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Abstract—This paper explores the applicability of using dy-
namic programing (DP) and approximate dynamic programming
(ADP) based methods for optimal dispatch of utility scale energy
storage systems (ESS). In this study, the effectiveness of these
approaches have been tested using the IEEE 13 node test feeder
with distributed photovoltaics (PVs) and a utility scale storage
system. In this work, a co-simulation based approach has been
used to setup the experiment to be able to implement detailed ESS
and network models. The results obtained from DP/ADP runs
have been compared with three other control strategies both
myopic and intelligent. Simulations results show that DP/ADP
algorithms are a good candidate for optimal EES dispatch in
terms of both solution quality and execution time.

Index Terms—energy storage, dynamic programming, approx-
imate dynamic programming, co-simulation

NOMENCLATURE

T is the number of decision periods
t time index from 1 to T and t ∈ (1, 24).
xt is the state of system at time t.
VΠ(x0) is the expected value of policy Π given the initial

state x0

ut is the decision variable selected at time t.
P rated is the rated storage output.
Erated is the maximum energy the battery can store.
wt represents the uncertainty pertaining to LMP fore-

cast at time t.
Sbatt
t is the state of charge at the beginning of period t

and ∈ (0, 100).
P batt
t is the battery output (as percentage of rated power)

at time t and ∈ (−100, 100) .
LMP a

t is the actual LMP signal at time t.
LMP f

t is the forecast LMP signal at time t.
Kbatt is the net profit for charing or discharging the

battery at time period t.
Krev is the cost pertaining to penalty imposed on reverse

power flow by the TSO.
tchr time trigger for ESS charging.
tdchr time trigger for ESS discharging.
LMPchrPrice trigger for ESS charging.
LMPdchrPrice trigger for ESS discharging.

N Population size for the PSO algorithm.
G Maximum number of iterations for the PSO algo-

rithm.
ι inertia value for the PSO algorithm.
φ Correction factor for the PSO algorithm.
−→
P best

batti
is the personal best experience of a swarm particle

−→
P best

batt is the global best experience for the particle swarm

I. INTRODUCTION

Traditionally, energy storage systems have been designed
to store bulk energy with pumped hydro leading the market
with about 90 percent share word wide [1]. Renewable energy
technologies like wind and solar are inherently intermittent.
To ensure power system stability and overcome the chal-
lenges associated with intermittent technologies, utilities are
increasingly using energy storage systems capable of reacting
to these intermittencies quickly [2]. Battery technologies like
lithium-ion (Li-ion) or redox flow have the capability to ramp
up to rated power within seconds [3]. This makes them
an attractive option to mitigate challenges associated with
intermittent renewable energy technologies. In recent years,
lithium-ion (Li-ion) batteries have dominated the market with
a share of about 94 percent in on-grid applications [4]. Li-
ion batteries although more efficient when compared to flow
batteries have limited lifespan [5] [6]. This makes redox flow
batteries a great candidate for utility scale energy storage
solution. In the US utility scale grid connected batteries are
expect to increase six fold by the year 2022 [7].

Currently, there are only a handful utility owned and oper-
ated large scale batteries in the US [8]. For this reason, utilities
have yet to fully understand how to best balance the multiple
values of storage.

In literature a number of methods have been proposed
for large grid connected battery storage systems.In [9], Hart
and Sarkissian proposed a two stage optimization process to
optimize both energy capacity and power rating of the ESS
using an intra-hourly time interval. They simulate a number of
scenarios to explore the impact of load and renewable energy
generation variation on the proposed method. In [10] Tang
and Jain proposed a method for economic dispatch where
each generator has a storage device connected. They use game
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theory to show that use of a storage device does not increase
options for strategic play. Reference [11] proposes a method
to limit risk when dispatching storage. It proposes a gradient
based method for optimal control. A number of researchers
have used heuristic methods for optimal storage dispatch. In
[12] authors used particle swarm (PSO) for optimal dispatch
of multiple resources including battery storage systems. Sim-
ulation results show emission costs can be reduced by optimal
utilization of renewable energy resources. Similarly in [13]
the authors proposed using binary PSO for optimal economic
dispatch battery storage systems.

