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Abstract—A framework for assessing the performance of 
short-term solar forecasting is presented in conjunction with a 
range of numerical results using global horizontal irradiation 
(GHI) from the open-source Surface Radiation (SURFRAD) 
data network. A suite of popular machine learning (ML) 
algorithms was compared according to a set of statistically 
distinct metrics and benchmarked against the persistence-of-
cloudiness forecast and a cloud motion forecast. Results 
showed significant improvement compared to the benchmarks 
with trade-offs among the ML algorithms depending on the 
desired error metric. Training inputs included time series 
observations of GHI for a history of years, historical weather 
and atmospheric measurements, and corresponding date and 
time stamps such that training sensitivities could be inferred. 
Prediction outputs were GHI forecasts for 1, 2, 3, and 4-hours 
ahead of the issue time, and they were made for every month 
of the year for 7 locations. Future photovoltaic power and 
energy outputs can be produced using GHI forecasts to better 
understand power system impacts.  

Keywords-SURFRAD; solar forecasting; numerical weather 
prediction; machine learning  

I.  INTRODUCTION  
The integration of high levels of solar power into the 

electricity grid poses a significant challenge for grid 
operators because of the uncertainty and variability of solar 
generation. Accurately forecasting solar energy production 
for unit commitment can reduce this generation uncertainty, 
which translates to significant savings. One study found that 
$5 billion in savings per year could be achieved over the 
Western Electricity Coordinating Council by integrating 
solar and wind forecasts into unit commitments [1]. A 
comprehensive review of state-of-the-art methods in solar 
forecasting [2], which primarily focused on averaged rather 
than instantaneous forecasts, necessitates the benchmarking 
and performance comparisons presented herein. Although 
physical models of atmospheric conditions—i.e., numerical 
weather prediction (NWP) methods—are extensively used 
for day-ahead forecasts, it has been shown that for temporal 
scales less than 4-hours ahead, forecasting accuracy is 
greatly improved by applying model output statistics to the 
NWP output [3]. A variety of regression approaches have 
been applied to improve short-term solar forecasting [4]–[8]. 
However, for forecasts from 15 minutes to 4-hours ahead, 
hybrid ML approaches have achieved significant 
improvements compared to the traditional NWP models [9]. 
Exogenous inputs such as satellite data have improved the 

accuracy of short-term forecasts at several SURFRAD sites 
[10]. Other studies have also incorporated exogenous 
observations such as relative humidity and cloud cover to 
improve forecasting accuracy [11]. 

The methodology developed in this paper used 
irradiance and exogenous weather time series data from 
seven publicly available weather stations in the SURFRAD 
network, and then used different ML algorithms to predict 
solar irradiance point forecasts 1, 2, 3, and 4-hours ahead of 
the issue time. The following sections describe the specific 
data utilized, preprocessing requirements, and time-shifting 
techniques applied in this study. A brief overview of the ML 
forecasting methods is then given, followed by results and a 
discussion comparing the performance of the ML models to 
the benchmarks and against each other. Finally, concluding 
remarks and suggestions for future research are presented. 

II. METHODOLOGY 

A. Preprocessing Input Data 
The routines developed in this paper were trained and 

tested on data from the SURFRAD observation sites in 
Desert Rock, NV; Fort Peck, MT; Boulder, CO; Sioux Falls, 
SD; Bondville, IL; Goodwin Creek, MS; and Penn State, 
PA. Each site has 11 years of weather measurements at 1-
minute resolution from 2009 to present, and 3-minute 
resolution from 2004–2008. This array of sites offers 
climatically unique weather situations that span the U.S. 
Global horizontal irradiance (GHI) at the SURFRAD sites is 
best represented by the global downwelling solar 
measurements. The clear-sky GHI at time t is denoted by 
GHIcleart  and represents the theoretical GHI at time t 
assuming zero cloud coverage; it is computed using the Bird 
model [12]. The clear-sky index is a metric of cloud cover 
that has been used extensively in forecasting literature [13]–
[15]. The clear-sky index at time t denoted by Kti

(t) is the 
ratio between the instantaneous observed GHIt  and the 
theoretical maximum GHIcleart . It is noted that cloud-
focusing events can cause GHIt to exceed GHIcleart . Current 
time, temperature, relative humidity, wind speed, wind 
direction, pressure, thermal infrared, GHIt , GHIcleart , and 
Kti

(t)  were used as independent variables for the input 
training vectors. 

