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ABSTRACT 
Many industries are rapidly adopting web applications that 
are inherently cross platform, mobile, and easy to distribute. 
The Building Energy Modeling (BEM) community is 
beginning to pick up on this larger trend, with a small but 
growing number of BEM applications starting on or moving 
to the web. Currently, there are a limited number of open-
source libraries or frameworks specifically tailored for BEM 
web applications. This paper presents FloorspaceJS, a new, 
open-source, web-based geometry editor for BEM. 
FloorspaceJS operates on a custom JSON file format, is 
written completely in JavaScript, and is designed to be 
integrated into a variety of applications, both web and 
desktop applications. FloorspaceJS allows users to define 
building geometry story-by-story with custom 2D floor plans 
appropriate for many BEM use cases.  
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1 INTRODUCTION 
Building geometry is intuitively important in building energy 
modeling (BEM). All BEM applications require geometry 
input of some type [1]. Exterior area and orientation of walls, 
roofs, and slabs are used to calculate heat transfer into and 
out of the building. Building shape and surrounding context 
feed shading and incident solar radiation calculations. 
Internal gains like lighting and equipment use are associated 
with interior sections of the building. Conditioning 
equipment serves air volumes within the building. While this 
list is not exhaustive, it shows many of the calculations for 
which geometry is used in BEM. 

The level of geometric detail available for BEM analyses 
changes over time as a project moves from concept to 
construction, as shown in Figure 1. At early stages, little 
geometric detail about the final building is available so many 
assumptions must be made. For example, the U.S. 
Department of Energy commercial reference buildings [2] 
have fixed geometry for each of the 16 building types. These 
models are widely used to assess the technical potential of 
various building efficiency technologies at a national scale 
where individual building geometry is not known [3]. 
Shoebox or parameterized geometry generation methods [4] 

have also been developed, allowing total floor area, number 
of stories, and general shape parameters to be considered. 
These methods are useful for early design and stock analysis, 
where limited information about any one building’s 
geometry is available. 

 
Figure 1: Building energy model Geometry Progression 

At the other end of this progression, the architecture-
engineering-construction-owner-operator industry is 
standardizing on building information modeling (BIM) [5], 
with detailed models available in a rich electronic format as 
buildings near the construction phase. A variety of 
algorithms aiming to ease BIM-to-BEM translations [6] [7] 
[8] automate the process of developing a BEM model during 
this process. Methods and tools are even being developed to 
generate energy models from images and sensor scans of 
existing buildings [9]. 

However, many BEM use cases such as conceptual design, 
energy code compliance, and project screening fall into the 
middle of the progression shown in Figure 1. More geometric 
information (e.g., footprint, window location, space plan, 
etc.) may be available than can be incorporated into a 
parameterized shoebox model. However, a detailed BIM 
model may not be available. Users may want to incorporate 
their building’s unique geometry into the energy model but 
may not be ready to invest the time required to develop a full 
BIM representation. For example, residential building rating 
tools are applied to existing homes which most often do not 
have BIM models available. Rather than develop full BIM 
models, current residential BEM applications often require 
users to enter areas and orientations for floor, walls, roofs, 
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and windows as text-based inputs [10], which is both tedious 
and error prone. 

These use cases require an easy-to-use interface to quickly 
develop geometry for BEM analyses. Several desktop 
applications have embedded editors that meet these needs 
[11] [12]. However, to date, none of these editors have been 
available as open-source widgets based on web technologies. 

FloorspaceJS is an open-source widget focused on this 
section of the BEM geometry progression and designed to 
enable a range of new energy modeling applications in both 
the public and private sectors. FloorspaceJS is not intended 
as a replacement for BIM. As BIM adoption continues to 
increase, the number of use cases requiring a simplified tool 
like FloorspaceJS may decrease. 

2 DESIGN 
FloorspaceJS is a 2D geometry editor. Users can define an 
explicit floor plan for each story of a building. A story-by-
story interface makes it easy to develop space geometry and 
assign properties. Referencing satellite imagery or floor plan 
images, when available, speeds up geometry entry. Floor 
plans can be extruded to create 3D geometry. Separate 
software to perform this extrusion is discussed in Section 6. 
Explicit floor plans allow more building-specific information 
than parameterized shoeboxes but less information than a full 
3D BIM model. Split-level buildings, multileveled spaces, 
and type of roof geometry can also be defined by advanced 
users. 

Sloped walls, complex roofs, detailed shading structures, and 
other complex 3D structures are out of FloorspaceJS’s scope. 
In general, if users have a 3D BIM model in a tool that can 
export a useful BEM representation, then it is better to use 
that export than to recreate a new model using FloorspaceJS. 

