
Advanced Energy System
Design (AESD): Technical
Manual for the Records API
Nicholas Brunhart-Lupo, Brian Bush,
Kenny Gruchalla, and Michael Rossol
National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Technical Report
NREL/TP-6A20-68924
August 2018

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Advanced Energy System
Design (AESD): Technical
Manual for the Records API
Nicholas Brunhart-Lupo, Brian Bush,
Kenny Gruchalla, and Michael Rossol
National Renewable Energy Laboratory

Suggested Citation
Brunhart-Lupo, Nicholas, Brian Bush, Kenny Gruchalla, and Michael
Rossol. 2018. Advanced Energy System Design (AESD): Technical
Manual for the Records API. Golden, CO: National Renewable Energy
Laboratory. NREL/TP-6A20-68924.
https://www.nrel.gov/docs/fy18osti/68924.pdf

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Technical Report
NREL/TP-6A20-68924
August 2018

Contract No. DE-AC36-08GO28308

https://www.nrel.gov/docs/fy18osti/68924.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was
supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views
expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S.
Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

iii
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Acronyms and Glossary
ACI Application Container Image
AESD Advanced Energy System Design
API application programming interface
C++ a programming language
CSV comma-separated-value file
Chrome a web browser
Firefox a web browser
Google Protocol Buffers a serialization specification
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
Haskell a programming language
IoT Internet of Thinks
JSON JavaScript Object Notation
JavaScript a programming language
MySQL a database server product
NREL National Renewable Energy Laboratory
ODBC Open Database Connectivity
POSIX Epoch seconds since midnight 1 January 1970 UTC
PostgreSQL a database server product
Project Haystack a specification for data feeds from the Internet of Thinks (IoT)
Python a programming language
R a programming language
REST representational state transfer
Rkt a container engine (CoreOS 2017b)
SQLite3 a database server product
TSV tab-separate-value file
URI uniform resource identifier
UTC Coordinated Universal Time
WebSockets a communication protocol
YAML YAML Ain’t Markup Language

iv
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Abstract
The Records API (application program interface) for Advanced Energy System Design (AESD)
enables software that serves multidimensional record-oriented data to interoperate with software
that uses such data. In the context of the Records API, multidimensional data records are simply
tuples of real numbers, integers, and character strings, where each data value is tagged by a
variable name, according to a pre-defined schema, and each record is assigned a unique integer
identifier. Conceptually, these records are isomorphic to rows in a relational database, JSON
objects, or key-value maps. Records servers might supply static data sets, sensor measurements
that periodically update as new telemetry become available, or the results of simulations as the
simulations generate new output. Records client software might display or analyze the data, but
in the case of simulations, the client requests the creation of new ensembles for specified input
parameters. It is also possible to chain records clients and servers together so that a client
consuming data from a server might transform that data and serve it to additional clients.

This minimalist API avoids imposing burdensome metadata, or structural or implementation
requirements on developers by relying on open source technologies that are readily available for
common programming languages. In particular, the API has been designed to place the least
possible burden on services that provide data. This document defines the message format for
the Records API, a transport mechanism for communicating the data, and the semantics for
interpreting it. The message format is specified as Google Protocol Buffers (Google Developers
2017a) and the transport mechanism uses WebSockets (Internet Engineering Task Force 2017).
We discuss five major use cases for serving and consuming records data: (1) static data,
(2) dynamically augmented data, (3) on-demand simulations, (4) with filters, and (5) with
bookmarks. Separate implementations of the API exist in C++, Haskell, JavaScript, Python,
and R.

v
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Table of Contents
Overview .. 1
Use Cases .. 3

Static Data .. 3
Dynamic Data ... 8
Simulations ... 9
Bookmarks.. 10
Filtering .. 12

Records API, Version 4 ... 14
Message Groups ... 14
General Conventions .. 16
Messages .. 16
Scalar Value Types ... 27

Implementations .. 28
Haskell Client and Server Library and Applications .. 29
C++ Server and Client .. 33
JavaScript Client Library and Web-Based Browser ... 33
Python Client Library ... 35

Appendix .. 39
Protocol Buffers for Records API Version 4 .. 39

References ... 44

vi
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

List of Figures
Containment relationships between protocol buffer messages in the Records API 2
Visualizing data from a static source using the Records API ... 4
Visualizing data from a dynamic source using the Records API ... 8
Steering and visualizing simulation results using the Records API ... 9
Creating and retrieving a bookmark and its associated data .. 10
User interface for the Records API browser ... 34
Example of a Python session using the Records API ... 38

List of Tables
Correlation between Requests and Responses.. 1
Available Client and Server Applications and Libraries for the Records API 28
Command-Line Arguments for Serving TSV Files .. 31
Parameters for Database Back Ends Serving the Records API .. 32
Command-Line Arguments for Serving Haystack Data Feeds .. 32
YAML Configuration Parameters for Haystack-Based Records API Servers 33

1
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Overview
Client-server communication in the Records API simply consists of clients sending Request
messages to the server and servers asynchronously sending Response messages to the client. The
request and response messages hold the specifics of the request or response and the responses are
correlated with the requests; however, it is important to note that multiple responses may occur
for a single request, as when record data are chunked into multiple response, or that an error
response may be sent at any time. The nested messages within Request and Response may in
turn contain nested fields and messages providing further details. The table below shows the
correspondence between requests and responses, while the figure following that shows the
containment relationships between message types.

