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Abstract

Today’s electric vehicle (EV) owners charge their 
vehicles mostly at home and seldom use public direct 
current fast charger (DCFCs), reducing the need for 

a large deployment of DCFCs for private EV owners. 
However, due to the emerging interest among transportation 
network companies to operate EVs in their fleet, there is great 
potential for DCFCs to be highly utilized and become 
economically feasible in the future. This paper describes a 
heuristic algorithm to emulate operation of EVs within a 
hypothetical transportation network company fleet using 
a large global positioning system data set from Columbus, 
Ohio. DCFC requirements supporting operation of EVs are 
estimated using the Electric Vehicle Infrastructure Projection 
tool. Operation and installation costs were estimated using 

real-world data to assess the economic feasibility of the 
recommended fast charging stations. Results suggest that 
the hypothetical transportation network company f leet 
increases daily vehicle miles traveled per EV with less overall 
down time, resulting in increased demand for DCFC. Sites 
with overhead service lines are recommended for hosting 
DCFC stations to minimize the need for trenching under-
ground service lines. A negative relationship was found 
between cost per unit of energy and fast charging utilization, 
underscoring the importance of prioritizing utilization over 
installation costs when siting DCFC stations. Although this 
preliminary analysis of the impacts of new mobility para-
digms on alternative fueling infrastructure requirements has 
produced several key results, the complexity of the problem 
warrants further investigation.

Introduction

Today’s electric vehicle (EV) owners charge their vehicles 
mostly at home and seldom use public direct current fast 
charger (DCFCs), reducing the need for a larger deploy-

ment of DCFCs for private EV owners. However, due to the 
emerging interest among transportation network companies 
(TNCs), whose operation may require quick fueling, there is 
potential for DCFCs to be highly utilized and become economi-
cally feasible in the future as EV ride-hailing business evolves.

Despite their ability to charge EVs quickly, the deploy-
ment of DCFCs is currently limited because of the high costs 
of both operation and installation that render the deployment 
economically infeasible. The potential for high utilization by 
ride-hailing EVs is a key to the economics of DCFC deploy-
ment; however, both the operation cost and installation cost 
can vary dramatically depending on various factors. Past 
studies pointed out great uncertainty in identifying and quan-
tifying significant cost factors of DCFCs [1, 2]. At the same 
time, much uncertainty persists in the operational character-
istics of TNC fleets and how they may evolve in the future [3, 
4, 5, 6, 7]. Therefore, there is much interest in rigorous research 
on assessing economic feasibility of DCFCs for TNCs in both 
industry and academia.

The U.S. Department of Energy’s SMART (Systems and 
Modeling for Accelerated Research In Transportation) 
Mobility Advanced Fueling Infrastructure Pillar team 
conducted simulations to estimate potential DCFC needs 
(location, number of plugs, and electricity demand) by a hypo-
thetical EV ride-hailing service in Columbus, Ohio. Operation 
cost and installation cost were estimated using real-world data 
to assess the economic feasibility of DCFCs at the recom-
mended locations. This paper describes the methodology 
developed for this study. It also provides key findings of simu-
lation and analysis conducted by the three participating 
national laboratories-Argonne National Laboratory (ANL), 
Idaho National Laboratory (INL), and the National Renewable 
Energy Laboratory (NREL).

INRIX Global Positioning 
System Travel Trajectories
Understanding vehicle driving and parking patterns is key to 
determining EV charging infrastructure requirements. Shared 
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vehicles likely have different driving patterns than personal-
use vehicles. Therefore, analysis of ride-hailing vehicle use 
patterns was necessary as a first step in estimating DCFC 
needs for ride-hailing EVs. Given the lack of available ride-
hailing data sets, this analysis first develops a procedure for 
synthesizing TNC activity patterns from personally owned 
vehicle datasets and applies said procedure to an example 
dataset from Columbus, Ohio.

Original INRIX GPS Data Set
NREL acquired individual anonymized global positioning 
system (GPS) travel trajectories from INRIX [8], which 
provided NREL with all GPS travel trajectories (mode imputed 
as driving trips by INRIX) that intersected the Columbus 
region at any time during 2016. Each trajectory features trip-
level data such as start/end times and GPS coordinates 
(including origins, destinations, and intermediate waypoints). 
The INRIX data set contains a total of 7.82 million unique 
device identifiers, 32.9 million trips, 1.04 billion miles of 
driving, and 2.58 billion GPS waypoints. The spatial distribu-
tion of trip destinations in the Columbus area is shown in 
Figure 1.

Down Sampling and 
Processing
The GPS travel trajectories in the INRIX data set are an aggre-
gation of data from several providers and were down-selected 
to include only light-duty vehicles. The subset of data from 
light-duty consumer vehicles consisted of data sourced from 
embedded GPS data (provided primarily by automotive 
manufacturers from in-vehicle navigation systems) and 
mobile devices (provided primarily by applications installed 
in cellular devices). Individual device identifiers from the 
embedded GPSs were systematically reset after each trip, 

making EV charging simulation impossible. As such, 
embedded GPS data were discarded, leaving only light-duty 
consumer vehicle data from mobile device sources. This down-
sampling routine leaves approximately 14% of trips from the 
total INRIX data set available. This cleansed subset includes 
approximately 46.7 thousand unique device identifiers, 1.41 
million full travel days, 4.48 million trips, and 35.8 million 
miles of driving.

