Adopting Energy Efficiency in Connected Homes

Emily Kemper, CLEAResult

Dane Christensen, National Renewable Energy Laboratory

11th Rocky Mountain Utility Efficiency Exchange Aspen Colorado September 27-29, 2017

NREL/PR-5500-70267

Smart Stuff is the New Hotness...

...but there are definitely still a lot of kinks to work out

CLEAResult[®]

© 2017 CLEAResult. All rights reserved. 2

Functionality	Category	Short Definition						
	Smart Lighting	Lighting bulbs, controls, and fixtures that have automated control functionality						
	Smart Plug	Single communicating piece of hardware that controls or provides feedback about connected energy consuming devices						
	Smart Hub	Device that enables and manages interaction between existing smart hardware within a single home						
Control-based	Smart Hub and Smart Switch	Dual function wall mounted smart switch that also enables and manages interaction between existing smart hardware within a single home						
Control-based	Smart Switch	Wi-Fi enabled wall switch that controls or provides feedback about connected energy consuming devices						
	Smart Appliance	Communicating appliance which can be controlled remotely via various interfaces						
	Smart Thermostat	HVAC Wi-Fi enabled control utilizing remote or rule based mechanisms						
	Smart Home Platform	Software platform that enables multiple different hardware devices to operate as a home automation system						
	Energy Portal	Online dashboard that is consumer or program administrator facing						
	Data Analytics Platform	Cloud based analytics platform that analyzes large volumes of data collected from existing smart hardware						
Information- based	In-Home Display	Physical display that collects data from existing hardware and provides real time feedback and/or prompts						
	Load Monitor	Single non communicating piece of hardware that displays energy consumption data of the connected appliance or devices						
	Web Service Platform	Cloud-based platform that focuses on more than just energy						

			Characteristics					
			Retains basic thermostat capability, regardless of link status					
		Programmable	Can collect temperatures, HVAC run-times and HVAC performance information from field systems					
		thermostats	Temperature stability					
			Programmable for schedules and setbacks					
			Wi-Fi-enabled					
	Wi-Fi th	ermostats	Online dashboard and/or mobile app connected to the user account					
			Intuitive user interface (UI) that may include touchscreen or buttons					
72	70		Proximity sensing allows a user to accept and act upon external data (like the location of a smart phone). Occupancy sensing directly detects and acts upon internal sensors (inside the thermostat).					
	Smart thermostats		"Learning," optimization, or adaptive control; algorithms that learn user behavior or track usage to improve performance					
€ 733 ∞ 60 = ∞ ∞ ∞ ∞ ecce	1 72 v.cov	son su www	Basic demand response capabilities: allows remote connection with utilities, who, with authorization, can adjust thermostat settings during peak demand periods (optional).					

© 2017 CLEAResult. All rights reserved. 7

Kirio

© 2017 CLEAResult. All rights reserved. 9

26.72

How much energy can connected devices save?

In-home displays	•Electric savings range: 5–22% •Gas savings range: 5–22%					
Energy portals	 Electric savings range: 5.7–7.4% Gas savings range: 5.7–13% 					
Smart thermostats	 Electric savings range: 2–16% Gas savings range: 8–12.5% Can save energy in oil- and propane-heated homes, too 					
Smart plugs and strips	 Demand savings r ng: : 0.5 –1.0 kW per customer Energy savings rar ge: L–4.58% 					

In the most heating dominated climates in the U.S., this type of product could save an average of 10 Million BTUs per year (that's about 3000 kWh or 100 therms).

Benefits of Smart Technology

- Energy Balance Path to net zero energy
- Resilience

Benefits in the future: Home as energy management system

Thank you! emilykemper@clearesult.com

Home Energy Management Systems (HEMS) Product Demonstration in NYC

- NYSERDA-sponsored project to create stakeholder engagement and consumer education strategy to accelerate broad-market adoption of HEMS across NY State.
- Smart Home Product demonstration targeting HVAC, lighting, and plug loads
- 24 homes (12 single-family, 12 multi-family)
- Pre/post energy M&V and homeowner surveys
- HEMS installation begins November/December 2017.