Correlation between Requests and Responses

Request Field Response Field
models_metadata models or error
records_data data or error
bookmark_meta bookmarks or error
save_bookmark bookmarks or error
cancel no response or error
work data or error

2
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Containment relationships between protocol buffer messages in the Records API

3
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Metadata messages describe “models,” which are just sources of data, and the variables they
contain. Data record messages hold the data itself. Data records are simply tuples of real
numbers, integers, and character strings, where each data value is tagged by a variable name,
according to a pre-defined schema, and each record is assigned a unique integer identifier.
Conceptually, these records are isomorphic to rows in a relational database, JSON objects, or
key-value maps. For efficiency and compactness, RecordData may be provided in list format or
tabular format, with the latter format obtained only when the contents of the table all have the
same data type. The data records may be provided in toto or filtered using filter messages so that
only certain fields or records are returned. The API contains a small embedded language for
filtering via set and value operations. Sets of records may be bookmarked for sharing or later
retrieval by (1) enumerating their unique record identifiers, (2) defining a range of unique record
identifiers, or (3) specifying a filtering criterion.

Servers that perform computations or simulations can receive input parameters via a
RequestWork message that contains those input parameters. After the server has completed
its computations, it sends the results as RecordData messages.

In general, the response to a request for data records comes in chunks numbered in sequence,
where each chunk has an identifier, chunk_id, and the response specifies the identifier of the
next chunk, next_chunk_id. Thus, the chunks form a linked list. The sending of additional
chunks can be cancelled using a RequestCancel message. If the subscribe flag is set when
making a request, the server will respond indefinitely with additional data as it becomes
available, until the subscription is cancelled.

Use Cases
In this section we outline some standard use cases for the Records API. UML Sequence
Diagrams (Fowler 2017) illustrate the flow of messages and the messages themselves are
printed in the text format output by the Google protoc tool (Google Developers 2017b).

Static Data
The retrieval of static data records forms the simplest use case for the Records API. A user
chooses a particular data source (a “model” in the parlance of the Records API) and then the data
are retrieved and displayed. The visualization client software communicates with a Records
server, which in turn accesses the static data. The figure below illustrates the process.

4
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Visualizing data from a static source using the Records API

A Request without model_id specified requests the server to list all models:

version: 4
id: 1
models_metadata {
}

The Response from the server provides metadata for all of the models:

version: 4
id: 1
models {
 models {
 model_id: "example-model-1"
 model_name: "Example Model #1"
 model_uri: "http://esda.nrel.gov/examples/model-1"
 variables {
 var_id: 0
 var_name: "Example Real Variable"
 type: REAL
 }
 variables {
 var_id: 1
 var_name: "Example Integer Variable"

5
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 type: INTEGER
 }
 variables {
 var_id: 2
 var_name: "Example String Variable"
 type: STRING
 }
 models {
 model_id: "example-model-2"
 model_name: "Example Model #2"
 model_uri: "http://esda.nrel.gov/examples/model-2"
 variables {
 var_id: 0
 var_name: "POSIX Epoch"
 type: INTEGER
 }
 variables {
 var_id: 1
 var_name: "Measurement"
 type: REAL
 }
 }
 models {
 model_id: "example-simulation-3"
 model_name: "Example Simulation #3"
 model_uri: "http://esda.nrel.gov/examples/simulation-3"
 variables {
 var_id: 0
 var_name: "Input"
 type: REAL
 }
 variables {
 var_id: 1
 var_name: "Time"
 type: REAL
 }
 variables {
 var_id: 2
 var_name: "Value"
 type: REAL
 }
 inputs {
 var_id: 0
 interval {
 first_value: 0
 second_value: 100
 }
 }
 }
}

6
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Note that the response above is tagged with the same id as the request; this allows the client
to correlate responses with the particular requests it makes. Next, the user might request three
records from the first model:

version: 4
id: 2
records_data {
 model_id: "example-model-1"
 max_records: 3
}

The record data might be returned as two chunks, where the first chunk is

version: 4
id: 2
chunk_id: 1
next_chunk_id: 2
data {
 list {
 records {
 record_id: 10
 variables {
 var_id: 0
 value: 10.5
 }
 variables {
 var_id: 1
 value: -5
 }
 variables {
 var_id: 2
 value: "first"
 }
 }
 records {
 record_id: 20
 variables {
 var_id: 0
 value: 99.2
 }
 variables {
 var_id: 1
 value: 108
 }
 variables {
 var_id: 2
 value: "second"
 }
 }

7
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 }
}

and the last chunk is:

version: 4
id: 2
chunk_id: 2
next_chunk_id: 0
data {
 list {
 records {
 record_id: 30
 variables {
 var_id: 0
 value: -15.7
 }
 variables {
 var_id: 1
 value: 30
 }
 variables {
 var_id: 2
 value: "third"
 }
 }
 }
}

8
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Dynamic Data
As shown in the following figure, retrieving data from a dynamic source proceeds quite similarly
to retrieving data from a static source. The only essential difference is that the server repeatedly
sends additional responses containing new data, until a request to cancel is sent.

Visualizing data from a dynamic source using the Records API

When requesting dynamic data, it is advisable to set the subscribe flag in the request for data:

version: 4
id: 2
subscribe: true
records_data {

9
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 model_id: "example-model-2"
}

The RequestCancel message is the cancel field Request and must include the id of the request
to be cancelled:

version: 4
cancel {
 id: 2
}

Simulations
The model Example Simulation #3 in the Static Data use case is a simulation model, as
evidenced by the presence of the inputs field in its metadata. The following figure shows a
typical interaction with a simulation-based model via the Records API.

Steering and visualizing simulation results using the Records API

10
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

The RequestWork message, which is contained in the work field of a Request, specifies the input
for a simulation to be run:

version: 4
id: 3
work {
 model_id: "example-simulation-3"
 inputs {
 var_id: 0
 value: 50
 }
}

The response to this message will be data for the result of the simulation.

Bookmarks
Once data from a model is loaded, it may be bookmarked. One simply supplies a description
of the data to be bookmarked. Bookmarks can be listed and loaded, as shown in the following
figure.

