
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

FloorspaceJS - A New, Open
Source, Web-Based Geometry
Editor for Building Energy
Modeling (BEM)
Preprint
Dan Macumber, Scott Horowitz,
and Marjorie Schott
National Renewable Energy Laboratory

Katie Nolan and Brian Schiller
Devetry

To be presented at Symposium on Simulation for Architecture and
Urban Design (SimAUD) 2018
Delft, Netherlands
June 4-7, 2018

Suggested Citation
Macumber, Dan; Scott Horowitz, Marjorie Schott, Katie Nolan and Brian Schiller.
2018. “FloorspaceJS - A New, Open Source, Web-Based Geometry Editor for
Building Energy Modeling (BEM): Preprint.” Golden, CO: National Renewable
Energy Laboratory. NREL/CP-5500-70491.
https://www.nrel.gov/docs/fy18osti/70491.pdf

Conference Paper
NREL/CP-5500-70491
March 2018

https://www.nrel.gov/docs/fy18osti/70491.pdf

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance),
a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government
and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution,
or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at SciTech Connect http:/www.osti.gov/scitech

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
OSTI http://www.osti.gov
Phone: 865.576.8401
Fax: 865.576.5728
Email: reports@osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312
NTIS http://www.ntis.gov
Phone: 800.553.6847 or 703.605.6000
Fax: 703.605.6900
Email: orders@ntis.gov

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795.

NREL prints on paper that contains recycled content.

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov

1
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

FloorspaceJS—A New, Open-Source, Web-Based 2D
Geometry Editor for Building Energy Modeling (BEM)

Daniel Macumber1, Scott Horowitz1, Marjorie Schott1, Katie Noland2, Brian Schiller2
1National Renewable Energy Laboratory

Golden, CO, USA
daniel.macumber@nrel.gov

2Devetry
Denver, CO, USA
info@devetry.com

ABSTRACT
Many industries are rapidly adopting web applications that
are inherently cross platform, mobile, and easy to distribute.
The Building Energy Modeling (BEM) community is
beginning to pick up on this larger trend, with a small but
growing number of BEM applications starting on or moving
to the web. Currently, there are a limited number of open-
source libraries or frameworks specifically tailored for BEM
web applications. This paper presents FloorspaceJS, a new,
open-source, web-based geometry editor for BEM.
FloorspaceJS operates on a custom JSON file format, is
written completely in JavaScript, and is designed to be
integrated into a variety of applications, both web and
desktop applications. FloorspaceJS allows users to define
building geometry story-by-story with custom 2D floor plans
appropriate for many BEM use cases.

Author Keywords
Building energy modeling; geometry editing; FloorspaceJS

ACM Classification Keywords
Applied computing~Computer-aided design

1 INTRODUCTION
Building geometry is intuitively important in building energy
modeling (BEM). All BEM applications require geometry
input of some type [1]. Exterior area and orientation of walls,
roofs, and slabs are used to calculate heat transfer into and
out of the building. Building shape and surrounding context
feed shading and incident solar radiation calculations.
Internal gains like lighting and equipment use are associated
with interior sections of the building. Conditioning
equipment serves air volumes within the building. While this
list is not exhaustive, it shows many of the calculations for
which geometry is used in BEM.

The level of geometric detail available for BEM analyses
changes over time as a project moves from concept to
construction, as shown in Figure 1. At early stages, little
geometric detail about the final building is available so many
assumptions must be made. For example, the U.S.
Department of Energy commercial reference buildings [2]
have fixed geometry for each of the 16 building types. These
models are widely used to assess the technical potential of
various building efficiency technologies at a national scale
where individual building geometry is not known [3].
Shoebox or parameterized geometry generation methods [4]

have also been developed, allowing total floor area, number
of stories, and general shape parameters to be considered.
These methods are useful for early design and stock analysis,
where limited information about any one building’s
geometry is available.

Figure 1: Building energy model Geometry Progression

At the other end of this progression, the architecture-
engineering-construction-owner-operator industry is
standardizing on building information modeling (BIM) [5],
with detailed models available in a rich electronic format as
buildings near the construction phase. A variety of
algorithms aiming to ease BIM-to-BEM translations [6] [7]
[8] automate the process of developing a BEM model during
this process. Methods and tools are even being developed to
generate energy models from images and sensor scans of
existing buildings [9].