Reusability and minimal dependencies were key design 
considerations for software developers. Web technologies 
can be used in both online and desktop applications. The 
editor was written in pure JavaScript for maximum 
portability and reusability. A custom JavaScript Object 
Notation (JSON) file format was developed to ease 
integration with other applications. Custom JSON schema 
design was a key part of FloorspaceJS development. 
3 SCHEMA 
Extensible Markup Language (XML) schemas are a well-
known technology for validating that XML files conform to 
a certain set of rules and requirements. The Green Building 
XML schema (gbXML) is a well-known XML schema 
within the BEM community [13]. JSON schemas [14] 
provide a method to validate JSON files, equivalent to the 
use of XML schemas to validate XML files. Specifying the 
FloorspaceJS file format in JSON schema facilitates JSON 
file validation as well as communication with third party 
application developers. In this way, the JSON schema exists 
as both documentation and as a functional and testable 
software product. The JSON schema for FloorspaceJS is 
available online [15]. 

The root level of the FloorspaceJS schema describes 
project-wide settings such as the relative angle between the 
drawing coordinate system and true North. The model unit 
system is specified at the project level and can be SI or IP. 
Project-wide non-geometrical objects such as thermal 
zones, space types, and construction sets are defined at the 
root level and referenced throughout the model. Similarly, a 
set of component definitions for objects such as windows 
are also defined at the root level. These component objects 
have nominal geometry such as height and width. Instances 
of these component objects may be placed on geometry 
throughout the building. 

 
Figure 2. Simple geometry example 

All geometry for the model is defined in a list of building 
story objects at the root level. Each building story includes a 
geometry object that defines the vertices, edges, and faces 
associated with that story. Figure 2 shows a simple geometry 
object with two faces, f1 and f2. Each face is defined by an 
ordered list of edges, and each edge is defined by two 
vertices. Two faces may share the same edge but traversed in 
opposite direction such as edge e7 in Figure 2. 

The FloorspaceJS geometry schema was designed to 
promote proper second-level space boundaries [5] between 
spaces on the same building story. This is important as 
BEM applications must be able to tell which surfaces are 
exposed to outdoor conditions and which are interior 
surfaces shared by two spaces. In the FloorspaceJS 
representation, an edge that is shared by two faces becomes 
an interior wall, and an edge referenced by one face 
becomes an exterior wall. The FloorspaceJS schema does 
not explicitly address space boundaries between spaces on 
different stories. These must be established using 
techniques such as polygon intersection between geometry 
on different stories. However, the FloorspaceJS editor 
automatically displays vertices and edges from the previous 
story for reference when drawing a new story. This helps 
maintain vertical alignment between spaces of different 
stories, improving the outcome of polygon intersection 
algorithms. The geometry object shown in Figure 1 is 
represented in JSON format as: 

"geometry": { 
    "vertices": [ 
        {“id": "v1", "x": 0, "y": 10}, 
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        {“id": "v2", "x": 10, "y": 10}, 
        {“id": "v3", "x": 20, "y": 10}, 
        {“id": "v4", "x": 20, "y": 0}, 
        {“id": "v5", "x": 10, "y": 0}, 
        {“id": "v6", "x": 0, "y": 0}], 
    "edges": [ 
        {“id": "e1", "vertex_ids": ["v1", "v2"]}, 
        {“id": "e2", "vertex_ids": ["v2", "v3"]}, 
        {“id": "e3", "vertex_ids": ["v3", "v4"]}, 
        {“id": "e4", "vertex_ids": ["v4", "v5"]}, 
        {“id": "e5", "vertex_ids": ["v5", "v6"]}, 
        {“id": "e6", "vertex_ids": ["v6", "v1"]}, 
        {“id": "e7", "vertex_ids": ["v2", "v5"]}], 
    "faces": [ 
        {“id": "f1", "edge_ids": ["e1", "e7", "e5", "e6"]}, 
        {“id": "f2","edge_ids": ["e2", "e3", "e4", "e7"]}] 
  } 

Each building story defines a list of spaces, each of which 
references a single face in the building story’s geometry. The 
face solely represents geometry while the space contains 
non-geometric BEM information. For example, each space 
references a thermal zone, space type, construction set, and 
other top-level objects. The building story also specifies a 
below floor plenum height, floor to ceiling height, and above 
ceiling plenum height; these properties can also be 
overridden at the space level if needed. Each face is extruded 
by these heights when converting the 2D FloorspaceJS 
model to a 3D representation, as discussed in Section 6, 
potentially creating up to three volumes for each face (two 
plenums and the occupied space). Contextual shading objects 
such as surrounding buildings are specified by extruding 
faces assigned to shading objects. Window components are 
placed on an edge with a parameter named alpha describing 
how far along the edge the window’s center is. A one-story 
example with two spaces and the geometry shown in Figure 
2 is given below (with some fields omitted for brevity):  

