to Each 
$1,000 Income Group, at the Tract Level 
In the first step of the ACS data processing methodology, we use the tract level “Household 
Income in the Past 12 Months (in 2015 Inflation-Adjusted Dollars)” ACS table, which provides 
tract-level household counts classified according to ACS income bins.23 We take this table and 
deconstruct the ACS predefined income brackets into $1,000 increments. To do so, we randomly 
sample $1,000 increments for each bin assuming that income is uniformly distributed within the 
bin. We also assign a maximum income cap of $1,000,000/year because no identification in our 
results is needed at this resolution. 

Disaggregating these ACS defined income bins into $1,000 increments serves two purposes. 
First, it allows us to reconcile ACS tables with different income binning (e.g. $35,000–$39,000 
versus $35,000–$49,000 reported in the county data set). Second, it allows us to more precisely 
allocate incomes to different AMI income groups. 

                                                             

23 ACS tract-level incomes are classified into 14 bins, namely: $0–$10,000, $10,000–$14,000, $15,000–$19,000, 
$20,000–$24,000, $25,000–$29,000, $30,000–$34,000, $35,000–$39,000, $40,000–$44,000, $45,000–$49,000, 
$50,000–$59,000, $60,000–$74,000, $75,000–$99,000, $100,000–$124,000, $125,000–$149,000, $150,000–
$199,000, and $200,000 or more. 
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A.2. Disaggregate from County Data to Estimate the Number of 
Households, per $1,000 Income Group, per Tenure, at the Tract Level 
Next, we disaggregate county demographic crosstabs to the tract level, using the tract household 
counts as the disaggregating factor. We start with the “Tenure by Household Income in the Past 
12 Months (in 2015 Inflation-Adjusted Dollars)” ACS table at the county level. To disaggregate 
this county data to get the estimates at the tract level, we rely on a random-weighted sampling 
method, weighted by the total household counts per income bin. Because we do not have the 
desired income by tenure data at the tract level, we rely on these random-weighted methods to 
help us disaggregate. In doing so, we do not directly assume that the county-to-tract counts are 
proportional. Rather, we assume that there is some variability across the component tracts, but 
this variability is inevitably weighted by tract household counts per income. This approach 
allows us to obtain tract-level estimates of the number of households, per $1,000 income group, 
per tenure. 

A.3. Disaggregate from County Data to Estimate the Number of 
Households, per $1,000 Income Group, per Tenure, per Dwelling Type, 
per Household Size  
This next process is similar to that described in A.2 above. Here we rely on two ACS county-
level tables, namely, “Tenure by Units in Structure” and “Tenure by Household Size by Units in 
Structure.” We first combine these two tables using a proportional allocation method, joining 
based on the shared tenure field. Doing so gives us a county cross-tabulation of tenure, by units 
in structure, by household size. We use this county crosstab to then disaggregate to the tract 
level. Using the data set created in the previous step (A.2), we use a random-weighted sampling 
methodology to disaggregate the county crosstab. Similar to A.2, we do not assume that the 
county-to-tract disaggregation is directly proportional to the total household counts. Instead, we 
know there is variability across tract components, therefore, we use the random-weighted 
methodology to allow for variation, but ultimately, weighted by total counts.  

A.4. Aggregate Tract Estimates by AMI Income Group 
Using this large tract-level crosstab described above (Section A.1 though Section A.3), we assign 
the AMI income group break limits to classify the data according to our five AMI income 
groups: Very Low Income (0% to 30% AMI), Low Income (30% to 50% AMI), Moderate 
Income (50% to 80% AMI), Middle Income (80% to 120% AMI), and High Income (>120% 
AMI). To do so, we join the “2016 HUD Income Limits” (HUD 2016) table to each row in our 
data set based on the Census Tract location, household size, and the $1,000-increment binned 
yearly household income. With the data categorized into our five income groups, we remove the 
household size category and aggregate the final data set by the income group, building type, and 
tenure. 
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Appendix B. Validation of Monte Carlo Simulations for 
Building Sampling 
This analysis uses a stochastic process to sample residential buildings in LiDAR covered Census 
Tracts (Section 2.3.2) to derive tract-level estimates. As such, we rely on a Monte-Carlo 
methodology to generate probability distributions of tract-level technical potential, per building 
type. The workflow is run 100 times, each using a different random seed, and the median value 
over the 100 runs is used as the final estimate to obtain a more accurate estimate of the technical 
potential in each tract.  