However, many BEM use cases such as conceptual design,
energy code compliance, and project screening fall into the
middle of the progression shown in Figure 1. More geometric
information (e.g., footprint, window location, space plan,
etc.) may be available than can be incorporated into a
parameterized shoebox model. However, a detailed BIM
model may not be available. Users may want to incorporate
their building’s unique geometry into the energy model but
may not be ready to invest the time required to develop a full
BIM representation. For example, residential building rating
tools are applied to existing homes which most often do not
have BIM models available. Rather than develop full BIM
models, current residential BEM applications often require
users to enter areas and orientations for floor, walls, roofs,

2
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

and windows as text-based inputs [10], which is both tedious
and error prone.

These use cases require an easy-to-use interface to quickly
develop geometry for BEM analyses. Several desktop
applications have embedded editors that meet these needs
[11] [12]. However, to date, none of these editors have been
available as open-source widgets based on web technologies.

FloorspaceJS is an open-source widget focused on this
section of the BEM geometry progression and designed to
enable a range of new energy modeling applications in both
the public and private sectors. FloorspaceJS is not intended
as a replacement for BIM. As BIM adoption continues to
increase, the number of use cases requiring a simplified tool
like FloorspaceJS may decrease.

2 DESIGN
FloorspaceJS is a 2D geometry editor. Users can define an
explicit floor plan for each story of a building. A story-by-
story interface makes it easy to develop space geometry and
assign properties. Referencing satellite imagery or floor plan
images, when available, speeds up geometry entry. Floor
plans can be extruded to create 3D geometry. Separate
software to perform this extrusion is discussed in Section 6.
Explicit floor plans allow more building-specific information
than parameterized shoeboxes but less information than a full
3D BIM model. Split-level buildings, multileveled spaces,
and type of roof geometry can also be defined by advanced
users.

Sloped walls, complex roofs, detailed shading structures, and
other complex 3D structures are out of FloorspaceJS’s scope.
In general, if users have a 3D BIM model in a tool that can
export a useful BEM representation, then it is better to use
that export than to recreate a new model using FloorspaceJS.

Reusability and minimal dependencies were key design
considerations for software developers. Web technologies
can be used in both online and desktop applications. The
editor was written in pure JavaScript for maximum
portability and reusability. A custom JavaScript Object
Notation (JSON) file format was developed to ease
integration with other applications. Custom JSON schema
design was a key part of FloorspaceJS development.
3 SCHEMA
Extensible Markup Language (XML) schemas are a well-
known technology for validating that XML files conform to
a certain set of rules and requirements. The Green Building
XML schema (gbXML) is a well-known XML schema
within the BEM community [13]. JSON schemas [14]
provide a method to validate JSON files, equivalent to the
use of XML schemas to validate XML files. Specifying the
FloorspaceJS file format in JSON schema facilitates JSON
file validation as well as communication with third party
application developers. In this way, the JSON schema exists
as both documentation and as a functional and testable
software product. The JSON schema for FloorspaceJS is
available online [15].

The root level of the FloorspaceJS schema describes
project-wide settings such as the relative angle between the
drawing coordinate system and true North. The model unit
system is specified at the project level and can be SI or IP.
Project-wide non-geometrical objects such as thermal
zones, space types, and construction sets are defined at the
root level and referenced throughout the model. Similarly, a
set of component definitions for objects such as windows
are also defined at the root level. These component objects
have nominal geometry such as height and width. Instances
of these component objects may be placed on geometry
throughout the building.

Figure 2. Simple geometry example

All geometry for the model is defined in a list of building
story objects at the root level. Each building story includes a
geometry object that defines the vertices, edges, and faces
associated with that story. Figure 2 shows a simple geometry
object with two faces, f1 and f2. Each face is defined by an
ordered list of edges, and each edge is defined by two
vertices. Two faces may share the same edge but traversed in
opposite direction such as edge e7 in Figure 2.

