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MECHANICALLY STACKED DUAL-JUNCTION AND TRIPLE-JUNCTION III-V/SI-IBC CELLS WITH 
EFFICIENCIES OF 31.5 % AND 35.4 % 

M. Rienäcker1, M.Schnabel2, E. Warren2, A. Merkle1, H. Schulte-Huxel2, T.R. Klein2, M.F.A.M. van Hest2, M.A. 
Steiner2, J. Geisz2, S. Kajari-Schröder1, R. Niepelt1, J. Schmidt1,3, R. Brendel1,3 , P. Stradins2, A. Tamboli2 and R. 
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3 Institute of Solid State Physics, Leibniz Universität Hannover, 30167 Hannover, Germany 

4 Institute of Electronic Materials and Devices (MBE), Leibniz Universität Hannover, 30167 Hannover, Germany 

ABSTRACT: The theoretical efficiency limit of 29.4 % for single-junction crystalline Silicon (c-Si) solar cells is an 
insurmountable barrier that is being steadily approached within the last decades. Combining the Si cell with a second 
absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this 
limit significantly. We demonstrate a mechanically stacked GaInP//Si dual-junction cell with an in-house measured 
efficiency of 31.5 % and a GaInP/GaAs//Si triple-junction cell with a certified efficiency of 35.4±0.5 % 

Keywords: 

 
1 Introduction 

Steady improvements over decades have led to 
exceptional success of market-dominating silicon-based 
photovoltaics, which recently demonstrated an 
outstanding record efficiency of 26.7 % for an 
interdigitated back contact solar cell [12].Stacking of 
multiple junctions has proven to be a viable route to 
increase the cell efficiency further beyond the theoretical 
limit of 29.4% for silicon single-junction solar cells[6, 2]. 
Increasing research interest is currently dedicated to 
tandem concepts based on Si bottom cells for terrestrial, 
non-concentrated applications [2 and Ref. therein, 5, 10 
and Ref. therein]. Here we prepared a mechanically 
stacked GaInP//Si dual-junction cell and a 
GaInP/GaAs//Si triple-junction cell, achieving energy 
conversion efficiencies of 31.5 % and 35.4 %, 
respectively. With this result, we demonstrate the 
potential of silicon based multi-junction solar cells for 
high efficiencies. 

2 Experimental 

2.1 Fabrication of POLO-IBC bottom cell 
We prepare ion-implanted and inkjet-patterned 
interdigitated back contacted solar cells with POLy-Si on 
Oxide (POLO) junctions for both polarities (POLO-IBC 
cells) [7, 8] with an active area of 7.6 mm × 15 mm (to 
match the top cell area) on saw-damage etched 156 mm × 

156 mm n-type Czochralski silicon wafers with a base 
resistivity of 4 Ωcm and a final thickness of 155 µm.  

After growing a thin thermal silicon dioxide layer in a 
tube furnace, undoped amorphous silicon (a-Si) is 
deposited on both sides by using LPCVD (E2000 from 
Centrotherm). Hereafter, the front side of the wafer 
receives a blanket phosphorus implantation, followed by 
masked phosphorus and blanket boron implantation on 
the rear side. For the latter, the phosphorus locally 
overcompensates the boron, and an interdigitated pattern 
with a pitch of 952 µm is formed. For the masking of the 
implantations, we use a sputtered dielectric layer, which 
is patterned by inkjet-printed hotmelt wax (Pixdro LP50 
from Meyer Burger) and subsequent wet-chemical 
etching. 

After the removal of dielectric implant masks, a high 
temperature treatment for the formation of the POLO 
junctions with an annealing duration of 60 minutes at 
1050°C is performed. The junction formation annealing 
leads to recrystallization of the a-Si, redistribution and 
activation of dopants and a pinhole creation within the 
interfacial SiO2 layer [11] for efficient carrier transport 
between c-Si and poly-Si [7]. Furthermore gettering of 
the bulk material with n+ POLO is achieved [4]. 
During the junction formation step, a thick silicon 
dioxide layer is grown on top of the poly-Si by wet 
thermal oxidation.  
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Figure 1: Schematic of GaInP//Si-IBC cell (a) and GaInP/GaAs//Si-IBC cell (b) 

  