To validate our sampling methodology and better understand the variability of the technical 
potential estimates, we calculate the coefficients of variance across Monte Carlo runs for tracts 
and cities; city coefficients of variance are detailed in Table B-1. For each run, we calculate the 
tract and city technical potential averages. Doing so, we find that both the average tract and city 
errors are low, 6.8% and 1.1% for tracts and cities, respectively. When plotting these error ratios 
at the tract level (Figure B-1), we find that the distribution is lognormally distributed, indicating 
most tracts have relatively high levels of certainty (low levels of variability) across sampled runs. 
The low coefficient of variance helps to validate the results and give confidence that the 
sampling methodology estimates technical potential of residential buildings per tract and 
building type with minimal error. 

 
Figure B-1. Density function of coefficient of variance in the tract-level technical potential, for all 

tracts with LiDAR coverage24 

                                                             

24 This graph plots the distribution of the coefficient of variance of technical potential for each tract with LiDAR 
coverage. Each point in the plot represents the coefficient of variance for a single tract across the 100 runs. The data 
is graphed using a Kernel Density Estimation (KDE) plot, a non-parametric technique to estimate the probability 
density function and visualize the underlying distribution of a continuous variable (Rosenblatt 1956). Notably, 
because of smoothing used by the plotting library, the x-axis is not constrained to the minimum 0 bound. 
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Table B-1 demonstrates the mean technical potential over the 100 Monte Carlo runs for each city 
with LiDAR coverage and the standard deviation. Notably, there is more uncertainty in smaller 
cities (e.g., Frankfort, KY) with fewer Census Tracts than the larger metropolitan cities (e.g., 
New York, NY). This result is intuitive because model error is the greatest at the tract level and 
reduced when tract-level estimates are aggregated over larger areas. 

Table B-1. Assumptions for PV Performance Simulations Summary Statistics for City-Level 
Technical Potential25 

LiDAR City LiDAR State Mean (GWh) STD (GWh) Coefficient of 
Variance 

Albany NY 1.9 0.015 0.008 

Albuquerque NM 3.2 0.022 0.007 

Allentown PA 2.0 0.018 0.009 

Amarillo TX 2.2 0.025 0.012 

Anaheim CA 3.9 0.060 0.015 

Atlanta GA 1.0 0.029 0.028 

Augusta GA 2.7 0.029 0.011 

Augusta ME 1.8 0.078 0.043 

Austin TX 2.2 0.024 0.011 

Bakersfield CA 3.0 0.014 0.005 

Baltimore MD 1.4 0.009 0.007 

Baton Rouge LA 3.7 0.040 0.011 

Birmingham AL 1.6 0.029 0.017 

Bismarck ND 2.3 0.036 0.016 

Boise ID 3.3 0.025 0.008 

Boulder CO 1.8 0.032 0.018 

Bridgeport CT 1.8 0.023 0.013 

Buffalo NY 2.0 0.013 0.007 

Carson City NV 2.3 0.091 0.039 

Charleston SC 1.5 0.024 0.016 

Charleston WV 1.9 0.022 0.012 

Charlotte NC 2.4 0.026 0.011 

Cheyenne WY 2.3 0.040 0.018 

Chicago IL 1.3 0.006 0.004 

                                                             

25 The LiDAR cities listed in Table B-1 do not necessarily align with the legal footprints of city or metropolitan area 
boundaries. Rather they refer to the focal city covered in the LiDAR raster extent. A single LiDAR city extent can 
span multiple cities and states (e.g. Washington D.C. covers much of Northern Virginia and southern Maryland 
cities in addition to the District of Columbia) or they can only span partial cities (e.g. Richmond, VA, is only 55% 
covered by its LiDAR raster extent).  
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LiDAR City LiDAR State Mean (GWh) STD (GWh) Coefficient of 
Variance 