The FloorspaceJS geometry schema was designed to
promote proper second-level space boundaries [5] between
spaces on the same building story. This is important as
BEM applications must be able to tell which surfaces are
exposed to outdoor conditions and which are interior
surfaces shared by two spaces. In the FloorspaceJS
representation, an edge that is shared by two faces becomes
an interior wall, and an edge referenced by one face
becomes an exterior wall. The FloorspaceJS schema does
not explicitly address space boundaries between spaces on
different stories. These must be established using
techniques such as polygon intersection between geometry
on different stories. However, the FloorspaceJS editor
automatically displays vertices and edges from the previous
story for reference when drawing a new story. This helps
maintain vertical alignment between spaces of different
stories, improving the outcome of polygon intersection
algorithms. The geometry object shown in Figure 1 is
represented in JSON format as:

"geometry": {
 "vertices": [
 {“id": "v1", "x": 0, "y": 10},

3
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 {“id": "v2", "x": 10, "y": 10},
 {“id": "v3", "x": 20, "y": 10},
 {“id": "v4", "x": 20, "y": 0},
 {“id": "v5", "x": 10, "y": 0},
 {“id": "v6", "x": 0, "y": 0}],
 "edges": [
 {“id": "e1", "vertex_ids": ["v1", "v2"]},
 {“id": "e2", "vertex_ids": ["v2", "v3"]},
 {“id": "e3", "vertex_ids": ["v3", "v4"]},
 {“id": "e4", "vertex_ids": ["v4", "v5"]},
 {“id": "e5", "vertex_ids": ["v5", "v6"]},
 {“id": "e6", "vertex_ids": ["v6", "v1"]},
 {“id": "e7", "vertex_ids": ["v2", "v5"]}],
 "faces": [
 {“id": "f1", "edge_ids": ["e1", "e7", "e5", "e6"]},
 {“id": "f2","edge_ids": ["e2", "e3", "e4", "e7"]}]
 }

Each building story defines a list of spaces, each of which
references a single face in the building story’s geometry. The
face solely represents geometry while the space contains
non-geometric BEM information. For example, each space
references a thermal zone, space type, construction set, and
other top-level objects. The building story also specifies a
below floor plenum height, floor to ceiling height, and above
ceiling plenum height; these properties can also be
overridden at the space level if needed. Each face is extruded
by these heights when converting the 2D FloorspaceJS
model to a 3D representation, as discussed in Section 6,
potentially creating up to three volumes for each face (two
plenums and the occupied space). Contextual shading objects
such as surrounding buildings are specified by extruding
faces assigned to shading objects. Window components are
placed on an edge with a parameter named alpha describing
how far along the edge the window’s center is. A one-story
example with two spaces and the geometry shown in Figure
2 is given below (with some fields omitted for brevity):

"stories": [{
 "id": "story1",
 "name": "Story 1",
 "image_visible": false,
 "below_floor_plenum_height": 0,
 "floor_to_ceiling_height": 12,
 "above_ceiling_plenum_height": 0,
 "multiplier": 1,
 "geometry": {...},
 "spaces": [{
 "id": "space1",
 "name": "Space 1",
 "face_id": "f1",
 "thermal_zone_id": "zone1",
 "space_type_id": "spacetype1",
 "construction_set_id": "construction1",
 …
 }, {

 "id": "space2",
 "name": "Space 2",
 "face_id": "f2",
 "thermal_zone_id": " zone1",
 "space_type_id": " spacetype2",
 "construction_set_id": " construction1",
 …
 }],
 "shading": [],
 "windows": [{
 "window_definition_id": "window1",
 "edge_id": "e5",
 "alpha": 0.5,
 …
 }]

The one-story example above includes a single window
placed halfway along the edge e5. The geometry of the
window is defined in a separate window definition that can
be reused throughout the model. Examples of three
different types of window definitions are given below.

"window_definitions": [{
 "id": " window1",
 "name": "Large Window",
 "window_definition_type": "Single Window",
 "wwr": null,
 "sill_height": 3,
 "window_spacing": null,
 "height": 8,
 "width": 12,
 "overhang_projection_factor": null,
 "fin_projection_factor": null
 },{
 "id": " window2",
 "name": "40% WWR",
 "window_definition_type": "Repeating Windows",
 "wwr": null,
 "sill_height": 3,
 "window_spacing": 6,
 "height": 4,
 "width": 4,
 "overhang_projection_factor": 0.5,
 "fin_projection_factor": 0.5
 }, {
 "id": " window3",
 "name": "40% WWR",
 "window_definition_type": "Window to Wall Ratio",
 "wwr": 0.4,
 "sill_height": 3,
 "window_spacing": null,
 "height": null,
 "width": null,

4
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 "overhang_projection_factor": null,
 "fin_projection_factor": null
}]

4 EDITOR FEATURES
The latest version of the FloorspaceJS editor is available to
try online [16]. Currently, FloorspaceJS works best when
using the Chrome browser; other browsers are not fully
tested. When starting a new project, users are prompted to
either create a new floor plan, create a new floor plan with a
map background, or open an existing floor plan. If creating a
new floor plan with a map, users select the location and
orient the drawing grid to align with the building’s axes as
shown in Figure 3. The example model developed in this
section, shown in Figures 4-8, is available as a digital file
accompanying this paper and may be opened as an existing
floor plan for inspection.