Prior to using the INRIX data subset in plug-in electric 
vehicle (PEV) driving/charging simulations, several data 
processing steps were completed, including:

 • Removing the first and last vehicle-day for each device
identifier (in an attempt to remove incomplete
travel days),

 • Editing trip origins to match the previous destination in
the trip chain,

 • Computing trip driving distance as the sum of haversine
distances between the original trip origin, each
waypoint, and trip destination,

 • Estimating home and workplace locations for each
unique device and flagging trips to these locations for
use in PEV driving/charging simulations,

 • Implementing spatial joins on county, ZIP code, Traffic
Analysis Zone, and land use data layers.

Categorizing charging events into home, workplace, and 
public charging requires knowledge of the location type of 
each trip destination. Unlike a typical travel survey, the INRIX 
GPS data set does not report trip purpose. Therefore, the desti-
nation type must be inferred from spatial and temporal 
heuristics applied at the vehicle level. The INRIX data set 
contains multiple travel days for each unique device identifier, 
which enables the analysis of dwell time patterns at recurring 
destinations. The home and workplace location assignment 
algorithm proceeds as follows:

 • For each unique vehicle identifier, destinations with
dwell times greater than a given threshold are selected
and clustered geographically in ~100 m x 100 m cells.
Nine-hour dwell locations are selected for home location
identification, and 4-hour dwell locations at non-home
locations are selected for workplace
location identification.

 • The cumulative dwell time over all travel days is
calculated for each of these cells, and the cell with the
greatest cumulative dwell time is flagged as the home or
work location.

 • Any trips ending within ¼ mile from the home or work
flagged location are considered home or work trips
respectively for this vehicle.

For both home and work/secondary locations, spatial 
attributes such as ZIP code, Traffic Analysis Zone, and land 
use were appended by spatially querying the respective data-
bases and assigned to each vehicle. INRIX travel data were 
validated using two travel surveys, the 2012 California 
Household Travel Survey and the 2011 Massachusetts 
Travel Survey.

 FIGURE 1  Heat map of Columbus trip destination 
frequency in INRIX data set (source [9]).
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Ride-Hailing 
Emulation Algorithm

Methodology
City-level analyses on the broad impacts of TNC systems have 
been conducted through surveys and field data collection [10] 
due to the lack of detailed data provided by TNCs. The absence 
of data sets that may uncover impacts of such mobility systems 
is a barrier in quantifying their benefits and drawbacks. In 
our study, due to the unavailability of data that describe TNC 
vehicle movements, a heuristic was deployed that emulated 
TNC vehicle data for ride-hailing systems, using as inputs 
personal trip data sets. The heuristic process objective is to 
enable matching of personal trips to TNC vehicle IDs, by 
essentially grouping together trips that can be conducted 
consecutively, and by allocating groups to TNC vehicle IDs.

The proposed algorithm, which is portrayed using a sche-
matic representation in Figure 2, first identifies trip candidates 
that can be conducted consecutively based on the location and 
time of their destinations and origins. In this step, a candidacy 
list Ci was created that contains all trips j ≠ i whose origin is 
within a specified space and time distance from a certain trip’s 
i destination (repeated for all trips in the set I where i,j∈I) by 
imposing two constraints: 1) the down time between trips is 
less or equal to an upper bound t̂  and greater or equal to the 

required time td to cover the distance between the trip’s i desti-
nation and the next trip’s j origin with td = dij/s  (note that dij 
is the distance between the trip’s i destination and the next 
trip’s j origin and s the average speed to cover that distance), 
and 2) the deadheading distance dij is less than or equal to an 
upper bound d̂. There is no provision that allows prospective 
TNC riders to wait for TNC vehicles and depart later than the 
desired time (which is the time of departure as defined in the 
personal trip data set) since trip origin and destination times 
are strictly set and are not flexible. This assumption also implies 
that the trips’ times and distances, as well as routes, have not 
changed or been impacted due to the TNC vehicle operation 
and are the same as the ones in the personal trip data set.

The second step of the heuristic involves determining 
which trip j that is included in the candidacy list of i will be 
conducted in sequence-this process constitutes trip-matching. 
The trip j that belongs to Ci with the minimum deadheading 
distance (MIN(dij), j ∈ Ci) is selected and conducted after i, 
under the assumption that the driver of the TNC automobile 
or the application that assigns that vehicle to the next trip goal 
is the minimum of the deadheading distance between the 
trips in a sequence.

Note that the heuristic described above does not assign 
trips that cannot be grouped with other trips to TNC vehicle 
IDs due to the time and location constraints set. The assump-
tion was that those trips were conducted by a personal vehicle. 
The heuristic algorithm was implemented in Python 2.7.12 
leveraging the processed INRIX data.