ANSI/CTA-2045 Modular Communication Interface Standard

Radio Thermostat Company of America

Emerging Research: Unifying Home Automation Services

Software Control Method: X. Jin, K. Baker, D. Christensen, and S. Isley, "Foresee™: A User-Centric Home Energy Management System for Energy Efficiency and Demand Response", Applied Energy (2017). http://www.sciencedirect.com/science/article/pii/S0306261917311856

Laboratory Methodology: "Hardware-in-the-Loop Simulation of a Distribution System with Air Conditioners under Model Predictive Control" B Sparn, M Ruth, D Krishnamurthy, A Pratt, M Lunacek, W Jones - NREL/CP-5D00-67392, 2017. <u>https://www.nrel.gov/docs/fy17osti/67392.pdf</u>

Preliminary Laboratory Results

Comparison of whole home power consumption

Comparison of whole home power consumption

Daily Energy Savings Breakdown by Source

	Season			Cooling				
EE vs. baseline	RBSA Home	Tenino	Eugene	Seattle	Emmett	Tacoma	Tenino	Eugene
	Daily Energy Savings (kWh)	5.28	6.90	8.01	3.57	5.44	1.01	1.71
	Daily Cost Savings (\$)	0.58	0.76	0.88	0.39	0.60	0.11	0.19
	Daily CO2 Reduction (lbs)	1.90	3.15	2.89	0.49	2.06	0.85	0.69
DR vs. baseline	Season			Heating			Cooling	
	RBSA Home	Tenino	Eugene	Seattle	Emmett	Tacoma	Tenino	Eugene
			<u> </u>					- 0
baseline	Daily Energy Savings (kWh)	3.58	5.79	6.37	1.96	4.12	0.01	0.28
baseline	Daily Energy Savings (kWh) Daily Cost Savings (\$)	3.58 0.39	-	6.37 0.70	1.96 0.22	4.12 0.45	0.01 0.00	

9.00 8.01 Daily energy savings in DR mode, vs RBSA 8.00 6.90 Energy takeback/cost when DR is called 1.64 7.00 1.11 5.44 5.28 Energy (kWh) 6.00 5.00 1.31 1.70 3.57 4.00 6.37 3.00 5.79 1.61 1.71 4.12 2.00 1.01 3.58 0.73 1.00 1.96 1.00 0.98 0.00 Tenino -Eugene -Seattle -Emmett -Tacoma -Tenino -Eugene heating heating heating heating heating cooling cooling

Daily energy savings in EE mode, vs RBSA

(Simulated INC Event: 4-hour load-shed DR)

DR Load Reduction Breakdown by Source

Season				Heating				Cooling			
DR vs.	RBSA Hom	e		Tenino	Eugene	Seattle	Emmett	Tacoma	Tenino	Eugene	
baseline	DR Forecast Error			8.08%	10.01%	2.10%	10.68%	-4.23%	9.29%	7.69%	
Susenne	DR Grid Energy Reduction (kWh)			20.86	13.76	28.13	16.79	12.68	15.66	9.46	
	DR Average	Power Reduction	on (kW)	5.22	3.44	7.03	4.20	3.17	3.91	2.37	
30.00			28.13			D	R: battery			Batteries were ful	•
25.00			3.48			D	R: controll	able loads		utilized except on	e
	20.86					E E	E			low-load home ➤ Significant	
20.00	1.26			1	6.79					contributions fror	m
00.01 Energy (kWh) 10.00	11.70	13.76	16.75		0.85	12.68	4.80			reduction of controllable loads	5
00.01 Energy		6.19		8	3.04	1.83 2.95	3.14	2	9.46 2.99		
5.00	7.90 (100%)	7.90 (100%)	7.90 (100%		7.90 00%)	7.90 (100%)	7.90 (100%) 6) 5	5.41 58%)		
-5.00	Tenino - heating	-0.33 Eugene - heating	Seattle heating		mett - eating	Tacoma - heating	Tenino coolir		gene - oling	(Simulated INC Event: 4-hour load-shed DR)	

- Interoperability is maturing across the smart buildings market very quickly
- Unified operation of multiple devices has numerous benefits
- Win-win solutions can exist for homeowners, utilities, and society to mutually benefit
- Rate structures have strong influence on how the equipment will be operated under automation
- Cybersecurity is an emergent barrier:
 - Protect consumers & utilities
 - Manage aggregated devices as Critical Infrastructure

Utility Efficiency Exchange

Thank you!

Dane Christensen, PhD

Manager, Residential Systems Innovation National Renewable Energy Laboratory dane.christensen@nrel.gov

Steve Isley, PhD Xin Jin, PhD Kyri Baker, PhD Bethany Sparn Scott Carmichael, PhD Maurice Martin Scott Averitt Erdenebat Gantumur

Prof. Sid Suryanarayanan Prof. Patricia Aloise-Young Rahul Kadavil

Research funded by Bonneville Power Administration, Technology Innovations Office, and US Department of Energy, Energy Efficiency and Renewable Energy, Building Technologies Office. Additional funding from NYSERDA, EPRI and numerous industry partners.