Rather than training on the observed instantaneous GHI 
values at the 1-, 2-, 3-, or 4-hour-ahead forecast horizons 
(f.h.), which might not be representative of the most 
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probable 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓.ℎ. , the ML models were trained on the 
averaged clear-sky index for the hour. The average hourly 
clear-sky index ending at time f.h. is denoted by 𝐾𝐾𝐾𝐾𝑎𝑎

(𝑓𝑓.ℎ.), as 
in: 

                  𝐾𝐾𝐾𝐾𝑎𝑎(𝑓𝑓.ℎ.) =  
∑ 𝐾𝐾𝐾𝐾𝑖𝑖

(𝑠𝑠)𝑓𝑓.ℎ
𝑠𝑠=𝑓𝑓.ℎ.−60

60                     (1) 

𝐾𝐾𝐾𝐾𝑎𝑎
(𝑓𝑓.ℎ.) was used as the dependent variable for the training 

vectors when building each model, and the models were 
then used to predict 𝐾𝐾𝐾𝐾𝑎𝑎

(𝑓𝑓.ℎ.) when given unseen test vectors. 
The forecasted 𝐾𝐾𝐾𝐾𝑎𝑎

(𝑓𝑓.ℎ.)  value was then multiplied by 
𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐

𝑓𝑓.ℎ.  from the Bird model to predict 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓.ℎ., as in: 

                     𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑓𝑓.ℎ. =  𝐾𝐾𝐾𝐾𝑎𝑎

(𝑓𝑓.ℎ) ∙ 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐
𝑓𝑓.ℎ.                (2) 

 
This ML forecast was finally compared to the testing input’s 
corresponding 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑝𝑝

𝑓𝑓.ℎ.  from the SURFRAD data to 
assess forecasting accuracy.  

Data were partitioned by month, and any entries with 
missing or misreported data were removed. All nighttime 
entries—i.e., entries with current or future GHI readings less 
than 20 W/m2—were removed to improve the performance 
of the ML algorithms. Input data were scaled to the range 
[0,1] to address the large variations in the natural domain of 
elements. Input vectors were adjusted by finding the 
maximum and minimum values of each element in the 
training set and scaling variable x of feature j of an input 
data vector i to be: 

                             𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑝𝑝) = 𝑋𝑋𝑖𝑖−𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚

                        (3)  

Each ML algorithm has many hyperparameters that can 
be tuned, and these internal parameters were set using a grid 
search method. Predictions were made for each forecasting 
situation at a frequency equal to the forecast horizon 
timescale.  For example, when forecasting GHI for 3-hours 
ahead for a specific site and month, the ML models made 
predictions at 3-hour intervals every day of the month for all 
daylight hours.  

B. Description of Forecasting Methods 
1) Persistence of Cloudiness: Persistence forecasts use 

the current cloud cover to predict the future GHI. In this 
study, the clear-sky index at the forecast horizon was set to 
the current clear-sky index at time t and multiplied 
by 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐

𝑓𝑓.ℎ. , as in:   
 

                         𝐾𝐾𝐾𝐾𝑝𝑝
(𝑓𝑓.ℎ.) =  𝐾𝐾𝐾𝐾𝑝𝑝

(𝑝𝑝) ∙ 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐
𝑓𝑓.ℎ.                        (4) 

 
This simple model is most effective for very short-term 

forecasts (e.g., minutes ahead), but it can also be used to 
make forecasts from 1 to 4-hours ahead. Persistence 
forecasts were provided as a benchmark for the forecasts 
made by ML methods in this study. 