Cincinnati OH 1.5 0.011 0.008 

Cleveland OH 1.2 0.008 0.006 

Colorado Springs CO 2.5 0.014 0.006 

Columbia SC 2.2 0.031 0.014 

Columbus GA 2.7 0.031 0.011 

Columbus OH 2.2 0.016 0.007 

Concord NH 1.8 0.070 0.039 

Corpus Christi TX 2.4 0.052 0.022 

Dayton OH 2.2 0.019 0.009 

Denver CO 2.0 0.010 0.005 

Des Moines IA 2.2 0.031 0.014 

Detroit MI 1.2 0.007 0.006 

Dover DE 2.6 0.075 0.029 

El Paso TX 3.4 0.028 0.008 

Flint MI 2.1 0.019 0.009 

Fort Wayne IN 1.6 0.027 0.017 

Frankfort KY 3.0 0.083 0.028 

Fresno CA 2.4 0.014 0.006 

Fort Belvoir DC 1.7 0.044 0.026 

Grand Rapids MI 3.8 0.051 0.013 

Greensboro NC 2.4 0.025 0.011 

Harrisburg PA 2.9 0.023 0.008 

Hartford CT 1.6 0.014 0.009 

Helena MT 2.2 0.045 0.020 

Houston TX 3.0 0.017 0.006 

Huntsville AL 3.9 0.026 0.007 

Indianapolis IN 2.6 0.018 0.007 

Jackson MS 1.9 0.024 0.013 

Jacksonville FL 2.5 0.026 0.011 

Jefferson City MO 4.2 0.106 0.025 

Kansas City MO 1.7 0.012 0.007 

Lancaster PA 2.9 0.038 0.013 

Lansing MI 2.3 0.036 0.016 

Las Vegas NV 1.8 0.011 0.006 

Lexington KY 2.5 0.024 0.010 
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LiDAR City LiDAR State Mean (GWh) STD (GWh) Coefficient of 
Variance 

Lincoln NE 1.8 0.022 0.012 

Little Rock AR 2.0 0.026 0.013 

Los Angeles CA 2.3 0.007 0.003 

Louisville KY 1.8 0.045 0.025 

Lubbock TX 2.8 0.030 0.011 

Madison WI 2.2 0.022 0.010 

McAllen TX 5.6 0.038 0.007 

Miami FL 3.1 0.009 0.003 

Milwaukee WI 1.7 0.013 0.008 

Minneapolis MN 1.7 0.011 0.007 

Mission Viejo CA 3.5 0.024 0.007 

Mobile AL 1.1 0.021 0.019 

Modesto CA 3.0 0.037 0.013 

Montgomery AL 3.0 0.037 0.012 

Montpelier VT 1.8 0.058 0.032 

New Haven CT 2.1 0.021 0.010 

New Orleans LA 2.3 0.008 0.004 

New York NY 0.7 0.003 0.004 

Norfolk VA 2.0 0.010 0.005 

Oklahoma City OK 2.7 0.014 0.005 

Olympia WA 3.1 0.032 0.010 

Omaha NE 2.1 0.013 0.006 

Orlando FL 3.2 0.032 0.010 

Oxnard CA 3.4 0.028 0.008 

Palm Bay FL 5.9 0.029 0.005 

Pensacola FL 3.4 0.037 0.011 

Philadelphia PA 1.6 0.007 0.004 

Pittsburgh PA 1.3 0.008 0.006 

Portland OR 2.1 0.011 0.005 

Poughkeepsie NY 2.0 0.016 0.008 

Providence RI 1.6 0.014 0.009 

Raleigh-Durham NC 1.9 0.019 0.010 

Reno NV 2.0 0.027 0.013 

Richmond VA 0.8 0.019 0.024 

Rochester NY 1.4 0.019 0.013 
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LiDAR City LiDAR State Mean (GWh) STD (GWh) Coefficient of 
Variance 