 FIGURE 2  Schema of heuristic process for pseudo TNC trip data emulation.
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Results and Discussion
The methodology was applied to 5,000 passenger travel-days 
from personal GPS trip data from Columbus. Trips are 
assumed to be completed in individual vehicles without 
allowing for sharing/pooling. The ride-hailing emulation 
attempts to match trips by minimizing deadheading distance 
and wait time with constraints of a maximum of 5 miles or 
20 minutes between a given destination and potential next 
origins. Ride-hailing vehicles must satisfy the same travel 
demand (all trips are served by these vehicles). Trip chains are 
thus locally optimized, meeting the objective of minimum 
deadheading distance for each TNC vehicle, but not globally 
at the system level.

Table 1 compares summary statistics for the original 
and pseudo-synthetic ride-hailing data sets. Fewer ride-
hailing vehicles complete more trips due to the addition of 
deadheading trips, connecting passenger drop-off and 
pick-up locations. These results are highly dependent on the 
constraints used for trip matching. With no time or distance 
constraints between two consecutive trips, the number of 
vehicles is reduced drastically while the total system vehicle 
miles traveled (VMT) increases further. In contrast, with 
a more stringent deadheading distance constraint of 2 miles, 
the number of ride-hailing vehicles deployed exceeds the 
number of original vehicles due to the inability to match a 
large share of trips. One last caveat is that due to computa-
tional limitations, a sample size of only 5,000 vehicle-days 
of travel was used. A larger sample size may increase 
the  probability of matching trips and potential ly 
increase  system-wide efficiencies. The small sample set 
used  here ref lects an early-stage ride-hailing market. 
Simulating a larger sample set, potentially segregating “ride-
hailing candidates” and “personal vehicles” would provide 
a better projection of a more mature ride-hailing 
market segmentation.

PEV Charging 
Infrastructure Simulation

EVI-Pro Methodology
NREL developed the Electric Vehicle Infrastructure Projection 
(EVI-Pro) tool in partnership with the California Energy 
Commission to estimate regional requirements for charging 
infrastructure to support consumer adoption of PEVs [11, 12]. 
EVI-Pro uses PEV market projections and real-world travel 
data to estimate future requirements for residential, work-
place, and public charging under a variety of scenarios. The 
model aims to anticipate spatially and temporally resolved 
consumer charging demand while capturing variations with 
respect to residents of single-unit dwellings (SUDs) and multi-
unit dwellings (MUDs), weekday/weekend travel behavior, 
and regional differences in travel behavior and vehicle 
adoption. A graphical representation of the input/output rela-
tionships in EVI-Pro is shown in Figure 3.

EVI-Pro’s charging behavior emulation assumes that 
consumers aim to complete all their existing travel electrically 
while minimizing operating cost. Several charging scenarios 
are simulated for each consumer. To identify the optimal 
charging scenario, individual travel days from the INRIX 
travel data set (originally completed using a conventional 
gasoline vehicle) are simulated in the model under different 
assumptions for charging infrastructure availability. The latter 
include residential Level 1 (L1) and Level 2 (L2) charging 
stations at SUDs, residential L2 charging stations at MUDs, 
workplace L2 charging stations, public L2 charging stations, 
and public DCFC.

EVI-Pro repeats this charge behavior selection routine 
for all travel days in the study and for all vehicle types under 
consideration. The modeled PEV fleet consists of 20% plug-in 
hybrid electric vehicles with a range of 20 miles (PHEV20), 
20% PHEV50, 20% battery electric vehicles with a range of 
100 miles (BEV100), 20% BEV250, 10% PHEV20 sport utility 
vehicles (SUVs), and 10% BEV250 SUVs for both personal and 
ride-hailing vehicles. The default charging behavior is 

TABLE 1 Personal and simulated ride-hailing 
vehicles comparison.

Metrics Personal vehicles
Ride-hailing 
vehicles

Number of vehicles 5,000 individual 
vehicles

4,834 total vehicles

3,726 ride-hailing 
vehicles chaining 
multiple trips

1,108 single-trip 
vehicles unable to 
chain trips

Number of trips 18,460 individual 
trips

25,115 total trips, 
including 7,112 
additional 
“deadheading” trips

Total system vMT 143,139 miles 148,149 miles

Mean daily vMT 28.6 miles 37.0 miles *

Trip mean distance 7.8 miles 5.9 miles
* Note: the mean daily vehicle miles traveled (vMT) reported here are
for the 3,726 ride-hailing vehicles that were able to chain trips and
exclude the additional “single-trip vehicles” that would skew the mean
daily vMT.
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 FIGURE 3  graphical representation of inputs/outputs and 
data flow in EvI-Pro.
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“home-dominant,” meaning that consumers prefer to charge 
at home, then at their workplace, and then in public locations. 
All drivers, whether of personal or ride-hailing vehicles, are 
modeled as having access to charging at their residence. In an 
automated and driverless future where ride-hailing vehicles 
would be owned by fleet operators, these vehicles would poten-
tially have reliable access to charging at a depot.

This charging demand simulation generates a set of 
charging sessions required to satisfy the travel patterns 
displayed in the data in a way that maximizes electric miles 
traveled and minimizes operational cost. These charging 
sessions are then post-processed spatially and temporally to 
output electric vehicle supply equipment requirements and 
use for the Columbus region.