Creating and retrieving a bookmark and its associated data

11
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

To create a bookmark for a specific list of records, simply supply their record identifiers as part
of a BookmarkMeta message in the save_bookmark field of Request:

version: 4
id: 4
save_bookmark {
 model_id: "example-model-1"
 new_bookmark {
 bookmark_name: "Sample Bookmark"
 set {
 record_ids: 10
 record_ids: 30
 }
 }
}

The response will be the same bookmark but with the bookmark_id field added:

version: 4
id: 4
bookmarks {
 bookmark_metas {
 bookmark_id: "bookmark-1"
 bookmark_name: "Sample Bookmark"
 set {
 record_ids: 10
 record_ids: 30
 }
 }
}

The user, or another user, can retrieve the records corresponding to the bookmark:

version: 4
id: 5
records_data {
 model_id: "example-model-1"
 bookmark_id: "bookmark-1"
}

This will return precisely the bookmarked records:

version: 4
id: 5
data {
 list {
 records {
 record_id: 10
 variables {
 var_id: 0

12
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 value: 10.5
 }
 variables {
 var_id: 1
 value: -5
 }
 variables {
 var_id: 2
 value: "first"
 }
 }
 records {
 record_id: 30
 variables {
 var_id: 0
 value: -15.7
 }
 variables {
 var_id: 1
 value: 30
 }
 variables {
 var_id: 2
 value: "third"
 }
 }
 }
}

Filtering
Filtering records can be used to select particular records for retrieval, via the
RequestRecordsData message, or in defining bookmarks via the BookmarkMeta message.
Filtering of records is accomplished through expressions (FilterExpression), combining values
for variables (DomainMeta), and the set operators not, union, and intersection, encoded in the
messages FilterNot, FilterUnion, and FitlerIntersection respectively. For example, the expression
𝑥𝑥 ≤ 20 would be expressed as the following FilterExpression:

filter_domain {
 interval {
 var_id: 0
 last_value: 20
 }
}

provided that 𝑥𝑥 has var_id = 0. The expression (10 ≤ 𝑥𝑥 ≤ 20) ∪ (𝑦𝑦 ∉ {4,7}) would be
expressed as

filter_union {
 filter_expressions {

13
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 filter_domain {
 var_id: 0
 first_value: 10
 last_value: 20
 }
 filter_not {
 filter_expression {
 filter_domain {
 var_id: 1
 set {
 elements: 4
 elements: 7
 }

 }
 }
 }
}

provided that 𝑥𝑥 has var_id = 0 and 𝑦𝑦 has var_id = 1.

14
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Records API, Version 4
The Records API consists of Google Protobuf 3 (Google Developers 2017b) messages used to
request and provide data and metadata for record-oriented information. This section contains the
complete specification for Version 4 of the Records API. Clients send Request messages and
servers send Response messages, which are typically transported via WebSockets (Internet
Engineering Task Force 2017).

Message Groups
The message types in the Records API are organized into thematic groups below.

Requests and Responses
Request messages are sent from client to server, and Response messages are sent from server
to client. Request messages contain a specific type of request and response messages contain a
corresponding specific type of response.

• Request

• RequestModelsMeta

• RequestRecordsData

• RequestWork

• RequestBoomarkMeta

• RequestSaveBookmark

• RequestCancel

• Response

Metadata
Metadata messages describe data sources (“models”) and variables.

• ModelMeta

• ModelMetaList

• DomainMeta

• VarMeta

• VariableType

• VarSet

15
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

• VarInterval

Data Records
Data are represented as either lists of records or tables of them.

• Record

• VarValue

• Value

• RecordData

• RecordList

• RecordTable

Filtering
Records can be filtered by logical operations on conditions for values of variables in the records.

• FilterExpression

• FilterNot

• FilterIntersection

• FilterUnion

• DomainMeta

Bookmarks
Bookmarks record particular sets or records or conditions for record data.

• BookmarkMeta

• BookmarkMetaList

• BookmarkIntervalContent

• BookmarkSetContent

Miscellaneous
The following messages wrap data types for the content of records.

• DoubleList

• IntegerList

16
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

• StringList

• OptionalInt32

• OptionalUInt32

• OptionalString

General Conventions
All fields are technically optional in ProtoBuf 3, but some fields may be required in each
message type in order for the message to be semantically valid. In the following specifications
for the messages, fields are annotated as semantically required or semantically optional. Also,
the specification notes when field in the protobuf oneof construct are required or mutually
exclusive.

Furthermore, one cannot determine whether an optional value has been set if it is just a value,
as opposed to a message. That is not true for fields that are messages, where the absence of the
field truly indicates the value is absent and is not just a default or unset value. The message
OptionalString, for example, is used in the API to indicate whether a character string value
is truly present. Thus RequestModelsMeta has a model_id field that indicates whether the
request is for all models, when the field has not been set, or for a specific one, when the field
has been set.

Throughout this specification, the following types are used for identifiers: * var_id is int32 *
model_id is string * record_id is int64

This specification conforms to Protocol Buffers Version 3.

Messages
BookmarkIntervalContent

A range of record identifiers can specify the content of a bookmark. Bookmark interval content
provides a convenient means to bookmark a contiguous selection of records in a model.

Both fields in this message are optional:

• If neither field is present, the bookmark interval designates all records in the model.

• If only first_record is present, the bookmark interval designates all records starting from
that record identifier.

• If only last_record is present, the bookmark interval designates all records ending at
that record identifier. For a dynamic model, such a bookmark interval includes all “future”
records.

• If both fields are present, the bookmark interval designates all records between the two
identifiers, inclusively.

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3

17
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Field Type Label Description
first_record int64 optional [semantically optional] The identifier for the first record in the interval.
last_record int64 optional [semantically optional] The identifier for the last record in the interval.