2) Support Vector Machines: Support vector machines 
(SVMs) have been shown to work well in conjunction with 
other methods in solar forecasting applications [16]–[18]. 
SVM regression estimates a target function based on 
training instances. SVMs operate by transforming a 
nonlinearly separable feature space into a multidimensional 
space in which variables can be separated by a three-

dimensional hyperplane. SVMs map the original data into 
this higher-dimensional space using a technique known as 
the “kernel trick,” which allows for different perspectives 
on the data. The output observations are assumed to take 
the form of 𝑦𝑦𝑝𝑝 = 𝜔𝜔𝑝𝑝 ∙ 𝜅𝜅(𝑥𝑥𝑝𝑝) + 𝑏𝑏 , where 𝑦𝑦𝑝𝑝  is the output 
observation for training instance i, 𝑥𝑥𝑝𝑝  is the input training 
vector for instance i, 𝜔𝜔𝑝𝑝  is a weight vector which defines 
the functional form, b is the bias constant, and 
𝜅𝜅(x,x’)=φ(x) ∙φ(x’) is the kernel function. This study used a 
nonlinear radial basis function, as in: 

                                   𝜅𝜅(𝑥𝑥, 𝑥𝑥′) = 𝑠𝑠
�𝑚𝑚−𝑚𝑚′�

2

2𝜎𝜎2                           (5) 

 where 𝜎𝜎 is a free parameter. The final objective was to 
minimize the deviation errors between the output 

observation yi, and the linear functional form of (𝜔𝜔𝑝𝑝 ∙  xi)+b 
while maximizing the margin of space on either side of the 

hyperplane. 

3) Artificial Neural Networks: Artificial neural 
networks (ANNs) are one of the most popular ML methods 
used in solar forecasting [19]–[21]. ANNs contain layers of 
nodes with connections between nodes in adjacent layers.  
The input layer has one node for each input signal. These 
included current time, temperature, and GHI. The output 
layer is a single output node, which in this study was the 
forecasted  𝐾𝐾𝐾𝐾𝑎𝑎

𝑓𝑓.ℎ. . One or more hidden layers contain a 
predetermined number of nodes and connect the input and 
output layers. Each node receives a weighted sum of input 
from the nodes in the previous layer, and it applies an 
activation function to the weighted sum. The weights 𝑤𝑤��⃑  are 
determined by training the network on inputs and known 
outputs with a learning function. The architecture, 
activation function, and learning function are three features 
that are predetermined before the training process.  A three-
layer ANN with 9-n-1 nodes in each layer was adopted in 
this study, expressed as: 

  
  𝑦𝑦(𝑥𝑥,���⃑ 𝑤𝑤,����⃑ ) = ∑ 𝑤𝑤𝑗𝑗𝑝𝑝

𝑗𝑗=1 𝑓𝑓 �∑ 𝑤𝑤𝑘𝑘,𝑗𝑗𝑥𝑥𝑘𝑘9
𝑘𝑘=1 �              (6) 

 
where n was the number of nodes in the hidden layer, 
which was calibrated by the grid search method, and f(x) 
was the sigmoidal activation function  𝑓𝑓(𝑥𝑥) = 1

1−𝑐𝑐−𝑚𝑚
. 

Several back-propagation learning methods were tested to 
ensure a well-trained ANN model, such as the vanilla back-
propagation, momentum term back-propagation, and batch 
version back-propagation.  

4) Random Forests: Although SVMs and ANNs are 
popular for short-term solar forecasting, random forest (RF) 
models have been used for solar forecasting in several 
studies [22]–[24]. A random forest is a collection of single 
classification and regression trees (CART) in which each 
CART is trained by a bagging algorithm that avoids 
overfitting the RF models. To train each CART, the training 
set is partitioned by the bootstrap sample method. The 
robustness of a CART can be improved by blending the 
CARTs according to their performance. Although each 
CART might have a bias because of its structure and the 
specific subset of features selected, aggregating all decision 
trees can significantly reduce the error bias of the final 
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output. RFs do this by averaging all CARTs in the 
ensemble.  