Simulation Results
Estimated PEV charging infrastructure requirements are 
shown by mode and plug type in Table 2. Uncertainty in these 
estimates is driven by several factors that were not explicitly 
modeled in EVI-Pro, including: uncertainty in PHEV demand 
for public charging, consumer access to home charging at 
MUDs, consumer ability to make shared use of public 
charging stations, and consumer tolerance for station/destina-
tion proximity. EVI-Pro provides a range of values in an 
attempt to quantify these uncertainties. The values presented 
below are midpoints.

While residential charging requirements remain similar 
for personal and ride-hailing vehicles, the demand for non-
residential charging is drastically different. Shorter dwell 
times at work reduce the demand for workplace charging by 
28%, while more frequent dwell events in public locations 
combined with higher daily VMT increases the need for public 
L2 and DCFC by 83% and 82%, respectively.

PEV Charging 
Infrastructure Cost Analysis
Siting DCFC where use is expected to be high is important to 
increase the economic feasibility of DCFC for station owners. 
However, demand for charging is not the only factor that 

should be considered when choosing DCFC site locations. The 
cost to install and operate DCFC also should be considered. 
Not only can costs be high, but they also vary widely depending 
on how the DCFC is used and where it is located.

Operating and capital costs were estimated for the DCFC 
candidate locations output by EVI-Pro to show relationships 
between cost, use, and location.

Operation Cost of 
Charging Infrastructure
EV charging station operators must buy electricity from local 
utility companies unless the station is owned by a utility 
company or generates its own electricity on-site. In this 
section, the operation costs of a group of EV charging stations 
were assessed. The analysis includes two major assumptions: 
1) the station operator must buy all the station’s electricity
from utility companies, and 2) the operator is a standalone
business, that is, it buys electricity exclusively for the
charging station.

Cost Estimation The monthly electricity bill is deter-
mined by the applied rate plan of the utility company, as well 
as the electricity consumption and maximum demand of the 
charging station.

Rate Schedules. Utility companies usually have multiple 
rate plans designed for different groups of users with varying 
voltage requirements and maximum demands. A rate plan 
is composed of base charges including monthly charge, 
energy charge, demand charge, and so on, as well as riders, 
which may be flat rates, may depend on energy or power 
consumption; or may be a percentage increase on the base 
bill. In addition, some utilities have rates that differ 
depending on the season and the time of day. For example, 
some utilities charge higher rates during the summer or 
daytime when electricity demand tends to be higher [13]. 
Disincentivizing electricity use during these times reduces 
peak demand (peak power usage) and puts less strain on the 
utility’s generators [14]. A customer may be eligible for more 
than one rate plan. Peak demand usually determines rate 
plan eligibility.

Table 4 lists types of utility charges and corresponding 
symbols for use in bill calculation equations. Table 5 lists some 
of the rate plans used by Columbus Southern Power Company 
[15], one of the two American Electric Power (AEP) companies 
that operate in Ohio and dominates the electricity supply in 
Columbus, Ohio, the location of the 12 hypothetical charging 
stations modeled in this analysis.

To determine which rate plan to use for the simulated 
charging station electricity bills, their user type and eligibility 
need to be identified. Residential rate types are excluded since 
the DCFC stations in this study are targeted for commercial 
use. Rates for the primary distribution system, subtransmis-
sion, and transmission at greater than 480-V service are 
excluded [16]. Rates with power demand requirements below 
24  kW are also excluded because even low-power DCFC 
stations charge at a minimum of 24 kW [17]. Eligibility is 
determined by the charging station maximum demand.

TABLE 2 Infrastructure requirements that would be 
necessary to support electrification of the two vehicle groups 
(5,000 personal vehicles; 3,726 ride-hailing vehicles plus 1,108 
personal vehicles).

Charger type

# plugs 
(personal 
vehicles)

# plugs
(ride-hailing 
vehicles)

Ratio 
ride hailing
personal

 −
 
 

Home SUd L1 3,732 3,555 0.95

Home SUd L2 172 212 1.23

Home MUd L2 702 702 1.00

Work L2 222 160 0.72

Public L2 211 387 1.83

Public dCFC 13 24 1.85©
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Table 6 shows the basic profiles of 12 charging stations 
simulated by NREL, including energy usage, maximum 
demand, number of charging sessions, and time spent at the 
station for one day of various theoretical conditions in a future 
Columbus. According to Table 6, maximum demand ranges 
from 20.5 kW (Stations 10 and 12) to 82.06 kW (Station 1), 
indicating GS-2 Secondary Service is the most appropriate 
rate schedule.

Customer Inputs. In addition to the utility company rate 
schedule, estimating the charging station monthly bill requires 
knowing its electricity usage. The monthly energy usage is 
estimated by multiplying the daily energy usage by 30. Table 
6 is the major source of customer data, and Table 7 lists the 
customer inputs needed to estimate the monthly bill.