After orienting the drawing area to the map, users press
“Done” to begin drawing. If desired, users can import a
story-specific floor plan image by selecting the correct story
and choosing “Image” in the navigator. Users can move and
resize the image using the background map or drawing grid
as a reference as shown in Figure 4. Currently, only image
formats can be imported; importing other formats such as
Adobe PDF is a possible feature for future development.

Once background information is in place, users begin to add
spaces to the selected story. Users create and select spaces in
the left-hand navigator, then use the drawing tools to add
rectangular or polygon geometry to each space. Newly
drawn geometry is added to any existing geometry in the
space, the operation is cancelled if the resulting geometry is
invalid (e.g., the result has multiple non-adjacent polygons
or interior holes). The fill tool adds any geometry clicked to
the currently selected space, which is particularly useful for
quickly replicating similar floor plans across stories. The
eraser tool removes any overlapping geometry in any space.

More detailed space properties, including space name, are
edited by expanding the space grid view using the green
arrow keys next to the space dropdown.

After space geometry is defined, users move to the
assignments tab to create building units, thermal zones, space
types, construction sets, and pitched roofs. These objects are
assigned to spaces by clicking on the appropriate spaces for
a selected object (or via the detailed space properties).

Finally, users create windows or other component definitions
(e.g., daylighting controls, doors, etc.) via the components
tab. Window component definitions have geometric
properties such as height, width, and sill height. Once
component definitions are complete, users can place
instances of these components throughout the building.

Window definitions can represent individual windows,
banded windows defined by window-to-wall ratio, and
repeating windows that repeat at regular intervals. The last
two types of window component definitions are applied to an
entire edge rather than a single point.
5 WEB TECHNOLOGIES
FloorspaceJS is written entirely in JavaScript with a minimal
set of dependencies. The code, available online [17], is
distributed under a 3-clause BSD software license [18] that
allows it to be reused in a wide range of applications.
FloorspaceJS transpiles modern ES2017 syntax using
Babel.js [19] and Webpack [20] to produce code that runs in
today’s browsers. It uses the Vue.js framework [21] with
Vuex [22] for state management, OpenLayers [23] for map
integration, and d3 [24] for drawing.

To use the widget in a third-party application, a developer
downloads an embeddable version of the widget from the
release pages [25] and includes this code in their application
as an iframe. An initialization Application Programming
Interface (API) is available to allow the developer to
customize the widget for their application (e.g., SI vs IP
units). Finally, the developer calls the import and export
APIs to pass data back and forth in the FloorspaceJS JSON
format. An example integration of the widget into a web
application is available online [26].

6 TRANSLATION TO THREE DIMENSIONS
The FloorspaceJS JSON format describes 2D geometry only.
Many BEM tools, including EnergyPlus [27], require 3D
geometry for their calculations. Therefore, a translation from
the 2D FloorspaceJS JSON to a 3D format is required. In
theory, each software application utilizing the FloorspaceJS
widget could implement its own translation functionality.
However, this would place a higher burden on software
applications leveraging the FloorspaceJS widget and would
also potentially result in inconsistent translations. For this
reason, a reference 2D FloorspaceJS JSON to 3D translation
capability has been added to the OpenStudio software
development kit (SDK) [28].

Several 3D BEM formats were considered for translation
output including gbXML, EnergyPlus Input Data Format
(IDF), and OpenStudio Model (OSM) formats. In the end,
the ThreeJS JSON model format 3 [29] was selected as the
translation output format as it can be readily previewed using
web technologies and can support additional application
specific properties. Translation from 3D ThreeJS JSON to
gbXML, IDF, and OSM is relatively straightforward.
Translation from 3D ThreeJS JSON to OSM format has been
implemented in the OpenStudio SDK, which itself has
existing OSM to gbXML and IDF translators.