Sacramento CA 2.2 0.013 0.006 

Salem OR 3.1 0.029 0.009 

Salt Lake City UT 2.1 0.018 0.009 

San Antonio TX 3.4 0.014 0.004 

San Bernardino–
Riverside 

CA 2.9 0.016 0.006 

San Diego CA 2.1 0.013 0.006 

San Francisco CA 2.5 0.009 0.004 

Santa Fe NM 3.2 0.043 0.013 

Sarasota FL 7.3 0.039 0.005 

Scranton PA 1.4 0.018 0.013 

Seattle WA 1.5 0.012 0.008 

Shreveport LA 2.6 0.028 0.011 

Spokane WA 1.5 0.014 0.010 

Springfield IL 2.1 0.023 0.011 

Springfield MA 1.1 0.018 0.016 

St Louis MO 2.4 0.011 0.005 

Stockton CA 2.4 0.026 0.011 

Syracuse NY 1.4 0.021 0.015 

Tallahassee FL 2.2 0.032 0.015 

Tampa FL 2.4 0.023 0.010 

Toledo OH 1.0 0.014 0.014 

Topeka KS 2.3 0.028 0.012 

Trenton NJ 1.5 0.027 0.018 

Tucson AZ 3.2 0.022 0.007 

Tulsa OK 2.7 0.020 0.007 

Washington DC 1.7 0.006 0.003 

Wichita KS 1.9 0.020 0.011 

Winston-Salem NC 2.2 0.030 0.014 

Worcester MA 1.5 0.021 0.014 

Youngstown OH 2.2 0.024 0.011 
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Appendix C. Predictive Modeling Framework for 
Imputing Solar Suitability 
This appendix describes the predictive modeling framework used in this analysis to impute solar 
suitability for the 63% of Census Tracts without LiDAR coverage. The overall framework builds 
off the original methodology developed by Gagnon et al. (2016) to impute solar suitability for 
small, medium, and large buildings in zip codes without LiDAR data. The approach here extends 
this work by increasing the spatial fidelity of the statistical model used for imputation (i.e., tracts 
versus zip codes) and adding an additional submodel to aid in predicting suitability across 
residential building types, per income, building type, and tenure. In total, there are four 
submodels used for the imputation. 

1. Household-to-Building Model 

2. Small Building Suitability Model 

3. Rooftop Tilt and Azimuth Model 

4. Rooftop Plane Area Model 

The following sections explore each submodel in greater detail.  

C.1. Household-to-Building Model 
The household-to-building model is a composite model that estimates the number and size of 
buildings (i.e., small, medium, large) for each tract outside of the LiDAR covered extents. The 
model is comprised of two submodels: (1) the household-to-building-count model, and (2) the 
building-type-to-building-size model. Both submodels rely on a distribution sampling approach 
for imputing values from simulated LiDAR estimates. 

C.1.1. Household-to-Building-Count Ratios 
The household-to-building-count submodel uses the ACS-derived tract-level crosstab of 
household counts to estimate number of buildings per building type for an imputed tract based on 
the number of households in the tract. Ratio distributions are created for multi-family buildings 
only. For single-family buildings, we assume a one-to-one ratio of number of households to 
number of buildings. This study does not account for vacant or seasonal housing. For multi-
family buildings, we calculate the mean household-to-building-count ratio for 2–4-unit, 5–19 
unit, and 20+ unit multi-family buildings in LiDAR covered Census Tracts. These mean ratios 
(Table C-1) are used to impute tracts outside of the LiDAR coverage and translate household 
counts to building counts.  

Table C-1. National Mean Household-to-Building Ratio 

Building Type Ratio 

Multi-Family 2–4 Units 3.28 

Multi-Family 5–19 Units 9.14 

Multi-Family 20+ Units 80.0 
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C.1.2. Building-Type-to-Building-Size Ratios 
The building-type-to-building-size submodel translates the building counts from Table C-1 into 
counts by building size (e.g. small, medium, large). Categorizing building counts by size aligns 
our data set for national imputation using the methods developed by Gagnon et al. (2016). Like 
that shown above, this model is performed on multi-family buildings only; for single-family 
detached, we assume all buildings are small. For multi-family buildings, we compute national 
means of the smallest size ratios for each multi-family building type and use these to sample 
sizes in Census Tracts without LiDAR data. For 2–4 unit and 5–19-unit multi-family buildings, 
we take the mean of the percent of the buildings that are small (compared to those that are 
medium sized), and for 20+ unit buildings, we take the mean of the percent that are medium 
(compared to those that are large sized). These national averages of building size ratios per 
building type are depicted in Table C-2.  

Table C-2. National Mean Building Type to Building Size Ratio for Census Tracts 

Building Type Ratio Type Ratio 

Multi-Family 2 to 4 Units Small to Medium 68% 

Multi-Family 5 to 19 Units Small to Medium 60% 

Multi-Family 20+ Units Medium to Large 73% 

C.2. Small Building Suitability Model 
Gagnon et al. (2016) found that medium and large buildings are almost unanimously suitable, 
because they are overwhelmingly flat with at least one 10m2 plane, and small buildings 
(<= 5,000 ft2) suitability was more variable. For these reasons, we apply a predictive modeling 
approach for estimating small buildings’ suitability. For medium and large buildings, we assume 
a percent suitability of 100%. The following describes the small building suitability model. 