BookmarkMeta

A bookmark is metadata defining a subset of records in a model.

There are three options for specifying a bookmark:

1. Interval content specifies a range of records in the bookmark.

2. Set content specifies a list of records in the bookmark.

3. A filter expression defines a set of logical conditions for determining whether a record
is in the bookmark.

Exactly one of interval, set, or filter must be specified in this message.

Field Type Label Description
bookmark_id string optional [semantically optional] When creating a new

bookmark, this field must be empty; the server will
create a unique identifier for the bookmark. This
identifier uniquely identifies the bookmark on the
particular server.

bookmark_name string optional [semantically required] a name for the bookmark,
which is useful for displaying the bookmark to users;
this need not be unique, although it is recommended
to be so.

interval BookmarkIntervalContent optional the range of records in the bookmark
set BookmarkSetContent optional the list of records in the bookmark
filter FilterExpression optional logical conditions for defining which records are in the

bookmark

BookmarkMetaList
Bookmarks may be grouped into lists (sets).

Field Type Label Description
bookmark_metas BookmarkMeta repeated [semantically optional] the bookmarks in the list

BookmarkSetContent
A list (set) of record identifiers can specify the contents of a bookmark. Bookmark-set content
provides a convenient means to bookmark a specific selection of non-continuous records in
a model.

Field Type Label Description
record_ids int64 repeated [semantically optional] the list of record identifiers in

the set

18
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

DomainMeta
The domain (set of valid values) for a variable.

There are two options for specifying a domain:

1. An interval specifies a range of values in the domain.

2. A set specifies a list of values in the domain.

Exactly one of interval or set must be specified in the message.

Field Type Label Description
var_id int32 optional [semantically required]
interval VarInter

val
optional the interval of values in the domain

set VarSet optional the list of values in the domain

DoubleList
A list of real numbers.

Field Type Label Description
values double repeated [semantically required] the real numbers

FilterExpression

A filtering expression is a composition of logical conditions on a record. It can be used to
filter records. There are four options for specifying a filter expression:

1. The logical negation of another filtering expression

2. The set union of multiple filtering expressions

3. The set intersection of multiple filtering expressions

4. Particular values of variables in a record.

Exactly one of filter_not, filter_union, filter_intersection, or filter_domain must
be specified in this message.

Field Type Label Description
filter_not FilterNot optional logical negation of an expression
filter_union FilterUnion optional set union of expressions
filter_intersection FilterIntersection optional set intersection of expressions
filter_domain DomainMeta optional particular values of variables

19
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

FilterIntersection
Set intersection of filtering expressions. A record satisfies this expression if it satisfies all
filter_expressions.

Field Type Label Description
filter_expressions FilterExpression repeated [semantically required] the expressions to be intersected

FilterNot
Logically negate a filtering expression. A record satisfies this expression if it does not satisfy
filter_expression.

Field Type Label Description
filter_expression FilterExpression optional [semantically required] the expression to be negated

FilterUnion
Set union of filtering expressions. A record satisfies this expression if it satisfies any of
filter_expressions.

Field Type Label Description
filter_expressions — repeated [semantically required] the expressions to be “unioned”

IntegerList
A list of integers.

Field Type Label Description
values sint64 repeated [semantically required] The integers

ModelMeta
Metadata for a model.

Field Type Label Description
model_id string optional [semantically required] the unique identifier for the model on the

particular server
model_name string optional [semantically required] a name for the model, useful for display the

model to users; this need not be unique, although it is recommended to
be so.

model_uri string optional [semantically required] the unique URI for the model; additional
metadata may be obtained by dereferencing that URI.

variables VarMeta repeated [semantically required] metadata for the variables
inputs DomainMeta repeated [semantically optional] metadata for input values to the model, if any

ModelMetaList
A list of metadata for models.

Field Type Label Description
models ModelMeta repeated [semantically optional] the metadata for the models

20
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

OptionalInt32
Wrapper for an optional signed integer.

Field Type Label Description
value int32 optional [semantically required] the signed integer value

OptionalString
Wrapper for an optional string.

Field Type Label Description
value string optional [semantically required] the character string value

OptionalUInt32
Wrapper for an optional unsigned integer.

Field Type Label Description
value uint32 optional [semantically required] the unsigned integer value

Record
A record is a list of variables and their associated values.

Field Type Label Description
record_id int64 optional [semantically required] a unique identifier for the record
variables VarValue repeated [semantically optional] the values for variables in the record

21
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

RecordData
A collection of records.

There are two options for specifying record data:

1. A list specifies a heterogeneously typed list.

2. A table specifies a homogeneously typed table.

Exactly one of list or table must be present in the message.

Field Type Label Description
list RecordList optional a heterogeneously typed list of records
table RecordTable optional a homogeneously typed table of records

RecordList
A list of records. The list is heterogeneous in the sense that each variable may have a
different type.

Field Type Label Description
records Record repeate

d
[semantically optional] The list of records.

RecordTable
A homogeneously typed table of records, where each variable has each type, with a row for each
record and a column for each variable.

This message represents the following table:

Record Identifier var_id[0] var_id[1] . . . var_id[N]
rec_id[0] list[0][0] list[0][1] . . . list[0][N]
rec_id[1] list[1][0] list[1][1] . . . list[1][N]
.
rec_id[M] list[M][0] list[M][1] . . . list[M][N]

22
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

The underlying list is a single array, addressable using the following row-major index formula
list[row][var] = array[var + NY * row] where NX = length of rec_ids and NY = length of
var_ids.

Exacly one of reals, integers, or strings must be specified in the message.