5
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 3. Initial map view

Figure 4. Image overlaid on background map

Figure 5. Space geometry

6
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 6. Space property grid view

Figure 7. Thermal zoning

Figure 8. Window and daylight sensor placement

7
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

By carefully restricting the software dependencies used in
the FloorspaceJS JSON to ThreeJS JSON conversion, the
authors have extracted all the code necessary for this
translation out of the OpenStudio SDK and into a smaller
standalone C++ library. A proof of concept was completed
to compile this library to pure JavaScript using Emscripten
[30]. The resulting JavaScript library can then be used to
translate FloorspaceJS JSON to ThreeJS JSON entirely in
JavaScript using the client browser. Figure 9 shows a small
web application which has translated the example
FloorspaceJS JSON developed in Section 4 and displays
the ThreeJS JSON output in a web browser.

Figure 9. Web Based 3D Preview

This web-based translation proof of concept has not yet
been released or incorporated into the FloorspaceJS
widget. At present, web-based translation can only support
translation to ThreeJS JSON, it cannot produce OSM, IDF,
or gbXML as the additional dependencies of those
conversions have not been compiled using Emscripten.
However, all translation functionality is available in the
OpenStudio SDK for the C++, C#, and Ruby languages.
An OpenStudio Measure [31] for converting FloorspaceJS
JSON to OSM is also available.

7 FUTURE WORK
FloorspaceJS makes two major contributions to the BEM
community. First, an open-source, web-enabled geometry
editor widget lowers the barrier to developing BEM
desktop or web applications. Second, the FloorspaceJS
JSON schema enables developers to integrate the editor
with their own applications or leverage its output in custom
workflows.

Future work may include continued development of web-
based 2D to 3D translation functionality. Currently, certain
functionalities, such as adjacent space detection, are not yet
available in the proof of concept web-based translation.
Once these features are stable, the web-based translator
could be easily integrated with the FloorspaceJS widget to
provide a pure JavaScript widget which outputs 3D
geometry in ThreeJS JSON format.

The FloorspaceJS developers hope that this contribution
can be leveraged by the BEM community in new and
creative ways. One possibility is the large body of work
being developed around extracting building footprint data
from geographic information system (GIS) information

[32] [33]. Extruding the exterior building footprint alone
generally does not provide sufficient geometric detail for
BEM as it does not include separate perimeter and core
heating, ventilating, and air-conditioning zones designed
for most large buildings. There are methods [34] [35] [36]
[37] to apply automatic thermal zoning algorithms to
arbitrary building footprints, which will be useful for
converting building footprints to usable energy models at
city scale. It may be possible for these automatic zoning
algorithms to provide output in FloorspaceJS format. In
this way, the energy model could be refined and updated as
needed in further manual processes.
8 ACKNOWLEDGEMENTS
The authors would like to thank the U.S. Department of
Energy’s Building Technologies Office and the Bonneville
Power Administration for funding the initial development
of FloorspaceJS.
REFERENCES
1. D. B. Crawley, J. W. Hand, M. Kummert, and B. T.

Griffith, "Contrasting the capabilities of building
energy performance simulation programs," Building
and environment, vol. 43, no. 4, 2008.

2. M. Deru, K. Field, D. Studer, K. Benne, B. Griffith,
P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M
Rosenberg, M. Yazdanian, J. Huang, and D.
Crawley, "US Department of Energy commercial
reference building models of the national building
stock," 2011.

3. B. Griffith, N. Long, P. Torcellini, R. Judkoff, D.
Crawley, and J. Ryan, "Assessment of the technical
potential for achieving net zero-energy buildings in
the commercial sector," National Renewable Energy
Laboratory (NREL), Golden, CO., 2007.

4. M. Heidarinejad, N. Mattise, M. Dahlhausen, K.
Sharma, K. Benne, D. Macumber, L. Brackney, and
J. Srebric, "Demonstration of reduced-order urban
scale building energy models," Energy and
Buildings, vol. 156, 2017.

5. V. Bazjanac, "Space boundary requirements for
modeling of building geometry for energy and other
performance simulation," in CIB W78: 27th Int.
Conf., 2010.

6. C. M. Rose and V. Bazjanac, "An algorithm to
generate space boundaries for building energy
simulation," Engineering with Computers, vol. 31,
no. 2, 2015.

7. W. Yan, M. Clayton, J. Haberl, J. WoonSeong, J.
Bun Kim, K. Sandeep, J. Bermudez, and M. Dixit,
"Interfacing BIM with building thermal and
daylighting modeling," in 13th Int. Conf. of the Int.
Building Performance Simulation Assoc., 2013.