The small building suitability model is a multiple regression model for describing percent 
suitability of small buildings (Gagnon et al. 2016). It relies on data from the U.S. National Land 
Cover Database (NLCD) (MRLC 2011), the National Center for Education Statistics (NCES 
2015), and the U.S. Census Bureau (U.S. Census 2010). Predictive variables include the 
northing, locale, census division, and percent land cover for water, developed open space, 
developed high-intensity, and all forest-type land uses. The model specification is shown in (1). 

Percent_Suitable = Locale*Census_Region + Northing + Water + Forest + 
Developed_Open_Space + Developed_High_Intensity (1) 

Though the model originally was applied to zip codes, it was designed to be applied using any 
geographic area. This analysis utilizes this model and applies it to the Census Tract. As such, we 
used tract-specific data (e.g., assigning the locale of a tract based on the tract centroid rather than 
the centroid of the larger zip code area) and updated data vintages for both the NLCD and the 
NCES. 

The Analysis of variance (ANOVA) results for the predictive modeling are detailed in Table C-
3. We applied this model to 75% of the LiDAR-derived tracts and assessed the predictive 
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accuracy using the remaining 25% of the LiDAR data. When comparing the predicted values to 
the actual values, we find that 68% of the estimates are within 10% of the actual values and 90% 
of the predicted values are within 20% of actual values. We note that these numbers are 8% to 
10%greater (68% versus 60% and 90% versus 80%) than the original zip code assessment 
(Gagnon et al. 2016). The increase in predictability is likely a consequence of geospatially-
resolved tract-level assessment, the increased number of tract observations, and the higher 
resolutions of the newer vintage data. 

Table C-3. ANOVA of Small Building Suitability OLS Model 

Source DF SS MS F P-Value 

Locale Description 3 0.29 0.10 8.87 0.0000 

Census Division 8 23.93 2.99 272.41 0.0000 

Developed—Open Space 1 5.38 5.38 489.62 0.0000 

Developed—High Intensity 1 0.09 0.09 8.03 0.0046 

Forest 1 0.67 0.67 60.96 0.0000 

Water 1 0.07 0.07 6.50 0.0108 

Northing 1 5.53 5.53 503.15 0.0000 

Locale Description * Census Division 24 3.71 0.15 14.09 0.0000 

Residuals 11,509 130.43 0.01 — — 

C.3. Rooftop Plane Area Model 
The third model in the series is a predictive model used to predict the number and size of 
developable planes on a building. This predictive model follows a statistical distribution fitting 
approach. The number of developable surfaces is defined as the mean of a fitted exponential 
distribution for each building size class (i.e., small, medium, large). The number of suitable 
planes was calculated using a random sample from a national distribution of building suitable 
plane counts, per building size class (Table C-4).  
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Table C-4. National Distributions of Building Plane Count Probabilities by Building Size Class 

Number of Planes Small Medium Large 

1 50% 21% 14% 

2 28% 14% 7% 

3 14% 13% 6% 

4 5% 12% 5% 

5 2% 10% 5% 

6 1% 8% 5% 

7 — 6% 5% 

8 — 5% 4% 

9 — 3% 4% 

10 — 2% 4% 

11 — 2% 3% 

12 — 2% 3% 

13 — 2% 3% 

14 — 2% 3% 

15–16 — — 3% 

17–20 — — 2% 

21–32 — — 1% 

Source: Gagnon et al. (2016). 

Using a per building size class random sample, Gagnon et al. (2016) used the mean of the fitted 
probability density function to calculate the size of each developable plane. Because buildings 
with multiple planes were found to have a single plane larger than the remaining planes, the first 
plane in a building’s sequence of multiple planes are fitted differently than the subsequent 
planes. Additionally, in in their assessments Gagnon et al. (2016) found that buildings with only 
one plane generally have a larger single plane. Therefore, to account for this, they built 
exponential fits for one-plane buildings separately from multi-plane buildings. These distribution 
fitting assessments were used here to inform the imputation of developable plane size. Table C-5 
details the fitted areas assigned to each plane given the plane’s sequential index and the 
building’s size class. Confidence intervals for each plane’s size were computed using the Gagnon 
et al. (2016) methodology for the 95th percentile range. 
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Table C-5. Fitted Areas for Each ith Plane, per Building Size Class 

Building Size ith Plane Fitted Area 

Small 1 33.81 m2 

 2–6 24.08 m2 

Medium 1 800.00 m2 

 2-14 31.74 m2 

Large 1 4,000.00 m2 

 2-32 181.81 m2 

Source: Gagnon et al. (2016). 