Field Type Label Description
var_ids int32 repeated [semantically required] the identifiers of the variables (columns) in the table
rec_ids int64 repeated [semantically required] the identifiers of the records (rows) in the table
reals DoubleList optional the real numbers comprising the values of the variables, in row-major order
integers IntegerList optional the integers comprising the values of the variables, in row-major order
strings StringList optional the character strings comprising the values of the variables, in row-major order

Request
A request. There are six types of requests:

Request Response
Metadata for model(s) ModelMetaList
Data records RecordData
Metadata for bookmark(s) BookmarkMetaList
Saving a bookmark BookmarkMetaList
Canceling a previous request n/a
New work, such as a simulation RecordData

Exactly one of models_metadata, records_data, bookmark_meta, save_bookmark, cancel,
or work must be specified in the message.

Field Type Label Description
version uint32 optional [semantically required] the version number for the API;

this must be the number four.
id OptionalUInt32 optional [semantically optional, but recommended] an identifier

that will be used to tag responses, so that responses can
be correlated with requests

subscribe bool optional [semantically optional] whether to continue receiving
responses indefinitely, as new records become
available; this is useful, for example, when a sensor is
reporting measurements periodically or when simulations
are reporting a series or results. Use RequestCancel to
end the subscription.

models_metadata RequestModelsMeta optional request metadata for model(s)
records_data RequestRecordsData optional request data records
bookmark_meta RequestBookmarkMeta optional request metadata for bookmark(s)
save_bookmark RequestSaveBookmark optional request save a new bookmark or update an existing one
cancel RequestCancel optional request to cancel a previous request)
work RequestWork optional request work (e.g., simulation results)

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

23
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

RequestBookmarkMeta
A request for one or more bookmarks for a model.

The response to this request is BookmarkMetaList

Field Type Label Description
model_id string optional [semantically required] which model for which to list

bookmarks
bookmark_id OptionalString optional [semantically optional] If empty, list all bookmarks for the

model. Otherwise, list just the bookmark metadata for this
specific bookmark identifier.

RequestCancel
Cancel a previous request.

Field Type Label Description
id OptionalUInt32 optional [semantically required] which request to cancel

RequestModelsMeta
A request for metadata about model(s).

The response to this request is ModelMetaList.

Field Type Label Description
model_id OptionalString optional [semantically optional] If absent, the request is for

metadata for all models. Otherwise, the request is for the
specifically identified model.

RequestRecordsData
Request record data for a model.

There are three options for requesting record data:

1. Request all records.

2. Request records in a bookmark.

3. Filter records according to a criterion.

The response to this request is RecordData.

24
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

No more than one of bookmark_id or expression may be present in the message.

Field Type Label Description
model_id string optional [semantically required] the identifier for the model
max_records uint64 optional [semantically optional] If specified, this is the maximum

number of records to return. Otherwise, all records are
returned, although they may be returned as multiple
responses, each with a chunk of records.

var_ids int32 repeated [semantically optional] which variables to include in the
response; if this is not specified, all variables will be
included.

bookmark_id string optional [semantically optional] Only respond with records in a
specified bookmark.

expression FilterExpression optional [semantically optional] Only respond with records
matching a specified criterion.

RequestSaveBookmark
A request to create or update a bookmark.

The response to this request is BookmarkMetaList.

Field Type Label Description
model_id string optional [semantically required] which model for which to save the

bookmark
new_bookmark BookmarkMeta optional [semantically optional] If empty, create a new bookmark.

(In which case, leave the bookmark_id empty, so that
the server will create a unique identifier for the new
bookmark.) Otherwise, update an existing bookmark.

RequestWork
Request that the server compute new records based on input values.

The response to this request is RecordData.

Field Type Label Description
model_id string optional [semantically required] the identifier for the model
inputs VarValue repeated [semantically optional] which input variables to set to

which values

25
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Response
A response to a request.

Note that a server may send multiple responses to a single request, expressed as a linked list of
chunks. It is strongly recommended that servers chunk by record_id so that each record is kept
intact. A chunk may be empty.

Field Type Label Description
version uint32 optional [semantically required] the version number for the API;

this must be the number four.
id OptionalUInt32 optional [semantically optional] a response without an identifier is a

notification; otherwise, the response identifier matches the
response identifier for the original request.

chunk_id int32 optional [semantically optional, but recommended] the identifier for
this chunk; it is recommended that chunks are numbered
sequentially starting beginning with the number one.

next_chunk_id int32 optional [semantically optional] the identifier of the next chunk, or
zero if this is the last chunk

error string optional an error message
models ModelMetaList optional a list of model metadata
data RecordData optional a list of record data
bookmarks BookmarkMetaList optional a list of bookmark metadata

StringList
A list of character strings.

Field Type Label Description
values string repeated [semantically required] the character strings

Value
Value that may be a real number, an integer, or a character string

Exactly one of real_value, integer_value, or string_value must be specified
in this message.

Field Type Label Description
real_value double optional the real number
integer_value int64 optional the integer
string_value string optional the character string

26
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

VarInterval
A range of values of a variable.

Both fields in this message are optional:

• If neither field is present, the interval designates all values in the domain.

• If only first_value is present, the interval designates all values starting from that value.

• If only last_value is present, the bookmark interval designates all values ending at that
value.

• If both fields are present, the interval designates all values between the two values, inclusive.

Field Type Label Description
first_value Value optional [semantically optional] the first value in the interval
last_value Value optional [semantically optional] the last value in the interval

VarMeta
Metadata for a variable.

Field Type Label Description
var_id int32 optional [semantically required] an integer identifying

the variable
var_name string optional [semantically required] the name of the variable
units string optional [semantically optional] the name of the unit of

measure for values of the variable
si sint32 repeated [semantically optional] the unit of measure

expressed as a list of the exponents for the eight
fundamental SI quantities [meter, kilogram,
second, ampere, kelvin, mole, candela, radian];
for example, the unit of acceleration 𝑚𝑚/𝑠𝑠2 would
be express as [1, 0, -2, 0, 0, 0, 0,
0] because meters has an exponent of positive
one and seconds has an exponent of negative
two.

scale double optional [semantically optional] An overall scale relative to
the fundamental SI scale of the unit of measure;
for instance, kilometers would have a scale of
1,000 because the fundamental unit of distance is
meters.

type VariableType optional [semantically optional] the data type for values of
the variable; The default type is real number.

