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Model / Simulation Output Data 
Regional Energy Deployment System (ReEDS) Output data from the simulations and the 

results of the fitting it with the reduced-
form approximations are compared and 
visualized using both standard graphics 
tools and also the capabilities of NREL’s 
Advanced Energy Systems Design 
Institute, such as immersive visualization 
in NREL’s Energy Systems Integration 
Facility (ESIF). 
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Overview 
Motivation 
● Visualization-driven design, exploration, and analysis of energy 

simulations is becoming central to leading-edge projects at NREL.  
● Teams develop insights and test hypotheses more quickly when working 

in immersive, interactive workspaces. 
● Energy simulation results typically contain low dimensional structures 

Objectives 
● Develop general methods for rapidly computing simplified versions of 

NREL's flagship, computation-intensive, energy simulations (ReEDS, BSM, 
etc.). 
■ Statistically rigorous approximation to full simulation. 
■ Low computational cost / quick response times. 
■ Uncertainty quantification. 
■ Interactive visualization. 

● Insightfully characterize complex, high-dimensional input/output spaces 
associated with energy models. 
■ Visualize and communicate feature discoveries. 

Input Data 
Choice of Training and Testing Data 
● Statistical models require a representative sample of “training” data. 
● The training data should span the parameter ranges of interest. 
■ Parameters not of interest should be set to their default values. 

● The density of training data over the input parameter space should also match 
the level of interest in that part of the parameter space. 

● The theory of the design of experiments supplies methods for sampling the input 
parameter space in a manner that uniformly covers the potentially high 
dimensional input space: 
■ As a rule of thumb, the data set for testing the quality of the approximation 

should be about 25% of the size of the training dataset. 

Examples 
of Input 
Designs 

dimension 
reduction on 
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Reduced-Dimension Output 

dimension 
reduction on 
input space 

Reduced-Dimension Input Reduced-Form Model Approach (4 phases of 6 months each) 
1 Statistical methods for representing high dimensional data sources Highway networks 

Measurement of Dimensionality 
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■ Artificial neural networks 
■ Linear, kernel, tensor, and non-linear principal components analysis 
■ Functional regression and principal components analysis 
■ Measurement of dimensionality 
■ Quantifying accuracy/fidelity of approximations 

allow for easier 
training of deep ● The empirical dimensionality of a 
neural networks multivariate dataset is estimated using a  
through the addition “box counting” technique. 
of a persistent carry ● This estimate provides guidance as to the 

2 Applications to complex visualization Carry Gate gate (dark red). dimensionality of the space in which the 
■ Generic interactive visualization of multidimensional timeseries output could be embedded. 

● The plot at the right suggests that the 21 3 Consolidating results into tools 
4 Publication of results and release as open source dimensions of output of the Biomass 

Scenario Learning Model could be 
approximated by a manifold approximately Aspects of Case Study Applications 

Problem ● simplified visualization 
● embedding in another model 
● scenario planning 
● resource planning / design of experiments 

Representation ● reduction of dimension 
● interpretability by humans 
● exploration of structure 
● simplicity of computation 

Approximation ● availability of training data 
● dimensionality of input and output spaces 
● metrics for quality 

Visualization ● discovery of structure 
● assessing quality of approximation 
● representation of dimensinality 

Interaction ● navigating through multiple dimensions 
● selection, linking, and brushing 

Impacts 
● Rapid, interactive, visual design and exploration of scenarios with sponsors 

and stakeholders “in the loop”. 
● Reduced-form models for screening analyses. 
● Resiliency assessment. 
● Dramatically improved use of computational resources. 

Often times both input and output data are more appropriately handled as 
functional objects rather than discrete points.  This allows for the serial 
correlation structure to impact both modeling and inference, in order to better 
reflect the problem at hand. 

The common strategy for dealing with functional data involves some form of 
basis representation to turn high dimensional functions into low dimensional 
representations.  Basis choice is driven by the particular application, with options 
including splines, wavelets, Fourier transforms, etc.  A popular framework is to 
extend the idea of principal components to the functional domain (FPCA) and 
construct an empirical basis derived from covariance decompositions.  The 
above graphic highlights an example FPCA representations. 

prediction training 
8 dimensions, considerably simplifying the 
output’s representation. 

Reduction of Dimensionality 
● Tensor Principal Components 

Analysis (TPCA) is a 
multivariate generalization of 
the well know method PCA. 

● TPCA separates a tensor (e.g., 
a muliply indexed array or data) 
into an optimally determined 
product of smaller tensors. 

● The plots like those at the right 
demonstrate the successful 
application of PCA and TPCA to 
reduce the dimensionality of 
output from the Biomass 
Scenario Learning Model from 
23 variables at 21 times to 12 
pseudovariables at 5 
pseudotimes. 
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