C.4. Rooftop Tilt and Azimuth Model 
The rooftop tilt and azimuth model was developed by Gagnon et al. (2016) to predict the percent 
of rooftop planes with a particular tilt and azimuth class. This predictive model follows a 
statistical distribution fitting approach to predict the probability of plane having a particular tilt 
and azimuth given the buildings size and the number of planes on the building. For small 
buildings, per locale–type national average values are used from a lognormal fit of data in each 
of the azimuth-tilt classes. For medium and large buildings, we use national average values for 
each azimuth-tilt class. Table C-6 shows the national average tilt and azimuth distribution for 
building planes by building type used to sample a plane’s orientation.   
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Table C-6. National Average Tilt/Azimuth Distribution for Building Planes, by Building Size Class 

Building 
Size Tilt 

Azimuth 

Flat E SE S SW W 

Small 0˚ 0.26      

15˚  0.03 0.02 0.06 0.02 0.03 

28˚  0.09 0.06 0.18 0.06 0.09 

41˚  0.02 0.02 0.03 0.01 0.02 

54˚       

Medium 0˚ 0.74      

15˚  0.02 0.01 0.04 0.01 0.02 

28˚  0.03 0.02 0.05 0.02 0.03 

41˚    0.01   

54˚       

Large 0˚ 0.93      

15˚  0.01  0.01  0.01 

28˚  0.01  0.01  0.01 

41˚       

54˚       

Source: Gagnon et al. (2016). 
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Appendix D. Quantifying the Technical Potential and 
On-Site Consumption of LMI-Serving Buildings in 
Three Case Study Cities  
We investigated the possible role for third-party buildings that serve low-income populations to 
host solar on their roofs. The specific building classes investigated are: Public sites (e.g., 
libraries, police stations, local government), Public housing (i.e., federally assisted rental 
housing), K–12 public schools, Homeless shelters, and Places of Worship. These building classes 
were chosen based on a combination of nonprofit status, a priori expectation of magnitude of 
potential, and feasibility in collecting GIS data. These building classes are not intended to be 
comprehensive of all third-party buildings that could deploy solar, and future analysis could 
examine potential for multiple other building classes, including on for-profit commercial 
buildings. Because of data limitations, estimates for these building classes are restricted to the 
cities of Chicago, Illinois; San Bernardino/Riverside, California; and Washington, D.C. 

D.1. Quantifying the Technical Potential of Third-Party Buildings 
To quantify the technical potential of LMI-serving buildings in the case study cities, we obtained 
GIS data for each building type and spatially tagged these layers to our LiDAR buildings data. 
This allowed us to identify the total technical potential for each building type in each city. 
Described in this appendix are the data sources and methods used to spatially join varied GIS 
layers of building locations to LiDAR building footprints. 

The LMI-serving building data is an agglomerate data set sourced from a variety of locations, 
including both open and proprietary sources. Table D-1 lists all the data used to identify LMI-
serving building footprints and then estimate the technical potential for each building class in our 
case study cities. Because the data consists of varied data sets and formats, we inevitably used 
varied methods to tag each building geometry to one or more LiDAR building footprints. 
Discussed below are the case-by-case methods used for each building type.  
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Table D-1. Core GIS Data Sources for LMI-serving Buildings in Case Study Cities 

Building Type City Source 

K–12 Public 
Schools 

All The National Center for Education Statistics’ (NCES) Core Common 
Data (CCD), 2015–2016.  

Homeless 
Shelters 

Chicago Chicago’s Department of Family and Support Services, Homeless 
Services Map.  
Downloaded from the Chicago Data Portal, 2017.  

Homeless 
Shelters 

Washington, 
D.C. 

DC Department of Human Services’, Homeless Shelter Locations. 
Downloaded from Open Data DC, 2017. 

Homeless 
Shelters 

San 
Bernardino; 
Riverside 

Google Maps, 2017. 

Places of 
Worship 

All Homeland Security Infrastructure Program (HSIP) Gold, 2013. 

Public  
Housing 

All The National Housing Preservation Database (NHPD), 2016 Active 
Properties. 

Public Sites Washington, 
D.C. 

2016 District Government Land (Owned, Operated, and or 
managed), from DC Government. 
Downloaded from Open Data DC. 

Public Sites Riverside Riverside County, 2017. 