5) Gradient Boosting Method: The Gradient Boosting 
Method (GBM) [25] is a less frequently used ML approach 
to solar forecasting, and it is an extension of the RF 
method. In RF, gradient boosting uses a randomly built 
ensemble of decision trees to make a more accurate 
prediction. GBM incrementally adds trees to the ensemble 
during the training phase. For a training instance i with 
input signals �⃗�𝑥𝑝𝑝 and known GHI forecast of 𝑦𝑦𝑝𝑝 , the forecast 
made by an ensemble of t trees is denoted by 𝑦𝑦�𝑝𝑝𝑝𝑝 . The 
forecast with t+1 trees is defined as 𝑦𝑦�𝑝𝑝𝑝𝑝+1 = 𝑦𝑦�𝑝𝑝𝑝𝑝 + 𝑓𝑓(𝑥𝑥𝑝𝑝), i.e. 
𝑓𝑓(𝑥𝑥𝑝𝑝) = 𝑦𝑦𝑝𝑝 − 𝑦𝑦�𝑝𝑝𝑝𝑝 . Thus, to improve the model in the 
following iteration, a regression tree 𝑓𝑓 is custom fit to the 
data (�⃗�𝑥1,𝑦𝑦1 − 𝑦𝑦�1𝑝𝑝), … , (�⃗�𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 − 𝑦𝑦�𝑁𝑁𝑝𝑝 ) , where N is the 
number of training instances. Each new regression tree 𝑓𝑓 is 
added to the ensemble one at a time to correct the residuals. 
These residuals are the negative gradients for the loss 
function 𝜙𝜙(𝑦𝑦,𝑦𝑦�𝑝𝑝), which allows gradient descent methods 
to determine the structure of each tree before it is added to 
the ensemble. 

C. Situation Dependent, Multi-Model Forecasting 
Forecasts 1, 2, 3, and 4-hours ahead were generated for 

all 12 months at all 7 SURFRAD sites. The developed code 
was run to model each unique forecasting situation. Each 
run trained all four ML algorithms on preprocessed data for 
the desired month from the years 2004–2008 and 2010–
2014. After the models were built, they were tested on 
unseen data from 2009, and forecasts were made for the 
desired forecast horizon.  

III. VALIDATION METRICS 
A suite of validation metrics was used to compare the 

forecast accuracy of different methodologies and situations 
in this study. A thorough discussion of different validation 
metrics was covered by [26] to compare N observed GHI 
values �⃑�𝐺 to the N forecast values 𝐺𝐺��⃑ . Root mean square error 
(RMSE) and mean absolute error (MAE) are commonly 
used metrics that measure the difference between the 
forecasted and actual GHI values. RMSE is defined as: 

              𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁
∑ (𝐺𝐺(𝑖𝑖) − (𝐺𝐺(𝑖𝑖))2𝑁𝑁
𝑝𝑝=1                (7) 

and MAE is defined as: 

                        𝑅𝑅𝑀𝑀𝑅𝑅 =  1
𝑁𝑁
∑ |𝐺𝐺(𝑖𝑖) − 𝐺𝐺(𝑖𝑖)|𝑁𝑁
𝑝𝑝=1                      (8) 

The RMSE metric has been commonly used to evaluate the 
overall accuracy of forecasts, and it penalizes large 
forecasting errors with its square order. The MAE metric is 
also appropriate for evaluating errors through the entire 
forecasting period, and it is widely used in regression 
problems and by the renewable energy industry. It does not 
penalize large forecast errors as much as the RMSE metric 
does. These two metrics can be further normalized to 
provide mean absolute percentage error (MAPE), defined 
as: 

                          𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  1
𝑁𝑁∑

�𝐺𝐺(𝑖𝑖)−𝐺𝐺(𝑖𝑖)�
max (𝐺𝐺(𝑖𝑖))

𝑁𝑁
𝑖𝑖=1                      (9)  

and normalized RMSE (nRMSE), defined as:          

                   𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ �(𝐺𝐺(𝑝𝑝)−𝐻𝐻(𝑝𝑝))

max (𝐺𝐺(𝑝𝑝))
�
2

𝑁𝑁
𝑝𝑝=1             (10) 

These normalized validation metrics were used to compare 
forecasting accuracy at different spatial locations. Smaller 
values of these validation metrics indicate a higher 
forecasting accuracy.  

IV. RESULTS AND DISCUSSION 

A. Machine Learning Forecasts vs. Benchmark Methods 
To calibrate this study against existing literature, 

forecasts were made for the same 1, 2, 3, and 4-hour-ahead 
forecast horizons as in [27]. They tested the period from 
August 23, 2008, through August 31, 2009. Limitations 
arose in this study from SURFRAD’s data resolution change 
for the years preceding 2009, which consisted of 3-minute 
data, causing this study to use a slightly different testing 
period: from January 1, 2009–December 31, 2009. Seasons 
were partitioned into four 3-month periods, e.g. January 1–
March 31, etc. Thus, results were compared to [27] for a 
slightly different time period, and to the persistence-of-
cloudiness forecasts made for 2009. 