This study uses the Ohio Power Company - Columbus 
Southern Power Rate Zone Bill Calculation Spreadsheet to 
estimate monthly electricity bills [15]. The spreadsheet receives 
a month-long hourly energy usage profile (in kilowatt-hours) 
and outputs the approximate monthly bill from that data for 
each applicable rate plan. For the GS-2 Secondary Service rate 
plan, the simplified equation for the monthly bill is:

Monthly bill M D D Rc c u c= + + , (1)

where Mc is monthly charge, Dc is demand charge, Du is 
customer maximum demand, and Rc is total applicable riders.

If more than one utility supplies the target charging 
station, the equation for a monthly electricity bill must include 
all types of charges in the relevant rate plan of each utility. 
The equation is:

Monthly bill MB DAYS, E E D D ON ON

OFF OFF OND OND

c c u c u c u

c u c

= + +(
+ +

MAX

uu c

u u u u
c

OFFD IF

OFFD OND , OFFD OND ,
SUR

+

− > − )( ) +





0 0 1

100
,

 (2)

where.
MBc  minimum bill
DAYS number of days this month
Ec   energy charge
Eu   energy usage
ONc  on-peak energy charge
ONu  on-peak energy usage
OFFc  off-peak energy charge
OFFu  off-peak energy usage
ONDc  on-peak energy demand charge
ONDu on-peak energy demand

TABLE 4 Types of charges composing utility electric bills.

Type of Charge Symbol Unit Description
Monthly charge Mc $ Customer, metering, and other monthly charges

Energy charge Ec $/kWh Energy, regulatory, and other kWh charges

demand charge Dc $/kW Charge for highest power demand this month

Non-IdR power charge NIDRc $/NCP kW Power charge for loads <700 kW, calculated with max power demand during 
this month

IdR power charge IDRc $/4CP kW Power charge for loads > = 700 kW, calculated with max power during four 
critical time periods specified by the utility

Summer seasonal energy 
charge

Sc, s $/kWh Energy rate during the summer

Summer on-peak energy 
charge

ONc, s $/kWh Charge for energy used during the on-peak during the summer

Summer off-peak energy 
charge

OFFc, s $/kWh Charge for energy used during the off-peak during the summer

Summer demand charge Dc, s $/kW Charge for maximum power demanded during the summer

Winter seasonal energy 
charge

Sc, w $/kWh Energy rate during the winter

Winter on-peak energy 
charge

ONc, w $/kWh Charge for energy used during the on-peak during the winter

Winter off-peak energy 
charge

OFFc, w $/kWh Charge for energy used during the off-peak during the winter

Winter demand charge Dc, w $/kW Charge for maximum power demanded during the winter

Riders Rc $ Total rider contribution; fees utilities charge to compensate for various losses, 
such as energy loss in electricity transmission

Additional variable costs Ac $ various other costs (primarily included in subsequent equations to 
accommodate complicated energy, demand, and rider pricing schemes)

on-peak energy charge ONc $/kWh Charge for energy used during the on-peak

off-peak energy charge OFFc $/kWh Charge for energy used during the off-peak

on-peak demand charge ONDc $/kW Charge for maximum demand during the on-peak

off-peak demand charge OFFDc $/kW Charge for maximum demand during the off-peak

Minimum bill MBc $/day The minimum amount the customer must pay this month

Surcharge SURc % A percent increase on the total bill ©
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OFFDc off-peak energy demand charge
OFFDu off-peak energy demand
SURc surcharge

The function MAX(val_1, val_2) returns the greater of 
val_1 and val_2, and the function IF(condition, val_1, 
val_2) returns val_1 if the condition is true, and 
val_2 otherwise.

Results Table 8 shows the estimated monthly electricity 
bill for the 12 simulated charging stations in Columbus. The 
total electricity cost ranges from $316.5 to $1,397.11. Cost 
efficiency is calculated by dividing the monthly electricity 

TABLE 5 Columbus Southern power rate plans [13].

Schedule Rate Plan Eligibility
R-R Residential service Available for residential electric service through one meter to 

individual residential customers

RLM Residential optional demand Rate Available for optional residential electric service through one meter 
to individual residential customers. Requires the installation of 
demand metering facilities.

RS-ES Residential Energy Storage Available to residential customers who use energy storage devices 
with time-differentiated load characteristics approved by the 
Company

RS-Tod Residential Time-of-day Available to individual residential customers. Availability is limited to 
the first 500 customers applying for service under this schedule.

RS-Tod 2 Experimental Residential Time-of-day Available to individual residential customers on a voluntary, 
experimental basis. Availability is restricted to customers served by 
the circuits designated for the Company's gridSMART pilot program.

gS-1 general Service - Small Available for general service to customers with maximum demands 
less than 10 KW.

gS-2 general Service 
- Low Load 
Factor

Secondary distribution system3 Available for general service lo customers with maximum demands 
of 10 KW or greater.Primary distribution system

Subtransmission

Transmission

gS-2-Tod general Service - Time-of-day Available for general service customers with maximum demands 
less than 500 kW, Availability is limited to secondary service and the 
first 1,000 customers applying for service under this schedule.

gS-3 general Service 
- Medium Load 
Factor

Secondary distribution system Available for general service to customers with maximum demands 
of 50 KW or greater.Primary distribution system

Subtratismission

Transmission

gS-4 general Service 
-Large

Primary distribution system Available for general service to customers with maximum demands 
in excess of 1000 KvA.Subtransmission

Transmission
Source: Public Utilities Commission of ohio, “AEP ohio Standard Tariff” AEP ohio (2017)©
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TABLE 6 Simulated Charging Stations in Columbus, ohio.