"stories": [{ 
    "id": "story1", 
    "name": "Story 1", 
    "image_visible": false, 
    "below_floor_plenum_height": 0, 
    "floor_to_ceiling_height": 12, 
    "above_ceiling_plenum_height": 0, 
    "multiplier": 1, 
    "geometry": {...}, 
    "spaces": [{ 
        "id": "space1", 
        "name": "Space 1", 
        "face_id": "f1", 
        "thermal_zone_id": "zone1", 
        "space_type_id": "spacetype1", 
        "construction_set_id": "construction1", 
        … 
    }, { 

        "id": "space2", 
        "name": "Space 2", 
        "face_id": "f2", 
        "thermal_zone_id": " zone1", 
        "space_type_id": " spacetype2", 
        "construction_set_id": " construction1", 
        … 
    }], 
    "shading": [], 
    "windows": [{ 
        "window_definition_id": "window1", 
        "edge_id": "e5", 
        "alpha": 0.5, 
        … 
    }] 

The one-story example above includes a single window 
placed halfway along the edge e5. The geometry of the 
window is defined in a separate window definition that can 
be reused throughout the model. Examples of three 
different types of window definitions are given below.  

"window_definitions": [{ 
    "id": " window1", 
    "name": "Large Window", 
    "window_definition_type": "Single Window", 
    "wwr": null, 
    "sill_height": 3, 
    "window_spacing": null, 
    "height": 8, 
    "width": 12, 
    "overhang_projection_factor": null, 
    "fin_projection_factor": null 
  },{ 
    "id": " window2", 
    "name": "40% WWR", 
    "window_definition_type": "Repeating Windows", 
    "wwr": null, 
    "sill_height": 3, 
    "window_spacing": 6, 
    "height": 4, 
    "width": 4, 
    "overhang_projection_factor": 0.5, 
    "fin_projection_factor": 0.5 
  }, { 
    "id": " window3", 
    "name": "40% WWR", 
    "window_definition_type": "Window to Wall Ratio", 
    "wwr": 0.4, 
    "sill_height": 3, 
    "window_spacing": null, 
    "height": null, 
    "width": null, 
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    "overhang_projection_factor": null, 
    "fin_projection_factor": null 
}] 

4 EDITOR FEATURES 
The latest version of the FloorspaceJS editor is available to 
try online [16]. Currently, FloorspaceJS works best when 
using the Chrome browser; other browsers are not fully 
tested. When starting a new project, users are prompted to 
either create a new floor plan, create a new floor plan with a 
map background, or open an existing floor plan. If creating a 
new floor plan with a map, users select the location and 
orient the drawing grid to align with the building’s axes as 
shown in Figure 3. The example model developed in this 
section, shown in Figures 4-8, is available as a digital file 
accompanying this paper and may be opened as an existing 
floor plan for inspection.  

After orienting the drawing area to the map, users press 
“Done” to begin drawing. If desired, users can import a 
story-specific floor plan image by selecting the correct story 
and choosing “Image” in the navigator. Users can move and 
resize the image using the background map or drawing grid 
as a reference as shown in Figure 4. Currently, only image 
formats can be imported; importing other formats such as 
Adobe PDF is a possible feature for future development. 

Once background information is in place, users begin to add 
spaces to the selected story. Users create and select spaces in 
the left-hand navigator, then use the drawing tools to add 
rectangular or polygon geometry to each space. Newly 
drawn geometry is added to any existing geometry in the 
space, the operation is cancelled if the resulting geometry is 
invalid (e.g., the result has multiple non-adjacent polygons 
or interior holes). The fill tool adds any geometry clicked to 
the currently selected space, which is particularly useful for 
quickly replicating similar floor plans across stories. The 
eraser tool removes any overlapping geometry in any space.  

More detailed space properties, including space name, are 
edited by expanding the space grid view using the green 
arrow keys next to the space dropdown. 

After space geometry is defined, users move to the 
assignments tab to create building units, thermal zones, space 
types, construction sets, and pitched roofs. These objects are 
assigned to spaces by clicking on the appropriate spaces for 
a selected object (or via the detailed space properties). 

Finally, users create windows or other component definitions 
(e.g., daylighting controls, doors, etc.) via the components 
tab. Window component definitions have geometric 
properties such as height, width, and sill height. Once 
component definitions are complete, users can place 
instances of these components throughout the building. 

Window definitions can represent individual windows, 
banded windows defined by window-to-wall ratio, and 
repeating windows that repeat at regular intervals. The last 
two types of window component definitions are applied to an 
entire edge rather than a single point.  
5 WEB TECHNOLOGIES 
FloorspaceJS is written entirely in JavaScript with a minimal 
set of dependencies. The code, available online [17], is 
distributed under a 3-clause BSD software license [18] that 
allows it to be reused in a wide range of applications. 
FloorspaceJS transpiles modern ES2017 syntax using 
Babel.js [19] and Webpack [20] to produce code that runs in 
today’s browsers. It uses the Vue.js framework [21] with 
Vuex [22] for state management, OpenLayers [23] for map 
integration, and d3 [24] for drawing. 