Table I shows the RMSE values for the ML predictions 
made in this study, the persistence-of-cloudiness forecasts’ 
RMSE values, and the RMSE values for forecasts from [27]. 
The values in the yellow columns were found by taking the 
best-performing ML algorithm per month and compiling 
these values into seasonal and yearly results. The ML 
models employed in this study outperformed the 
persistence-of-cloudiness forecasts in every situation, with 
average RMSE values of 92.36 W/m2 and 122.12 W/m2, 
respectively. This study outperformed the forecasting 
methodology in [27], which was tested on a different 12-
month period, with average RMSE values of 92.36 W/m2 
and 108.29 W/m2, respectively.  

Performance comparisons of forecasting methods were 
also evaluated using the relative frequency (rounded) that a 
given technique had in producing the lowest error. This 
study outperformed the method in [27] on a seasonal basis 
for 1- and 4-hour-ahead forecasts in 86% and 57% of tests, 
respectively, based on RMSE values. However, the results 
in [27] outperformed the results in this study for 2- and 3-
hour ahead forecasts in 57% and 61% of forecasts, 
respectively. The forecasts in [27] also outperformed this 
study in 68% of winter and 57% of spring seasonal 
forecasts, whereas the ML models outperformed the 
forecasts in [27] in 75% and 79% of all situations for the 
summer and fall seasons, respectively. When broken down 
by geographic location, this study outperformed [27] in 
Boulder, Fort Peck, Desert Rock, and Bondville with 
respective relative frequencies of 75%, 94%, 63%, and 53% 
in all tests. Their study outperformed this study more when 
forecasting across all situations in Goodwin Creek, Penn 
State, and Sioux Falls 75%, 56%, and 56% of the time, 
respectively. These relative frequencies took into account 
only the number of times that a method outperformed the 
other, and they did not consider the margin of difference, 
measured in W/m2, between competing forecasts.  
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TABLE I.  RMSE VALUES FOR MACHINE LEARNING (ML) FORECASTS JAN. 1 2009–DEC. 31 2009, PERSISTENCE-OF-CLOUDINESS (PC) FORECASTS 
JAN. 1 2009–DEC. 31 2009, AND PEREZ ET AL. (PZ) FORECASTS AUG. 23 2008–AUG. 31 2009

 

 
Figure 1.  Annual RMSE averages for all SURFRAD sites.  

  

 Forecast 
Horizon 

Boulder Bondville Goodwin Creek Fort Peck Desert Rock Penn State Sioux Falls 

ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ 

A
L

L
 Y

E
A

R
 1-hour 74 104 120 62 83 85 71 96 80 56 79 94 52 76 80 67 96 86 52 74 68 

2-hour 108 142 139 98 118 98 103 130 101 81 110 106 72 103 88 97 132 99 81 106 84 

3-hour 123 161 154 116 135 112 125 146 114 94 126 123 83 116 96 114 151 113 96 126 102 

4-hour 125 169 166 121 143 122 120 152 127 93 130 132 82 122 104 117 157 124 103 136 115 

W
IN

T
E

R
 1-hour 55 74 64 51 66 60 58 87 48 36 53 107 45 66 46 53 72 57 41 62 48 

2-hour 81 98 71 82 104 66 98 128 59 52 74 105 63 92 48 79 102 57 65 96 58 

3-hour 96 113 81 104 117 74 122 146 66 62 84 109 75 106 59 91 122 59 82 117 69 

4-hour 87 119 85 105 123 81 111 147 70 58 84 112 84 107 70 96 127 65 89 122 78 

SP
R

IN
G

 

1-hour 97 143 125 84 114 93 94 127 92 75 108 110 71 108 86 84 117 83 66 94 69 

2-hour 137 195 141 133 154 109 125 171 122 110 149 124 106 147 95 119 161 99 103 133 90 

3-hour 170 218 157 147 178 123 159 190 144 129 174 141 120 155 111 143 183 118 124 156 107 