 
Figure 2: Photograph of GaInP/GaAs//Si-IBC cell with 
an efficiency of 35.4% illuminated with blue LED light 

After the oxidation and junction formation process, the 
grown silicon dioxide layer is again patterned via inkjet 
printing and wet-chemical etching on the rear, and at the 
same time removed on full area from the front side of the 
wafer. The remaining SiO2 on the rear acts as an etching 

barrier for a subsequent texturization process, which 
yields a textured front side and a separation of n+ POLO 
BSF and p+ POLO emitter regions by a textured trench of 
a width of 100 µm. The trench isolation significantly 
improves the overall recombination behaviour of the 
cells [8] and furthermore facilitates contact separation 
via the RISE process [1]. After removing the SiO2 by HF 
etching from the rear side, the cell precursors are 
passivated with an aluminum oxide/silicon nitride stack 
on the rear side and a silicon nitride on the front side. 
An additional SiO2 layer is deposited by PECVD on the 
front side in order to improve the optics for one sun 
application rather than tandem cells. This leads to non-
ideal optical coupling between silicon and III-V cells and 
represents an area for future improvements. 

We use a picosecond UV laser to locally ablate the 
dielectric layers and realize via contact openings with an 
opening fraction of about 4.5% with respect to the total 
cell area.  

The solar cell precursors are metalized by vacuum 
evaporation of a 10 µm thick aluminum layer on the rear 
side in a high-throughput tool from Applied Materials 
and the contact separation is performed via the RISE 
process [1]. Finally, the POLO-IBC bottom cells, as 
shown in Fig. 1, are laser-scribed and cleaved from the 
wafer.

 
Figure 3: IV data of GaInP/Si-IBC cell (a) and GaInP/GaAs/Si-IBC cell 

 

2.2 Fabrication of GaInP single junction cell 

The GaInP cell was grown inverted, with a rear 
heterojunction, on a GaAs substrate with a 2° miscut 
towards <111> by metalorganic chemical vapor 
deposition (MOCVD), using the reactor, precursors, and 
process window described in Ref.[3]. Cell processing of 
the MOCVD-grown stack begins with a rear-side Au grid 
prepared by photolithographically patterned Au 
electroplating, followed by evaporation of ZnS as a rear-
side antireflection coating. The cell is then bonded to 
glass using epoxy, and the GaAs substrate removed by 
etching. Finally, the front side is processed: a front grid 
is prepared by photolithographically-patterned Ni/Au 

electroplating, a photolithographically-patterned mesa 
etch is performed to define the cell area, and a MgF2 / 
ZnS double-layer antireflection coating is evaporated. 

2.3 Fabrication of GaInP/GaAs dual-junction cell 

The process sequence for the GaInP/GaAs dual-junction 
cell is the same as for the single junction GaInP cell, 
except that both cells are grown in sequence during the 
MOCVD step. The GaInP cell is the same, and is grown 
first, followed by a Al0.3Ga0.7As/GaAs tunnel junction 
and then the GaAs cell, as described in ref. [3]. 

2.4 Stacking of the III-V cell on the Si cell 

The III-V cell on glass is bonded to the front side of the 



Si cell using epoxy. Stacking and bonding is done under 
an infrared camera in order to align the top cell area with 
the IBC grid fingers of the bottom cell. The final four-
terminal triple-junction cell is shown in Fig. 2. 

2.5 IV measurement  

For the GaInP/Si IBC cell, the quantum efficiency and 
specular reflectance of both cells were measured on a 
custom-built instrument. The IV measurement of the 
GaInP/Si IBC cell was taken on a class A adjustable 
solar simulator with a primary calibration reference cell 
used to set the intensity. The two cells were contacted 
separately and measured sequentially. For each cell, the 
the illumination was set such that each cell was at an 
illumination level, which is the equivalent of AM1.5G 
and the filtered equivalent for the bottom cell. A shadow 
mask was used to ensure no photocarrier generation 
outside the 1 cm2 active cell area. The GaInP cell was 
measured first, and during measurement of the Si cell, a 
resistor was used to hold the GaInP at its maximum 
power point (mpp). This is necessary because under open 
circuit conditions, GaInP luminescence coupling to the Si 
cell is higher than at mpp, artificially inflating its 
performance [2]. Luminescent coupling from Si to GaInP 
is negligible because Si luminescence is weak and not 
absorbed by the GaInP cell. 

