Introduction

Research Goal: To reduce the mass, deformation, and cost of wind turbine direct-drive generators through additive manufacturing of bio-inspired geometries.

Additive Manufacturing—A Game Changer for Wind

Additive Manufacturing, or three-dimensional printing, refers to a manufacturing process in which a part is built layer by layer. Advantages of additive manufacturing include less material waste, “free complexity,” and lower labor costs.

Application to Wind Turbines

- Generator design
- Embedded sensors
- Blades
- Hub casings
- Turbine towers
- Gearbox

Large-Scale Metal Printing

Electron Beam Melting (EBM):

- A high-power electron beam selectively melts electrically conductive metal powder
- Pros: Fast, vacuum required, low thermal stress
- Cons: Produces x-rays, few materials

Direct Metal Laser Sintering (DMLS):

- Focused laser beam selectively melts metal powder
- Pros: Good surface finish, high resolution
- Cons: Slow, large amount powder to fill bed

Powder-Binder Jetting:

- Alternating layers of sand and binder
- Build up a mold in which the desired metal is cast
- Pros: Cheap, large scale, bridge to conventional
- Cons: Rough surface finish, one use mold

Structural Analysis

- All bio-mimetic designs depict 60% less radial deformation
- Torsional deformations within 0.33 mm limit under torque loading for all except hollow web
- Axial deformation never exceeds critical value (30 mm)

Conclusions

I. Stator light weighting using lessons learned from rotor.
II. Advanced bio-mimetic designs with lattice creation
III. Improve conventional and additive manufacturing costing models

Areas of Future Work

I. 24% less structural mass
II. 60% less radial deformation
III. Additive manufacturing enables design for functionality Potential 40% cost savings.