8
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

8. N. Yu, Y. Jiang, L. Luo, S. Lee, A. Jallow, D. Wu, J.
I. Messner, R. M. Leicht, and J. Yen, "Integrating
BIMserver and OpenStudio for energy efficient
building," Computing in Civil Engineering, 2013.

9. Y. K. Cho, Y. Ham, and M. Golpavar-Fard, "3D as-
is building energy modeling and diagnostics: A
review of the state-of-the-art," Advanced
Engineering Informatics, vol. 29, no. 2, 2015.

10. [Online]. Available: http://www.remrate.com/

11. James J. Hirsch and Associates, "eQuest
Introductory Tutorial, version 3.64," 2010. [Online].
Available: http://doe2.com/download/equest/eQ-v3-
64_Introductory-Tutorial.pdf.

12. E. Wilson, "Using BEopt to Optimize Home Energy
Performance," Home Energy, July/August 2015.

13. [Online]. Available: http://gbxml.org/

14. [Online]. Available: http://json-schema.org/

15. [Online]. Available:
https://github.com/NREL/floorspace.js/blob/develop/
schema/geometry_schema.json

16. [Online]. Available:
https://nrel.github.io/floorspace.js/

17. [Online]. Available:
https://github.com/NREL/floorspace.js

18. [Online]. Available:
https://opensource.org/licenses/BSD-3-clause

19. [Online]. Available: https://babeljs.io/

20. [Online]. Available: https://webpack.js.org/

21. [Online]. Available: https://vuejs.org/

22. [Online]. Available: https://vuex.vuejs.org/

23. [Online]. Available: https://openlayers.org/

24. [Online]. Available: https://d3js.org/

25. [Online]. Available:
https://github.com/NREL/floorspace.js/releases

26. [Online]. Available:
https://nrel.github.io/floorspace.js/embedded.html

27. D. B. Crawley, L. K. Lawrie, F. C. Winkelmann,
W.F. Buhl, Y. J. Huang, C. O. Pedersen, R. K.
Strand, R. J. Liesen, D. E. Fisher, M. J. Witte, and J.
Glazer, “EnergyPlus: creating a new-generation
building energy simulation program,” Energy and
Buildings, vol. 33, no. 4, 2001.

28. R. Guglielmetti, N. Long, and D. Macumber,
“OpenStudio: An Open Source Integrated Analysis
Platform,” Proc. Building Simulation 2011: 12th
Conf. Int. Building Performance Simulation Assoc.,
2011.

29. [Online]. Available:
https://github.com/mrdoob/three.js/wiki/JSON-
Model-format-3.

30. [Online]. Available:
https://github.com/kripken/emscripten.

31. A. Roth, D. Goldwasser and A. Parker, "There's a
measure for that!," Energy and Buildings, vol. 117,
2016.

32. M. Brédif, O. Tournaire, B. Vallet, and N.
Champion, "Extracting polygonal building footprints
from digital surface models: A fully-automatic
global optimization framework," ISPRS journal of
photogrammetry and remote sensing, vol. 77, 2013.

33. O. Tournaire, M. Brédif, D. Boldo, and M. Durupt,
"An efficient stochastic approach for building
footprint extraction from digital elevation models,"
ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 65, no. 4, 2010.

34. T. Dogan and C. Reinhart, "Shoeboxer: An
algorithm for abstracted rapid multi-zone urban
building energy model generation and simulation,"
Energy and Buildings, vol. 140, 2017.

35. T. Dogan, C. Reinhart, and P. Michalatos,
"Autozoner: an algorithm for automatic thermal
zoning of buildings with unknown interior space
definitions," Journal of Building Performance
Simulation, vol. 9, no. 2, 2016.

36. E. Rodrigues, A. R. Amaral, A. R. Gaspar, Á.
Gomes, M. C. Gameiro da Silva, and C. H. Antunes,
"GerAPlanO-A new building design tool: design
generation, thermal assessment and performance
optimization," Energy for Sustainability, 2015.

37. Y. Chen, T. Hong, and M. A. Piette. “Automatic
Generation and Simulation of Urban Building
Energy Models Based on City Datasets for City-
Scale Building Retrofit Analysis,” Applied Energy,
vol. 205, 2017.

	1 INTRODUCTION
	2 DESIGN
	3 SCHEMA
	4 EDITOR FEATURES
	5 WEB TECHNOLOGIES
	6 TRANSLATION TO THREE DIMENSIONS