A number of authors have used dynamic programming
(DP) and approximate dynamic programming (ADP) based
methods for optimal dispatch of storage devices [14]. In [15]
Dutta and Overbye have proposed a method for computing
optimal set points for storage dispatch connected to a wind
farm. The formulated objective aims to mitigate generator’s
deviations from a set schedule, while considering intermit-
tance associated with wind farms. In their work, the authors
have used a stochastic dynamic programing framework for a
fixed scheduling horizon. Results show that higher generation
commitment is possible if the quality of probabilistic profiles
is improved. Nascimento and Powell [16] similarly have used
ADP for hourly dispatch of utility scale storage. The model
takes into consideration daily and seasonal variations. In [17],
the authors have proposed a DP based method for optimal
storage operation. The work uses DC load flow to linearize the
power flow equations thus enabling a semi-analytical solution
formulation to the problem.

Although in the past, a lot of work has been done on the
topic of optimal storage dispatch, previous work does not
compare state-of-the-art methods with myopic approaches that
are commonly employed by electric utilities taking uncertainty
in price signal into consideration. Both myopic strategies and
the PSO implementation can not integrate locational marginal
price (LMP) uncertainty into the formulated problem unlike
DP/ADP implementations. To ensure fair comparison, for
methods unable to account for uncertainty, multiple LMP fore-
cast profiles have been generated using Monte Carlo sampling.
Simulations have been carried out for each of these profiles
and the results have then been compared to the results obtained
from DP/ADP implementation. Finally, results from myopic
approaches have been compared with intelligent methods PSO
and DP/ADP.

The paper is structured as follows. Section II provides
problem overview, problem formulation and overview of the
co-simulation setup. Section III details the case study. Section
IV presents the results and related discussion. Finally in
Section V, conclusions are drawn based on the presented
results.

II. PROBLEM FORMULATION

In this paper, DP and ADP based approaches have been
employed to optimize the dispatch schedule of a flow battery
owned and operated by the utility. The optimizations have been
carried out for the intra-hour energy market for a probabilistic

LMP forecast. In this work the following assumptions have
been made.

• The probabilistic profile for the day ahead is known at
time t = 0 and does not change during the day.

• The initial state-of-charge at the beginning of the simu-
lation is zero (Sbatt

0 = 0)
• The state-of-charge at the end of a day’s simulation is

also zero (Sbatt
T+1 = 0)

• The transmission system operator penalizes the utility in
case of reverse power flow.

• The actual LMP price LMP a
t is only known for time

periods less than or equal to the current time t.

At every time period, the utility can decide to either keep
the storage system idle or charge or discharge it. This has been
referred as the decision node in Figure 2. After the decision
has been made, the cost is calculated using the probabilistic
LMP profile referred to as uncertainty node in Figure 2. The
actual and forecast LMP profiles used in this work are shown
in Figure 1.
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Fig. 1: Probabilistic (blue) LMP profiles generated using
Monte Carlo sampling and the the actual LMP profile (red).

A. Problem Structure

Under the assumptions listed above, the problem described
can be formulated as a dynamic program using Bellman’s
equation:

max
Π

VΠ(x0) = E{
T−1∑
t=0

γtCt(xt, ut, wt)} (1)

Where, the state of the system, xt, is defined as:

xt =

{
[Sbatt

t , P batt
t , LMP a

t ] if tcurrent = t

[Sbatt
t , P batt

t , LMP f
t ] else

(2)

The cost function for the problem has be defined as:

Ct(xt, ut, wt) = Kbatt(xt, ut, wt)−Krev(xt, ut, wt) (3)
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Fig. 2: Decision tree for the storage set point example

Where, the cost incurred due to charging, discharging or
idling has been calculated using the equation:

Kbatt = LMP act
t .(ζdchr.Edchr

t − Echr
t

ζchr
) (4)

And, the cost incurred due to reverse power flow has been
calculated using the equation:

Krev = Erev
t ×RFP (5)

And the forecast LMP profile follows a normal distribution
with:

LMP f
t ∼ N(µt, σt) (6)

B. Simulation Setup

We use OpenDSS [18] to simulate power flow on the grid
and the behavior of power system devices, and Python–an
open source high level scripting language–to implement the
storage controller and facilitate communication between the
optimization algorithms implemented in Matlab. OpenDSS
is co-simulated into the system using the direct DLL inter-
face with Python. Socket-based communication provides bi-
directional communication among these tools and completes
the co-simulation setup. This interface is used to update the
system state and evaluate the cost of decisions for a given
initial system state.

We compare multiple optimization algorithms, all imple-
mented in Matlab. For DP/ADP, the dynamo open source
implementation provides generic interfaces that treat the rest
of the simulation setup as a black box, facilitating using a
single problem formulation for both DP and ADP. We also
implemented our own myopic decision policy and partical
swarm optimization (PSO) algorithm for comparison with the

DP/ADP algorithms. Table II presents the parameters used for
PSO.