No. Sessions
No. of 
plugs

Daily energy 
usage (kwh)

Maximum 
demand (kw)

1 6 2 117.81 82.06

2 17 4 297.11 61.5

3 2 2 85.24 61.5

4 2 2 91.51 61.5

5 6 2 94.17 66.85

6 6 2 155.66 61.5

7 48 7 638.35 78.91

8 2 1 17.58 28.93

9 3 1 30.75 28.75

10 2 1 26.63 20.5

11 7 2 52.91 33.55

12 3 1 23.36 20.5©
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TABLE 7 Customer inputs needed to calculate electricity 
bills [14].

Input Symbol Unit Description
Monthly Energy 
usage

Eu kWh kWh used this month

Maximum demand Du kW Highest power needed 
this month

Maximum demand 
from previous year

ADu kW Highest power 
demand last year

on-peak energy 
usage

ONu kWh Total on-peak energy 
used this month

off-peak energy 
usage

OFFu kWh Total off-peak energy 
used this month

on-peak demand ONDu kW Maximum on-peak 
demand

off-peak demand OFFDu kW Maximum off-peak 
demand

Number of days this 
month

DAYS days Total number of days 
in this month©
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bill by the total energy usage. Figure 5 shows a negative corre-
lation between cost efficiency and number of charging 
sessions in a month. Cost per unit of energy usage decreases 
as number of charging sessions increase at a charging station. 
This relationship is caused by the monthly demand charge 
averaging out with increased energy use from more 
charging sessions.

Installation Cost of Charging 
Infrastructure
DCFC operation is important to the DCFC vendor’s long term 
economic viability; at the same time, installation costs can be 
a significant burden in materializing a DCFC vendor business. 
Installation costs of DCFCs can vary depending on many 
different technical and environmental factors. Cost data for 
EV charge infrastructure are currently limited and can be 
found in few peer-reviewed journal articles [1, 2].

DCFC installation costs were collected from the U.S. 
Department of Energy’s EV Project and are summarized 
as follows:

 • Average cost = $23,662

 • Median cost = $22,626

 • Minimum = $8,500

 • Maximum = $50,820

The total cost of the installations cited above includes
only costs paid to the electrical contractors to install Blink 
DCFCs. This cost would typically include permit costs, engi-
neering drawings, contractor’s installation and administration 
labor, subcontracted construction labor or equipment (e.g., 
concrete, asphalt, trenching, and boring), and materials other 
than the DCFC itself. To evaluate the cost drivers for DCFC 
installations during the EV Project, some of the features of 
the installed hardware and site conditions were examined. 
The following were found to be significant DCFC installation 
cost drivers observed during the EV Project that are not 
specific to the Blink dual-port DCFC. Their impact on instal-
lation costs would be applicable for any installation of a DCFC 
unit rated at 20 kW or more:

1. Electrical service upgrade
2. Ground surface conditions
3. Materials

DCFC installations often require new electrical service to be 
added to the host’s site. The cost of these installations was 
significantly higher than those that did not require new 
service. The magnitude of this cost increase depends on
existing electrical services at the host site and costs from the 
electric utility to install a new metered electrical service. 
Electrical service extension costs also varied depending on

TABLE 8 Simulated Charging Stations’ Monthly Electricity Bill Estimation.

Location

No. of 
Sessions 
(monthly)

Daily Total 
Energy 
Usage (kWh)

Monthly Total 
Energy Usage 
(kWh)

Maximum 
Demand 
(kW)

Monthly 
Charge ($)

Demand 
Charge ($) Riders ($) Total ($)

Cost 
Efficiency 
($/kWh)