4-hour 162 228 170 159 189 137 145 202 164 134 186 148 115 171 115 145 190 137 131 171 126 

SU
M

M
E

R
 1-hour 96 136 143 76 97 100 88 119 92 81 101 91 48 71 99 88 125 112 67 90 80 

2-hour 137 185 175 111 134 115 121 151 113 110 143 109 64 85 110 122 170 127 99 129 98 

3-hour 144 211 189 135 153 129 135 168 120 125 164 129 70 105 111 140 194 142 112 155 120 

4-hour 175 222 204 138 169 138 139 175 129 122 173 142 74 118 124 138 208 152 118 168 129 

FA
L

L 

1-hour 46 63 85 35 56 58 44 50 55 34 52 59 43 60 55 45 71 60 35 48 49 

2-hour 78 92 97 67 80 68 67 70 66 52 73 67 57 87 62 69 96 71 57 67 54 

3-hour 81 103 110 76 90 84 83 81 81 59 81 83 65 97 69 80 104 76 65 76 64 

4-hour 75 107 120 81 143 89 87 81 94 58 78 88 56 94 72 89 102 83 74 81 80 
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Relative frequencies were useful to show which method 
works best in individual forecasting situations, but were not 
ideal for assessing a method’s overall ability to minimize 
forecasting errors across all situations. Fig. 1 compares the 
RMSE values of the ML forecasts to the two benchmark 
forecasts, [27] and persistence, for all SURFRAD sites. The 
graphs indicate RMSE values as a function of the forecast 
horizon time span. The relative strength of the 2- and 3-
hour-ahead forecasts in [27] compared to the ML models is 
especially apparent in the graphs for Bondville, Goodwin 
Creek, and Penn State. Comparisons were also made by 
showing the percentage improvement, defined as the 
difference between the RMSE of the ML forecast and the 
RMSE of the benchmark forecast divided by the RMSE of 
the benchmark. The largest improvement among all 
situations occurred in Fort Peck, where the suite of ML 
algorithms demonstrated a 28.8% improvement compared to 
the average RMSE values from [27], followed by a 25.7% 
improvement in Boulder. Improvements compared to the 
RMSE averages in [27] were also made in Desert Rock, 
Sioux Falls, Penn State, Bondville, and Goodwin Creek by 
21.5%, 10.0%, 6.4%, 4.8%, and 0.7%, respectively. It is 
interesting to note that this study showed the largest 
improvements in RMSE scores for Boulder, Fort Peck, and 
Desert Rock. These three sites are located at the highest 
elevations and are the three westernmost locations in the 
SURFRAD network. ML forecasts outperformed the RMSE 
results from the persistence-of-cloudiness forecasts for all 
sites as well. They showed the greatest improvement in the 
four locations of Boulder (25.3%), Desert Rock (30.7%), 
Penn State (26.3%), and Fort Peck (27.2%).  

B. Performance of ML Algorithms Against Each Other 
Table II compares the four ML models used in this study 

to each other by showing the relative frequency (rounded) 
that each algorithm had in producing the lowest RMSE 
values in the listed forecasting situations. There were 84 fore 

TABLE II.  ML METHODS’ PERFORMANCES BASED ON RMSE 

 

TABLE III.  ML METHODS’ PERFORMANCES BASED ON MAE 

 -casting situations for each forecast horizon (12 months per 
7 sites), 84 situations for each seasonal forecast (3 months 
per 7 sites for 4 forecast horizons), and 48 for each 
geographic forecast (12 months per four forecast horizons) 
made in this study. The ANN algorithm was the top 
performer in each of these situational categories and 
produced the lowest error value in 41.1% of the 336 total 
forecasting situations based on the RMSE metric. The SVM 
algorithm performed equally well in Fort Peck, and when 
the seasons were broken down by month, SVM 
outperformed ANN during all April forecasts by 42% to 
32%. The RF and SVM algorithms performed almost 
equally well when considering all forecast situations. A 
similar table was constructed for the nRMSE metric, in 
which the RF, SVM, ANN, and GBM methods achieved the 
same overall relative frequencies as those in Table II. 