III. CASE STUDY

For validation purposes we have used a modified version
of the 13 node test feeder [19]. The modifications to the
original test feeder have been detailed in [20]. Parameters for
the battery model have been presented in Table I. Both myopic
strategies and the PSO implementation can not integrate LMP
uncertainty into the formulated problem unlike DP/ADP im-
plementations. To ensure fair comparison, for methods unable
to account for uncertainty, multiple LMP forecast profiles have
been generated using Monte Carlo sampling. Simulations have
been carried out for each of these profiles, and the results
have then been compared to the results obtained from DP/ADP
implementation. Finally, results from myopic approaches have
been compared with intelligent methods PSO and DP/ADP.

A. (Approximate) Dynamic programming (DP/ADP)

The DP and ADP implementations make use of the structure
of the problem by breaking a larger problem into smaller

TABLE I: Storage parameters

Parameter Value Unit

Rated power - P rated 500 kW
Rated capacity - Srated 2000 kWh
Charging efficiency - ζchr 80 %
Discharging efficiency - ζdchr 80 %
Idling efficiency - ξidle 96 %
Connected node 671
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TABLE II: Parameters used for PSO implementation

Parameter Value

Population size - N [10, 20, 30]
Maximum iterations - G 20
Inertia constant- ι 0.1
Correction constant - φ 2

TABLE III: Parameters used for the ADP-SBI algorithm

Parameter Value

State sample / time period [2-18], step 2
Decision samples / State 10
Uncertainity sample / Decision 5

problems that can then be iteratively solved to converge to
an optimal solution. In this paper, to generate an optimal
storage policy for a day’s operation, the DP/ADP programs
divide the problem into 24 periods, each one hour long. DP is
computationally expensive due to the combinatorial curse of
dimensionality. ADP is a wide class of approaches that aim
to reduce this computational burden by intelligent sampling
and function approximation of the decision space rather than
iteration through the entire decision space. Here we use one
of the simplest ADP algorithms: sampled backward induction
(SBI). SBI follows the general approach of traditional DP, but
uses Monte Carlo sampling to only consider a subset of states,
decisions, and uncertainties at each timestep. Our DP and ADP
implementations works for discrete problems, so, in this work
P batt
t has been discretized with steps of 10%. Similarly, Sbatt

t

has been discretized with steps of 5%. Table III presents the
ADP parameters used in this study.

B. Time triggered (TT)

The time triggered study case is a myopic approach where
the storage starts charging at rated power at time t = tchr, and
starts discharging at rated power as time t approaches tdchr.
In this work, the values for tchr and tdchr have been set at 2
and 14 hours respectively.

C. Cost threshold triggered (ThrT)

Cost threshold triggered is another myopic approach that
uses the simple idea of buy low, sell high. The battery charges
at rated power if the mean of the forecast LMP signal falls
below the charge threshold, LMPchr and discharges if the
mean of the forecast LMP signal crosses below the discharge
threshold LMPdchr. If the price signal is between the two
thresholds, the storage maintains in an idling state. In this
work, the values for LMPchr and LMPdchr have been set at
30 $/MWh and 40 $/MWh respectively.

D. Particle swarm optimization (PSO)

The PSO implementation aims to use swarm intelligence to
converge to an optimal solution. PSO algorithm has also been
implemented in MATLAB and uses the same co-simulation
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Fig. 3: Storage charge / discharge policy generated using
different control strategies. The shaded area shows variability
in generated policy for Monte Carlo scenarios for Thrt and
PSO − 30 scenarios. For DP/ADP plot shaded area shows
variability associated with varying state samples per iteration.

to communicate with OpenDSS. The pseudo code for the
implementation has been presented in Algorithm 1. It is
important to note that the PSO implementation also optimizes
the discrete problem defined for DP and ADP methods. The
cost function however has been modified to add a charge state
penalty term.

CPSO
t (xt, ut, wt) = −Ct(xt, ut, wt) + (Sbatt

T+1)2 (7)

This modification ensures that the SOC at the end of the day
is zero. This enforces this key assumption and makes the PSO
optimization problem equivalent to the DP/ADP problem, thus
facilitating direct comparisons.