VarSet
A set of values for a variable.

Field Type Label Description
elements Value repeated [semantically optional] the list of values in the set

27
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

VarValue
The value of a variable.

Field Type Label Description
var_id int32 optional [semantically required] the identifier for the

variable
value Value optional [semantically required] the value of the variable

VariableType
The data type for a value.

Name Number Description
REAL 0 a real number
INTEGER 1 an integer
STRING 2 a character string

Scalar Value Types
.proto
Type Notes

C++
Type

Java
Type

Python
Type

double double double float
float float float float
int32 Uses variable-length encoding. Inefficient for encoding

negative numbers—if your field is likely to have negative
values, use sint32 instead.

int32 int int

int64 Uses variable-length encoding. Inefficient for encoding
negative numbers; if your field is likely to have negative
values, use sint64 instead.

int64 long int/long

uint32 Uses variable-length encoding. uint32 int int/long
uint64 Uses variable-length encoding. uint64 long int/long
sint32 Uses variable-length encoding. Signed int value. These more

efficiently encode negative numbers than regular int32s.
int32 int int

sint64 Uses variable-length encoding. Signed int value. These more
efficiently encode negative numbers than regular int64s.

int64 long int/long

fixed32 Always four bytes. More efficient than uint32 if values are often
greater than 2^28.

uint32 int int

fixed64 Always eight bytes. More efficient than uint64 if values are
often greater than 2^56.

uint64 long int/long

sfixed32 Always four bytes. int32 int int
sfixed64 Always eight bytes. int64 long int/long
bool bool Boolean Boolean
string A string must always contain UTF-8 encoded or 7-bit ASCII

text.
string String str/unicode

bytes May contain any arbitrary sequence of bytes. string ByteString str

28
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Implementations
This section provides an overview of the variety of libraries and applications implementing the
Records API (see the table below). In particular, pre-built applications are available for serving
text-based data sources, database queries, and sensor data feeds. Application Container Images
(ACIs) (CoreOS 2017a) of each have been packed for use with the rkt container engine (CoreOS
2017b).

Available Client and Server Applications and Libraries for the Records API

Client
or
Server
?

Library or
Application
?

Data
Source

Implementation
Language

Computing
Platforms URL

client GUI
application

any C++ Mac,
Winodws,
Linux

https://github.nrel.gov/d-star/cpp-records

server GUI/CLI
applications

CSV files C++ Mac,
Winodws,
Linux

https://github.nrel.gov/d-star/cpp-records

client library any Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

TSV files Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

PostgreSQ
L

Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

MySQL Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

SQLite3 Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

ODBC Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

server CLI
application

Haystack Haskell Mac,
Windows,
Linux

https://github.com/NREL/AESD/lib/haskel
l

client library, web
application

any JavaScript Chrome,
Firefox

https://github.com/NREL/AESD/lib/javasc
ript

client library any Python any https://github.com/NREL/AESD/lib/python
client library any R any https://github.nrel.gov/d-star/r-records

https://github.nrel.gov/d-star/cpp-records
https://github.nrel.gov/d-star/cpp-records
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/haskell
https://github.com/NREL/AESD/lib/javascript
https://github.com/NREL/AESD/lib/javascript
https://github.com/NREL/AESD/lib/python
https://github.nrel.gov/d-star/r-records

29
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Haskell Client and Server Library and Applications
Both client and server applications in Haskell are available for the Records API.
Full documentation resides at https://github.com/NREL/AESD/lib/haskell.

Client Library
The client library described below provides the basic functions for interacting with any
Records API server.

Types
data State

State information for a client.

Entry Point
clientMain

Run a client.

Argument Type Description

:: String the WebSocket host address

-> Int the WebSocket port number

-> String the WebSocket path

-> (State -> IO ()) customize the client

-> IO () action for running the client

close

Close a client.

Argument Type Description

:: State the state of the client

-> IO () action for closing the client

Server Requests
fetchModels

Fetch model metadata.

Argument Type Description

:: State the state of the client

-> IO (Either String [ModelMeta]) action returning either an error or the models

https://github.com/NREL/AESD/lib/haskell

30
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

fetchRecords

Fetch records from the server.

Argument Type Description

:: State the state of the client

-> ModelIdentifier the model identifier

-> Maybe Int the maximum number of records to request

-> IO (Either String [RecordContent]) action returning either an error or the records

fetchBookmarks

Fetch bookmark(s).

Argument Type Description

:: State the state of the client

-> ModelIdentifier the model identifier

-> Maybe BookmarkIdentifier the bookmark identifier, or all bookmarks

-> IO (Either String [BookmarkMeta]) action returning either an error or the bookmark(s)

storeBookmark

Save a bookmark.

Argument Type Description

:: State the state of the client

-> ModelIdentifier the model identifier

-> BookmarkMeta the bookmark metadata

-> IO (Either String BookmarkMeta) action returning either an error or the bookmark

Server Library
The server library provides two options for implementing a Records API server. The
AESD.Records.Server module provides a main entry point serverMain, a type class
ModelManager, and a monad ServiceM that implement a skeletal server, which handles all of the
WebSocket communication and Protocol Buffer serialization; an implementer need only create
an instance of ModelManager. Furthermore, the AESD.Records.Server.Manager module
provides such an instance InMemoryManager of the type class ModelManger to handle in-
memory caching of data and on-disk persistence of bookmarks; here, an implementer just calls
the function makeInMemoryManager and provides several functions that retrieve content:

31
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

makeInMemoryManager

Construct an in-memory model manager.