Public Sites Chicago Libraries: Chicago Public Library 
Police Stations: City of Chicago 
Fire Stations: City of Chicago 
Senior Centers: City of Chicago; Family and Support Services 
Community Centers: City of Chicago; Family and Support Services 
Workforce Centers: City of Chicago; Family and Support Services 
County Government Administrative Facilities: Cook County 
Department of Facilities Management 
 
All data downloaded from the Chicago Data Portal, 2017 except for 
the county administration data, which was downloaded from Cook 
County Government Open Data, 2017. 
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K–12 Public Schools 
Two data sets were used to geotag public schools with LiDAR building footprints: (1) the 
geocoded addresses from the National Center for Education Statistics’ Common Core of Data 
(CCD), K12 Pubic data set (NCES CCD 2015-2016), and (2) campus boundaries from 
OpenStreetMap (OSM).26 

Because each point in the CCD data set represents a single school’s address location, we used the 
OSM school boundaries to help tag a single point to the set of buildings within the school 
campus. In the cases where an OSM boundary did not exist, we tagged the CCD school point to 
the nearest LiDAR building, using a maximum search radius of 500 meters. We ensured that no 
double-counting was occurring in the cases where multiple schools share the same building(s). 
Finally, technical potential was calculated from the aggregate of all school buildings, per city.  

Homeless Shelters 
Data for homeless shelters is an agglomerate data set. Where possible, we collected from 
individual city GIS repositories (i.e., Chicago and Washington, D.C.). For Chicago, we had to 
filter the Homeless Services data layer to include only homeless shelters. Where these 
authoritative government data sets did not exist (i.e., San Bernardino and Riverside), we 
collected coordinate data from Google Maps searches of homeless shelters in these cities. The 
resulting data set is an agglomeration point layer of homeless-shelter locations. We then tagged 
these homeless-shelter points to LiDAR buildings based on a nearest neighbor join, applying a 
maximum search radius of 500 meters. Finally, technical potential was calculated from the 
aggregate of homeless shelter buildings, per city.  

Places of Worship 
The places of worship layer was obtained from a single proprietary data source, the Homeland 
Security Infrastructure Program (HSIP) Gold (HSIP Gold 2013). Using this layer, we tagged the 
point locations to the LiDAR buildings polygons using a nearest neighbor method, applying a 
maximum search radius of 500 meters. We ensured that no buildings were being double-counted 
in the cases where more than one place of worship occupied the same building. Finally, technical 
potential was calculated from the aggregate of places of worship buildings, per city.  

Public Housing 
The public housing layer was obtained from a single data source, the 2016 Active Properties 
from the National Housing Preservation Database (NHPD 2016). Because the NHPD data set 
represents a single point location for multiple buildings that could span multiple parcels, we used 
the ownership attribution and parcel data to identify all the buildings belonging to a single 
NHPD property point. Parcel data was collected from individual government authorities (see 
Table D-2) and partial fuzzy join methods27 were used to join parcel ownership attributes to 
NHPD property-owner attributes and identify all the parcels associated with each NHPD 

                                                             

26 School boundaries were identified from a 2017 OSM United States extract, where “school” was tagged in the 
building and amenity keys. 
27 We set the partial fuzzy match cutoff to 80%. This was determined to be a conservative cutoff resulting in only a 
handful of false negatives and very few false positives. 
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property. We then tagged these parcels to the LiDAR building data to identify all buildings 
associated with a NHPD property. Care was taken to ensure that no two properties overlapped, 
and that double-counting was not occurring. The final technical potential was calculated from the 
aggregate of all public housing buildings, per city. 

Table D-2. Parcel Data Used for Appropriating Buildings to Public Housing Properties  

City Source 

Chicago Parcel 2015, Cook County Clerk Map Department. Downloaded from Cook 
County Government Open Data. 

Riverside Parcels layer from the Assessor’s County GIS geodatabase. Downloaded from 
Riverside County Open Data, 2017. 

San Bernardino County of San Bernardino’s Geographic Information Services, Parcel Basemap. 
Retrieved from FTP Services, 2017. 

Washington, D.C. Common Ownership Lots, from the District's Vector Property Mapping Database. 
Downloaded from Open DC Data, 2017. 

Importantly, Chicago’s parcel data layer did not obtain ownership attribution. As a result, we 
were unable to tag NHPD points to all parcels associated with the property. Instead, we simply 
tagged the NHPD property points to the single intersecting parcel. Therefore, we are likely 
underestimating the total technical potential of public housing units in Chicago. 