1 180 117.81 3,534.40 82.06 9.04 331.11 899.14 1,239.29 0.35

2 510 297.11 8,913.42 61.5 9.04 248.03 1,140.04 1,397.11 0.16

3 60 85.24 2,557.22 61.5 9.04 248.03 669.19 926.26 0.36

4 60 91.51 2,745.31 61.5 9.04 248.03 683.12 940.19 0.34

5 180 94.17 2,825.13 66.85 9.04 269.81 730.34 1,009.19 0.36

6 180 155.66 4,669.68 61.5 9.04 248.03 825.67 1,082.74 0.23

7 1,440 638.35 19,150.64 78.91 9.04 318.20 2,029.16 2,356.40 0.12

8 60 17.58 527.32 28.93 9.04 116.55 268.79 394.38 0.75

9 90 30.75 922.40 28.75 9.04 115.75 296.71 421.49 0.46

10 60 26.63 922.40 20.5 9.04 82.68 224.78 316.50 0.40

11 210 52.91 1,587.35 33.55 9.04 135.51 383.75 528.30 0.33

12 90 23.36 700.90 20.5 9.04 82.68 217.48 309.19 0.44

Average 260 135.92 4,077.73 50.50 9.04 203.7 697.35 910.09 0.36 ©
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 FIGURE 5  Correlation between cost efficiency and number 
of sessions
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Note that for AEP Southern Power Company’s gS-2 Secondary Service, the nominal energy charge is not included. All the charges related to 
energy usage are included in applicable riders. For information about gS-2 Secondary Service, please check “2017-08-28_AEP_ohio_Standard_
Tariff” 6th Revised Sheet No.221-1, available at: https://www.aepohio.com/global/utilities/lib/docs/ratesandtariffs/ohio/2017-08-28_AEP_ohio_
Standard_Tariff.pdf

https://www.aepohio.com/global/utilities/lib/docs/ratesandtariffs/Ohio/2017-08-28_AEP_Ohio_Standard_Tariff.pdf
https://www.aepohio.com/global/utilities/lib/docs/ratesandtariffs/Ohio/2017-08-28_AEP_Ohio_Standard_Tariff.pdf
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the electric utility’s policies for aboveground or underground 
service. Overhead service is typically less expensive and 
quicker than trenching for an underground service extension. 
The cost of underground service extension varies depending 
on the distance (i.e., the length of the underground passage) 
from the transformer. Therefore, to determine the economical 
suitability of the location for DCFC installation, each site 
needs to be vetted for available power and proximity to 
existing power service. To quantify association between total 
installation cost and the above-mentioned cost drivers, several 
attributes of the DCFC sites from the EV Project were collected 
via invoices and interviews with the contractors as needed.

An ordinary least-squared regression was estimated to 
examine the statistical association between total cost and the 
identified cost drivers. The coefficient estimates and the 95% 
confidence intervals are shown in Table 10. The mean DCFC 
installation cost at a site without electricity service upgrade is 
estimated to be $18,290. This installation cost is significantly 
affected by the electricity service upgrade, which adds an addi-
tional cost of between $1,354 and $7,763. The cost of service 
upgrade depends on whether the service is overhead or under-
ground. If the electricity service is underground, the cost of 
service upgrade is affected by the type of ground service and 
the distance of the needed underground power feed. If the 
ground surface is gravel rather than concrete or asphalt, instal-
lation cost is estimated to reduce by between $231 and $9,143 
and the cost of trenching or boring for DCFC installation, if 
required, is estimated at between $38.79 and $174.59 per foot.

Low-cost installations require sufficient electrical power 
at the site to accommodate the DCFC and a simple installation 
with either short underground conduit runs or surface-
mounted conduit. All suggested locations that are within AEP 
Ohio’s service territory have adequate facilities to serve a 
60-kwh DCFC. Because service upgrade is not necessary, the 
relative difference in installation costs among the proposed
DCFC installation sites primarily would be affected by the

costs of trenching and boring that are required to extend the 
service lines if the service lines are underground. Figure 6 
shows the map of Location #10 as a location with a potentially 
low installation cost. As shown in the map, overhead power 
lines, which are shown with blue lines, conveniently extend 
around the parking lot of a large retail store, making it conve-
nient for installing DCFCs on parking space without a need 
for extensive underground work. As discussed above, instal-
lation cost can be compounded by long underground conduits 
and surface conditions that are expensive to restore. On the 
other hand, Location #5 (Figure 7) has limited access to the 
overhead service line. In Location #5, electrical service is 
provided to the nearby amenities mostly via underground 
lines. Therefore, if DCFC is to be installed in the nearby 
parking space, a considerable amount of trenching and boring 
would be required, which is estimated to cost from $38.79 to 
$174.59 per foot. Moreover, because the ground surface is 
either concrete or asphalt, installation costs for this location 
can potentially be much more expensive; the above estimates 
for the cost model show the cost increase would be between 
$231 and $9,143 relative to when the ground surface is gravel.

Total Cost of Charging 
Infrastructure
Total capital expenditure was calculated on a monthly basis 
and combined with monthly operating expenses to determine 
the total cost of charging infrastructure. Capital cost of a 
single DCFC unit (i.e., one plug) was assumed to be $40,000. 
Each additional DCFC plug per site was assumed to add an 
additional $40,000. Because the exact installation location of 
DCFCs at each of the recommended sites is unknown and a 
slight change in the installation position may significantly 
affect the installation cost, a range of installation costs was 
computed based on the results from Table 10. Capital costs 
for each site were added to the range of expected installation 
costs for each site to provide total capital cost. The total cost 
was amortized over 10 years at an 8% discount rate to deter-
mine a monthly capital expenditure. Total operating costs for 
each site were assumed to be the electricity cost, as shown in 
Table 8, plus $100/month for warranty, maintenance, network 
service, and other fees. Total monthly cost for each site was 
determined by adding the total monthly capital cost and the 
total monthly operating cost.

To put total cost in terms that are relatable to revenue, 
the total cost of charging infrastructure at each location was 
divided by the number of charging sessions. Figure 8 shows 
this cost. The horizontal bar represents the total operating 

TABLE 9 Attributes data collected.