The GaInP/GaAs//Si-IBC cell was measured using the a 
calibrated measurement with same procedure at NREL's 
certified device performance laboratory. 

3 Results and discussion 

3.1 GaInP//Si dual-junction solar cell 

The resulting in-house measured IV data is show in Fig. 
3 a. After stacking, the GaInP top solar cell has a single 
junction efficiency of 19.1 % (VOC=1430 mV, JSC= 15.4 
mA/cm², FF=86.6 %) and the Si bottom cell yields an 
efficiency of 12.5 % (VOC=687 mV, JSC= 24.2 mA/cm², 
FF=75.1 %, GaInP cell at mpp). A cumulative efficiency 
of 31.5 % is obtained, which exhibits, compared to the 
recently published III-V/Si record efficiency of 32.5 % 
[2], an 1 %abs lower efficiency. This is attributed to the 
about 1 %abs lower efficiency of the GaInP top cell. The 
Si bottom cell has nearly the same performance, but the 
VOC of our POLO-IBC cell is 7 mV lower, which can be 
mainly explained by degradation during the stacking 
procedure as well as lower passivation quality of the 
SiNx passivation at the front side and degraded 
passivation quality of the trench passivation at the rear 
side compared to excellent passivation by amorphous Si 
used in Ref. [2]. 

Further optimization of the back-end processing and 
minimizing perimeter recombination will lead to an 
increase in VOC above 700 mV.  

The low FF of the silicon cell is tentatively attributed to 
non-ideal heat-sinking during the measurement.  
The absence of a metal grid, the high transparency of the 
front side and decent reflectivity of the rear side of our 
POLO-IBC bottom cell is responsible for the high short 
circuit current of 24.2 mA/cm² (1.1 mA/cm2 higher than 
for the Si bottom cell in Ref [2]).Since the antireflection 
coating applied is optimized for the non-filtered solar 
spectrum, further improvements are anticipated by tuning 
the antireflection coating on the Si cell to the relevant 
infrared wavelength range.  

Taking possible improvements into account and using a 
20 % efficient GaInP cell and a filtered efficiency for our 
POLO-IBC cell above 13 %, a GaInP/Si tandem 
efficiency above 33 % is within reach. 

3.2 GaInP/GaAs//Si triple-junction solar cell 

For the GaInP/GaAs//Si triple-junction cell a calibrated 
IV measurement was performed at NREL's certified 
device performance laboratory.  

The current-matched GaInP/GaAs dual-junction 
achieved an efficiency of 29.94±0.42 % (VOC = 2535 mV, 
JSC = 13.43 mA/cm², FF = 87.9 %) and the POLO-IBC 
bottom cell added another 5.49±0.08 % (VOC = 670 mV, 
JSC= 10.4 mA/cm², FF=78.8 %, GaInP/GaAs cell at 
mpp) filtered efficiency to achieve an overall four-
terminal, triple-junction efficiency of 35.43±0.5 %. As 
with the GaInP/Si cell, improvements in Si JSC are 
anticipated with optimized antireflection coatings. 

This excellent efficiency is the second-highest after and 
close to the current world record of 35.9 % for III-V/Si 
triple-junction cells [2].  

On its own, the efficiency of this type of Si wafer cell 
with POLO junctions reaches 25 %. Thus, the addition of 
the GaInP/GaAs top cell yields a total efficiency 
improvement of about 10 %abs. The efficiency of the four-
terminal GaInP/GaAs//Si cell is even close to the current 
world record of a series-connected 37.9 % for a non-Si 
triple-junction cell [9].  

4. Conclusion 

We have demonstrated lab scale dual-junction and triple-
junction four-terminal III-V//Si solar cells using POLO 
junctions on the Si IBC cells for both polarities with 
efficiencies of 31.5 % and 35.4 %, respectively. The 
latter result is very close to the world record for III-V//Si 
and all-III-V triple-junction solar cells and therefore 
shows that silicon wafer cells, which provide the mature 
and cheap basis for over 90 % of today’s photovoltaic 
(PV) devices, are well suited for tandem applications. 
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