Public Sites 
The public sites layer also is an agglomerate layer collected from a variety of sources. The layer 
consists of public site locations for Chicago, Riverside, and Washington, D.C. For both 
Washington D.C. and Riverside, we obtained the public sites data directly from the city or 
county data repositories. For Chicago, we collected the data in a piecemeal fashion from the city 
and county open data repositories. Filters were applied on these layers to include only sites 
pertaining to government administration buildings, rec centers, senior centers, community 
centers, workforce centers, libraries, police stations, and fire stations. For each public site, a 
LiDAR building were tagged based on a nearest neighbor algorithm, applying a maximum search 
radius of 500 meters. Care was taken to ensure no double counting of buildings in the cases 
where two public sites occupy the same building. Finally, technical potential was calculated 
based on the aggregate of the tagged buildings, per case study city. 

We note two important qualifications regarding the public sites estimates. First, we were unable 
to identify public sites technical potential for San Bernardino, California, due to data limitations. 
Despite numerous requests, we were unable to obtain a public sites layer from the San 
Bernardino County. Second, this method assumes one building per site, and therefore, estimates 
of technical potential could be underestimated, especially for government administrative 
buildings which likely have multiple buildings per site. 

D.2.  Estimating the On-Site Consumption of Third-Party Buildings 
To estimate the on-site consumption of LMI-serving third-party buildings in our case study 
cities, we used representative building loads from the 2009 Residential Energy Consumption 
Survey (RECS) or the 2012 Commercial Building Energy Consumption Survey (CBECS) (EIA 
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2013; EIA 2016a). Each building type was tagged to the most representative building in RECS or 
CBECS and was given the building consumption (kWh/year/ft2) of that building type per Census 
Division. For each representative building, we calculated the average annual building 
consumption per roof area (kWh/year/ft2), where roof areas were estimated from the number of 
floors and the total building area. Table D-3 describes the specific criteria used to tag each 
building type with its most appropriate building representative. 

Table D-3. Representative Building Types Used for Third-Party Building Energy Consumption 
Estimates 

Building Type Energy Consumption Survey Query Applied 

K–12 Public Schools CBECS 2012 Filter for education buildings identified as 
elementary, middle, or high schools. 

Homeless Shelters CBECS 2012 Filter for buildings with primary building 
activity of dormitory. 

Places of Worship CBECS 2012 Filter for religious worship buildings 
identified as places of worship.  

Public Housing RECS 2009 Filtered for buildings under the Public 
Housing Authority. 

Public Sites CBECS 2012 Filtered for state or local government-
owned buildings where the primary 
building activity is one of the following. 
Administrative/professional office 
Government office 
Fire station/police station 
Other public order and safety 
Library 
Recreation 
Social/meeting 
Other public assembly 
Courthouse/probation office 

 


	1. Introduction
	2. Methods
	2.1. Using LiDAR Data to Estimate PV Rooftop Technical Potential
	2.2. Simulating PV Productivity Using reV and PVWatts
	2.3. Estimating National LMI PV Rooftop Technical Potential by Tract
	2.4. Model Uncertainty and Caution in Interpreting Results

	3. Results
	3.1. National Residential Rooftop PV Technical Potential
	3.2. Feasibility of Parity in Solar Adoption Rates
	3.3. Technical Potential for Select Buildings that Serve LMI Households

	4. Conclusion
	4.1.  Data for Public Use
	4.2.  Future Work

	References
	Appendix A. Allocation of Demographic Attributes
	A.1. Calculate the Number of Households Belonging to Each $1,000 Income Group, at the Tract Level
	A.2. Disaggregate from County Data to Estimate the Number of Households, per $1,000 Income Group, per Tenure, at the Tract Level
	A.3. Disaggregate from County Data to Estimate the Number of Households, per $1,000 Income Group, per Tenure, per Dwelling Type, per Household Size 
	A.4. Aggregate Tract Estimates by AMI Income Group

	Appendix B. Validation of Monte Carlo Simulations for Building Sampling
	Appendix C. Predictive Modeling Framework for Imputing Solar Suitability
	C.1. Household-to-Building Model
	C.2. Small Building Suitability Model
	C.3. Rooftop Plane Area Model
	C.4. Rooftop Tilt and Azimuth Model

	Appendix D. Quantifying the Technical Potential and On-Site Consumption of LMI-Serving Buildings in Three Case Study Cities 
	D.1. Quantifying the Technical Potential of Third-Party Buildings
	D.2.  Estimating the On-Site Consumption of Third-Party Buildings