Variable Name Description
Service Upgrade Binary variable where 1 indicates that new 

service was required and 0 indicates new 
service was not required

Underground 
Service

Binary variable where 1 indicates that new 
service was required and 0 indicates new 
service was not required

gravel Binary variable where 1 indicates that 
ground surface is gravel and 0 indicates 
either asphalt or concrete

distance distance of underground power feed in feet©
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TABLE 10 Coefficient estimates.

Coefficient Standard. Error P-value 2.5% 97.5%
Intercept 18,290.26 863.02 <0.01 16,574.63 20,005.88

Service Upgrade 4,559.02 1,611.92 <0.01 1,354.61 7,763.41

Underground × distance 106.69 34.15 <0.01 38.79 174.59

Underground × gravel −4,687.10 2,241.56 <0.05 −9,143.19 −231.02

R-squared: 0.204

Adjusted R-squared: 0.176©
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 FIGURE 6  Map of Location #10. Satellite imagery credit: © 2017 google, Map data © 2017 Tele Atlas.
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 FIGURE 7  Map of Location #5. Satellite imagery credit: © 2017 google, Map data © 2017 Tele Atlas.
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cost plus the mean total capital cost. The error bars represent 
the range of expected installation costs.

Because some of the recommended locations expect low 
utilization, the uncertainty in the installation cost can affect 
their total cost per session considerably. However, as the 
number of sessions increases, the effect of installation cost 
variation is minimized, and operation costs dominate the 
total cost. Therefore, when siting DCFC stations, priority 
should be placed on choosing a location with potential for 
high utilization rather than choosing a location with minimal 
installation cost.

Conclusions
EVI-Pro recommended 12 sites for DCFC installations to 
support a hypothetical PEV ride-hailing service in Columbus, 
Ohio. The total electricity cost at the recommended sites was 
estimated to range from $316 to $1,397. Cost per unit of energy 
use decreases as sites experience more charging sessions 
because fixed demand charges are distributed across a greater 
number of kilowatt-hours.

Among the recommended sites, the sites with overhead 
service lines are recommended for hosting the DCFC as 
trenching and boring that are required for underground 
service line extension can be a considerable cost driver. 
Although the cost of service upgrade generally is a significant 
cost driver, all the recommended sites that are within AEP 
Ohio’s territory were found to have enough service capability 
to support DCFCs. However, some of the sites have limited 

overhead service lines and underground service line extension 
may be required.

The uncertainty in the actual installation cost may affect 
the total cost; however, as the level of utilization increases, the 
operation cost dominates the total cost. Therefore, for DCFC 
site selection for a ride-hailing service, priority should be 
placed siting DCFC at locations with the potential for high 
utilization rather than choosing locations based on low cost.

Recommendations for 
Future Work
Although this preliminary analysis of the impacts of new 
mobility paradigms on alternative fueling infrastructure 
requirements has produced several key results, the complexity 
of the problem warrants further investigation. Repeating the 
ride-hailing emulation process with a larger travel data sample 
would increase the probability of matching trips to TNC 
vehicles, increasing the overall efficiency of the ride-hailing 
fleet. Simulating a larger data set in EVI-Pro would also shed 
light on the ability to share infrastructure as the EV market 
for TNC operations grows. Refining the input assumptions 
for ride-hailing vehicle operations would add realism to the 
proposed process for ride-hailing data emulation. For example, 
it would be useful to constrain the first and last trips of the 
day for each driver, as those should start or end either at the 
driver’s residence or at a depot where all ride-hailing vehicles 
would be parked to charge overnight. In addition, vehicles 
completing long out-of-area trips may be excluded from the 

 FIGURE 8  Total cost of charging infrastructure per site, calculated on a per-session basis. Error bars represent the expected 
range of installation cost, which varies depending on the specific location chosen for the charging site.
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ride-matching pool of candidates, as they are unlikely to be 
used for ride-hailing services for such trips.

Modifying the algorithm to allow for ride-pooling (i.e., 
shared, multi-passenger ride-hailing) would shed light on the 
potential to achieve VMT reductions due to this mobility 
option. Developing algorithmic processes for other mobility 
paradigms, such as car-sharing or car-pooling, would be inter-
esting additions. A comparison of the ride-hailing data emula-
tion results with real-world ride-hailing data would be invalu-
able for validating our methodology.

It is also important to point out that the site selection 
criteria in this study were solely based upon potential charging 
demand: a location with a high level of simulated charging 
needs is recommended for the DCFC installation. However, 
in reality, the property owner provides the space for the DCFC 
installation, and it is uncertain if the recommended site would 
be available for hosting the charging stations. The monthly 
energy consumption was estimated based on the simulation 
of energy use within a single day in the summer. However, 
variability across different seasons and between weekdays and 
weekends needs to be considered for a more accurate estima-
tion. Additionally, a charging station can be either owned by 
a utility or run as a standalone business. Future research can 
investigate the difference in operational cost between a utility-
owned charging station and a charging station operated by a 
non-standalone business.
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