Table III is similar to Table II except that it shows the 
relative frequency of each model’s ability to produce the 
lowest MAE values in each forecasting situation. The SVM 
algorithm produced the lowest MAE values in all types of 
forecasting situations more often than any of the other ML 
models, though it tied ANN when making 3-hour-ahead 
forecasts. It was the top performer in more situations 
according to the MAE metric than the ANN was when 
considering the RMSE metric. The SVM performed best 
most often in 1-hour forecasts, and it approached smaller 
relative frequencies as the forecast horizon extended in time. 
A similar table was constructed for the MAPE metric that 
shows the RF, SVM, ANN, and GBM methods achieved 
relative frequencies of 14.6%, 44.3%, 26.2%, and 14.9%, 
respectively.   

V. CONCLUSION AND FUTURE WORK 
This paper assessed the performance of ML techniques 

and their validity in improving short-term solar forecasting. 
The ML approaches were compared to other forecasting 
methods, and individual ML algorithms were compared to 
each other. ML forecasts generated lower average RMSE 
values than a cloud motion forecasting method for all seven 
sites, with the biggest improvements for the three sites at the 

Forecast Situation RF SVM ANN GBM 

1-hour ahead 8% 31% 42% 19% 

2-hour ahead 22% 20% 38% 20% 

3-hour ahead 25% 13% 45% 16% 

4-hour ahead 29% 20% 38% 13% 

Winter 20% 22% 38% 20% 

Spring 15% 25% 40% 20% 

Summer 24% 17% 47% 12% 

Fall 25% 23% 38% 14% 

Boulder 27% 15% 43% 15% 

Bondville 21% 21% 35% 23% 

Goodwin Creek 21% 23% 39% 17% 

Fort Peck 23% 31% 31% 15% 

Desert Rock 15% 31% 42% 12% 

Penn State 25% 15% 45% 15% 

Sioux Falls 15% 12% 50% 23% 

All Situations 20.8% 21.1% 41.1% 17.0% 

Forecast Situation RF SVM ANN GBM 

1-hour ahead 7% 65% 17% 11% 

2-hour ahead 15% 44% 26% 15% 

3-hour ahead 14% 36% 36% 14% 

4-hour ahead 23% 32% 26% 19% 

Winter 17% 41% 25% 17% 

Spring 6% 60% 19% 15% 

Summer 21% 38% 25% 16% 

Fall 12% 40% 35% 13% 

Boulder 10% 48% 25% 17% 

Bondville 8% 52% 17% 13% 

Goodwin Creek 23% 35% 19% 23% 

Fort Peck 21% 42% 27% 10% 

Desert Rock 21% 48% 19% 12% 

Penn State 8% 42% 40% 10% 

Sioux Falls 10% 44% 27% 19% 

All Situations 14.6% 44.3% 26.2% 14.9% 
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highest elevations and westernmost locations in the 
SURFRAD network. They also outperformed the 
persistence-of-cloudiness forecasts at all seven sites, with 
the greatest improvements at the four locations of Boulder, 
Desert Rock, Penn State, and Fort Peck. The ML forecasts 
produced the lowest RMSE more often than the cloud 
motion method across all summer and fall seasonal forecasts 
as well as for 1 and 4-hour-ahead forecasts.  Assessing the 
performance of the four algorithms against each other did 
not reveal any strong situation-dependent sensitivities 
because each algorithm was capable of occasionally making 
the best forecast in various forecasting situations, though 
some less than others. However, either SVMs or ANNs most 
often led to the lowest forecasting errors depending on the 
error metric used. An ANN was the preferred model if 
minimizing the largest point forecast errors was the greatest 
concern, according to the RMSE metric; however, the SVM 
was the best performer if minimizing the average absolute 
difference, MAE, was preferred. These results depended on 
the specific tuning of each algorithm’s hyperparameters. 

This solar irradiance forecasting methodology can be 
further extended by increasing the forecast horizon 
resolutions from hourly increments to 5-minute increments, 
allowing for more dynamic time series information about 
upcoming ramping events. Further work is needed to fine-
tune each ML algorithm, and future research should also 
look into optimizing ML hyperparameters for each situation-
dependent forecast. Improved forecasts will help facilitate 
higher penetrations of solar energy into the grid by 
providing increased grid reliability and minimizing costs 
associated with ramping events. 
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