Argument Type Description

:: Maybe FilePath the name of the journal file

-> a the initial state

-> (a -> IO ([ModelMeta], a)) list models in an action modifying the
state

-> (a -> ModelMeta -> IO ([RecordContent], a)) load record data in an action
modifying the state

-> (a -> ModelMeta -> [VarValue] -> IO
([RecordContent], a))

performing work in an action
modifying the state

-> IO (InMemoryManager a) action constructing the manager

Server Back Ends
As previously mentioned, prebuilt servers have been implemented for standard types of
data sources.

Tab-Separate-Value Files
Serving tab-separated-value (TSV) files is as simple as placing the TSV files in a directory and
starting a server at the command line, with the arguments specified in the table below:

aesd-file-server <host> <port> <directory> <persistence> <chunkSize>

Command-Line Arguments for Serving TSV Files

Parameter Description
host host address to which to bind the service
port port to which to bind the service
directory directory with TSV files to be served
persistence filename for bookmark data
chunkSize number of records return in each chunk

32
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Database Queries
The Records API servers have been implemented for the most common database back ends.
Each server takes a single command-line argument specifying a YAML (Oren Ben-Kiki, Clark
Evans, Ingy döt Net 2017) configuration file with the parameters in the table below.

Parameters for Database Back Ends Serving the Records API

Parameter Description PostgreSQL MySQL SQLite3 ODBC
host host address to

which to bind the
service

required required required required

port port to which to bind
the service

required required required required

directory directory with queries
to be served

required required required required

persistence filename for
bookmark data

optional optional optional optional

chunkSize number of records
return in each chunk

optional optional optional optional

database database connection
information

required
connection string

required
connection
string

required
filename

required
connection
string

Haystack Sensor Measurements and the “Internet of Things”
Furthermore, a server for Project Haystack (Project Haystack 2017) data feeds, typically sensor
measurements from devices in the “internet of things,” has been implemented. The server takes
command-line arguments specified in the table below.

aesd-haystack-server <configuration> <host> <port> <startTime> <persistence>
<chunkSize>

Command-Line Arguments for Serving Haystack Data Feeds

Parameter Description
configuration YAML configuration file for accessing the Haystack service
host host address to which to bind the service
port port to which to bind the service
startTime earliest time to serve, specified in seconds of the POSIX Epoch
persistence filename for bookmark data
chunkSize number of records return in each chunk

33
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

The parameters in the YAML configuration file like the one below and are described in
the following table:

siteAccess :
 server : xv11skys01.nrel.gov
 root : /api/nrel_wt_V7
 authorization: ["my username","my password"]
 secure : false
 timeZone : [-360, true, Denver]
siteIdentifier : NWTCv4
siteURI : http://aesd.nrel.gov/records/v4/nwtc/
siteName : NREL NWTC
siteDescription: Sensors from NREL National Wind Technology Center
siteTags :
 ! 'DC.source' : https://xv11skys01.nrel.gov/proj/nrel_wt_v7
 ! 'DC.creator' : Brian W Bush <brian.bush@nrel.gov>
 ! 'DC.description': NREL NWTC sensors
siteMeters :
 - 1dca834e-c6af46d6 NWTC Alstom Turbine Electricity Meter Turbine-Alstom kW Demand Forward
 - 1dca834e-69a3e57e NWTC Alstom Turbine Electricity Meter Turbine-Alstom kW Demand Reverse
 - 1dca834e-f56e11f0 NWTC Alstom Turbine Electricity Meter Turbine-Alstom kWh Delivered Forward

YAML Configuration Parameters for Haystack-Based Records API Servers

Parameter Description Required?
server hostname and port for the Haystack server required
root path to the Haystack REST service required
authorization the username and password for accessing the Haystack REST service optional
secure whether to use HTTPS instead of HTTP optional
time zone time zone information: minutes offset from UTC, whether to use daylight savings

time, and the geographic location
required

siteIdentifier identifier for the Records API server required
siteURI URI for the Records API server metadata required
siteName name of the Records API server required
siteTags key-value pairs tagging the server with additional information optional
siteMeters list of meters to expose on the Records API server; the Haystack ID is followed by a

space and textual description.
required

C++ Server and Client
Both client and server applications have been implemented in C++ for the Records API.
See https://github.nrel.gov/d-star/cpp-records for details. There are GUI and command-line
applications for serving comma-separated-value files and a GUI application for browsing
Records API data sources.

JavaScript Client Library and Web-Based Browser
The client library for JavaScript relies on a few simple functions to interact with a Records
API server. Full documentation for the JavaScript client library is available at
http://github.com/NREL/AESD/lib/javascript. The figure below shows the user interface of
the general purpose Records API browser using this JavaScript library.

https://github.nrel.gov/d-star/cpp-records
http://github.com/NREL/AESD/lib/javascript

34
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

User interface for the Records API browser

Connect to a server
connect(wsURL)

Here, wsURL is simply the URL of the server (e.g., ws://10.40.9.214:503761). This returns
a connection object.

Disconnect from a server
disconnect(connection)

Here, connection is the connection object returned by the connect function.

Retrieve list of data models
requestModelsMetadata(connection, modelId, notify, notifyError)

Here, connection is the connection object returned by the connect function and modelId is
either the string identifying the model or null if metadata for all models is requested. After all
of the model metadata have been retrieved, the notify function is called with the list of model
metadata objects as its argument; if an error occurs, notifyError is called with the error
message as its argument. The function requestModelsMetadata returns a result object that
contains a field done indicating whether all model metadata have been retrieved and a field
models listing the model metadata retrieved so far.