IV. RESULTS AND DISCUSSION

Figure 3 shows the charge / discharge policy for the four
test cases. The first subplot is for time triggered charge and

Algorithm 1: Pseudo code for PSO implementation

1 Initialize a population of particles with random values
positions (

−→
P batt) and velocities (∆

−→
P batt) for T

dimensions in the search space;
2 while j ≤ G do
3 read current;
4 for each particle i in population N do
5 Update velocity and position of the particle using

ι and φ (update charge/discharge policy for the
storage);

6 if f(
−→
P batti) < f(

−→
P best

batti
) then

7
−→
P best

batti
←
−→
P batti ;

8 if f(
−→
P batti) < f(

−→
P best

batt) then
9

−→
P best

batt ←
−→
P batti ;

10 j = j + 1
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discharge. This myopic approach aims to utilize the evening
peak to offset the costs pertaining to charging and system
losses. However, this strategy has no insight of the price signal.
This may lead to inefficient usage of the storage system as is
evident from Figure 4.

The second subplot in Figure 3 is for the charge / discharge
policy for the cost-triggered strategy. This control strategy
although not intelligent, does use the LMP forecast. As a result
it is able to improve upon the performance of time trigger
myopic strategy (see Figure 4). This strategy makes use of
the expected morning and evening price peaks, selling when
the expected price is high and buying when low.

The lower left subplot in Figure 3 is the optimal policy
generated by the DP algorithm. DP, unlike the first two
methods, is an intelligent method thats takes into consideration
the probability distribution of the LMP forecast. This added
insight enables the DP algorithm to outperform the two myopic
strategies. The average expected profit is 140% and 20%
higher than TT and ThrT strategies respectively. Figure 5
compares the performance of the ADP algorithm with the
DP algorithm. Instead of exploring the entire state, decision
and uncertainty space, ADP algorithm randomly samples these
spaces for a predefined number of times. In this work, the
number of samples per state is varied while keeping the
number of decision and uncertainty samples constant. For a
small number of state samples the expected profit is much
higher when compared to the DP solution (Figure 5). This
is an artifact of the overly optimistic estimation resulting
from incomplete exploration of the state space. These algo-
rithmic guesses showing higher profits would not be realized
if attempted with a more realistic scenario space; however,
this discrepancy does provide a clear visualization of ADP
convergence. As the number of state samples increase, the
expected profit value converges to the value calculated using
the DP method. This increased accuracy however, comes at
the cost of increased execution time.

The lower right subplot in Figure 3 presents optimal policies
generated using PSO for the generated Monte Carlo scenarios.
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Fig. 4: A comparison of the expected profit calculated for all
Monte Carlo scenarios using myopic and intelligent methods
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Fig. 5: Convergence plot for ADP as a function of the number
of state samples. Here the overly optimistic expected profits
with incomplete state explorations rapidly converge to more
realistic values nearly matching DP with about 10 or more
state samples per iteration.

Figure 6 shows PSO’s convergence performance for three
simulation runs with varying population size. Increasing pop-
ulation size does not ensure improved optimal solution as is
the case for PSO-20 in Figure 6. The is because heuristic
optimization methods like PSO may suffer from premature
convergence. For a large number of simulation runs however,
increasing population size does improve the performance of
the algorithm (Figure 4). The average expected profits obtained
from PSO are lower than the expected profit calculated using
DP. One reason for poor convergence might be that PSO is
not well suited for discrete problems.

Figure 7 shows the execution time for each test case.
Results show that PSO scales poorly when the swarm size
is increased. ADP on the other hand scales well as the
number of state samples are increased. In these results, the
relatively small problem size enables DP to take about the
same computation time as ADP, however, the sampling-based
ADP approaches are expected to scale better with larger and/or
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more finely discretized problems where DP’s combinatorial
explosion increases simulation time exponentially. Across all
algorithms, the run time is largely driven by the time required
for OpenDSS simulations.

V. CONCLUSIONS

This paper explores the applicability of using dynamic pro-
graming (DP) and approximate dynamic programming (ADP)
based methods for optimal dispatch of utility scale energy
storage systems (ESS). In this study, the effectiveness of these
approaches have been tested using the IEEE 13 node test
feeder with distributed PVs and a utility scale storage system.
In this work, a co-simulation based approach has been used
to setup the experiment to be able to implement detailed
ESS and network models. We compare these approaches to
two simple myopic control strategies and various particle
swarm optimization configurations. In these simulations, DP
and ADP algorithms provide significantly increased expected
profits 10-200% compared to the myopic approaches and 1-
160% compared to PSO in significantly lesser computation
time.
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