To use the widget in a third-party application, a developer 
downloads an embeddable version of the widget from the 
release pages [25] and includes this code in their application 
as an iframe. An initialization Application Programming 
Interface (API) is available to allow the developer to 
customize the widget for their application (e.g., SI vs IP 
units). Finally, the developer calls the import and export 
APIs to pass data back and forth in the FloorspaceJS JSON 
format. An example integration of the widget into a web 
application is available online [26]. 

6 TRANSLATION TO THREE DIMENSIONS 
The FloorspaceJS JSON format describes 2D geometry only.  
Many BEM tools, including EnergyPlus [27], require 3D 
geometry for their calculations. Therefore, a translation from 
the 2D FloorspaceJS JSON to a 3D format is required.  In 
theory, each software application utilizing the FloorspaceJS 
widget could implement its own translation functionality. 
However, this would place a higher burden on software 
applications leveraging the FloorspaceJS widget and would 
also potentially result in inconsistent translations. For this 
reason, a reference 2D FloorspaceJS JSON to 3D translation 
capability has been added to the OpenStudio software 
development kit (SDK) [28]. 

Several 3D BEM formats were considered for translation 
output including gbXML, EnergyPlus Input Data Format 
(IDF), and OpenStudio Model (OSM) formats. In the end, 
the ThreeJS JSON model format 3 [29] was selected as the 
translation output format as it can be readily previewed using 
web technologies and can support additional application 
specific properties. Translation from 3D ThreeJS JSON to 
gbXML, IDF, and OSM is relatively straightforward. 
Translation from 3D ThreeJS JSON to OSM format has been 
implemented in the OpenStudio SDK, which itself has 
existing OSM to gbXML and IDF translators. 
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Figure 3. Initial map view 

 
Figure 4. Image overlaid on background map 

 
Figure 5. Space geometry 
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Figure 6. Space property grid view  

 
Figure 7. Thermal zoning 

 
Figure 8. Window and daylight sensor placement 
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By carefully restricting the software dependencies used in 
the FloorspaceJS JSON to ThreeJS JSON conversion, the 
authors have extracted all the code necessary for this 
translation out of the OpenStudio SDK and into a smaller 
standalone C++ library. A proof of concept was completed 
to compile this library to pure JavaScript using Emscripten 
[30]. The resulting JavaScript library can then be used to 
translate FloorspaceJS JSON to ThreeJS JSON entirely in 
JavaScript using the client browser. Figure 9 shows a small 
web application which has translated the example 
FloorspaceJS JSON developed in Section 4 and displays 
the ThreeJS JSON output in a web browser. 

 
Figure 9. Web Based 3D Preview 

This web-based translation proof of concept has not yet 
been released or incorporated into the FloorspaceJS 
widget. At present, web-based translation can only support 
translation to ThreeJS JSON, it cannot produce OSM, IDF, 
or gbXML as the additional dependencies of those 
conversions have not been compiled using Emscripten. 
However, all translation functionality is available in the 
OpenStudio SDK for the C++, C#, and Ruby languages. 
An OpenStudio Measure [31] for converting FloorspaceJS 
JSON to OSM is also available.  

7 FUTURE WORK 
FloorspaceJS makes two major contributions to the BEM 
community. First, an open-source, web-enabled geometry 
editor widget lowers the barrier to developing BEM 
desktop or web applications. Second, the FloorspaceJS 
JSON schema enables developers to integrate the editor 
with their own applications or leverage its output in custom 
workflows. 

Future work may include continued development of web-
based 2D to 3D translation functionality. Currently, certain 
functionalities, such as adjacent space detection, are not yet 
available in the proof of concept web-based translation. 
Once these features are stable, the web-based translator 
could be easily integrated with the FloorspaceJS widget to 
provide a pure JavaScript widget which outputs 3D 
geometry in ThreeJS JSON format. 

The FloorspaceJS developers hope that this contribution 
can be leveraged by the BEM community in new and 
creative ways. One possibility is the large body of work 
being developed around extracting building footprint data 
from geographic information system (GIS) information 

[32] [33]. Extruding the exterior building footprint alone 
generally does not provide sufficient geometric detail for 
BEM as it does not include separate perimeter and core 
heating, ventilating, and air-conditioning zones designed 
for most large buildings. There are methods [34] [35] [36] 
[37] to apply automatic thermal zoning algorithms to 
arbitrary building footprints, which will be useful for 
converting building footprints to usable energy models at 
city scale. It may be possible for these automatic zoning 
algorithms to provide output in FloorspaceJS format. In 
this way, the energy model could be refined and updated as 
needed in further manual processes. 
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