35
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Retrieve data records
requestRecordsData(connection, modelId, maxRecords, variableIds, bookmarkId,
notify, notifyError)

Here, connection is the connection object return by the connect function and modelId is the
string identifying the model. After all of the data records have been retrieved, the notify
function is called with the list of data records as its argument; if an error occurs, notifyError is
called with the error message as its argument. The maxRecords argument specifies the maximum
number of records to retrieve, variableIds may list the variables of interest, and bookmarkId
restricts the results to bookmarked records. The function requestRecordsData returns a result
object that contains a field done indicating whether all data records have been retrieved and a
field data listing the data records retrieved so far.

Retrieve list of bookmarks
requestBookmarkMeta(connection, modelId, bookmarkId, notify, notifyError)

Here, connection is the connection object returned by the connect function, modelId is the
string identifying the model, and bookmarkId is either the string identifying the bookmark or
null if metadata for all bookmarks is requested. After all of the bookmark metadata have been
retrieved, the notify function is called with the list of bookmark metadata as its argument; if an
error occurs, notifyError is called with the error message as its argument. The function
requestBookmarkMeta returns a result object that contains a field done indicating whether all
bookmark metadata have been retrieved and a field bookmarks listing the bookmark metadata
retrieved so far.

Create/update a bookmark
requestSaveBookmark(connection, modelId, name, filter, notify, notifyError)

Here, connection is the connection object returned by the connect function, modelId is the
string identifying the model, and bookmarkId is either null for a new bookmark or the identifier
for a bookmark being updated. The name field names the bookmark and the filter object
describing the filtering operation for the bookmark. After the bookmark metadata has been
created or updated, the notify function is called with the list of bookmark metadata as its
argument; if an error occurs, notifyError is called with the error message as its argument.
The function requestSaveBookmark returns a result object that contains a field done indicating
whether all bookmark metadata have been retrieved and a field bookmarks listing the bookmark
metadata retrieved so far.

Python Client Library
Full documentation for the Python client library is available at
http://github.com/NREL/AESD/lib/python.

http://github.com/NREL/AESD/lib/python

36
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Client API
new_server(self, server_url)

Change server URL to which WebSocket will connect
Parameters

server_url : 'string'
 server url

Returns

self.url : 'string'
 server url

send(self, request)

Closes event_loop
Parameters

request : 'proto.request'
 proto request message
timeout : 'int'
 timeout in seconds for connection

Returns

response : 'list'
 List of responses from the server, each response is a proto message

get_model_info(self, model_id)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'
 Id of model for which to request models_metadata
 if None requests all models

Returns

model_info : 'list'|'dict'
 List of model's metadata dictionaries for each model in models or
 dictionary for model_id

get_data(self, model_id, max_records=1000, variable_ids=None,
bookmark_id=None)

Sends request of model metadata and extracts response
Parameters

37
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

model_id : 'string'
 Id of model for which to request records_data
max_records : 'int'
 Number or records being request (0 will return all records)
variable_ids : 'list'
 List of variable ids (ints) to be requested
 Will be returned in same order as request
 Default=None, all variables will be returned (order?)
bookmark_id : 'int'
 Request records_data based on bookmark id

Returns

data : 'pd.DataFrame'
 Concatenated data from each response message
 Variable ids replaced with names from model_info

do_work(self, model_id, inputs)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'
 Id of model for which to request records_data
inputs : 'dict'
 Dictionary of {var_id: value} pairs

Returns

data : 'pd.DataFrame'
 Concatenated data from each response message
 Variable ids replaced with names from model_info

get_bookmark_info(self, model_id, bookmark_id)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'
 Id of model for which to request bookmark_meta
bookmark_id : 'string'
 Id of bookmark for which to request models_metadata
 if None request all bookmarks

Returns

model_info : 'list'|'dict'
 List of model's metadata dictionaries for each model in models or
 dictionary for model_id

38
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

save_bookmark(self, model_id, name, content)

Sends request to save new bookmark
Parameters

model_id : 'string'
 Id of model for which to request bookmark_meta
name : 'string'
 Name for new bookmark
content : 'list'|'tuple'
 Contents of bookmark
 list is a bookmark set
 tuple is a bookmark interval

Returns

model_info : 'list'|'dict'
 List of model's metadata dictionaries for each model in models or
 dictionary for model_id

Example
The figure below shows example usage of the Python Records API client.

Example of a Python session using the Records API

39
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Appendix
Protocol Buffers for Records API Version 4
syntax = "proto3";
package AesdRecords;

option optimize_for = LITE_RUNTIME;

message OptionalInt32 {
 int32 value = 1; /// [semantically required]
}

message OptionalUInt32 {
 uint32 value = 1; /// [semantically required]
}

message OptionalString {
 string value = 1; /// [semantically required]
}

message Value {
 oneof value /// [semantically required]
 {
 double real_value = 1;
 int64 integer_value = 2;
 string string_value = 3;
 }
}

message DoubleList {
 repeated double values = 1; /// [semantically required]
}

message IntegerList {
 repeated sint64 values = 1; /// [semantically required]
}

message StringList {
 repeated string values = 1; /// [semantically required]
}

message BookmarkIntervalContent {
 int64 first_record = 1; /// [semantically optional]
 int64 last_record = 2; /// [semantically optional]
}

message BookmarkSetContent {
 repeated int64 record_ids = 1; /// [semantically optional]

40
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

}

message BookmarkMeta {
 string bookmark_id = 1; /// [semantically optional
]
 string bookmark_name = 2; /// [semantically required
]
 oneof content /// [semantically required
]
 {
 BookmarkIntervalContent interval = 3;
 BookmarkSetContent set = 4;
 FilterExpression filter = 5;
 }
}

message BookmarkMetaList {
 repeated BookmarkMeta bookmark_metas = 1; /// [semantically optional]
}

message RequestBookmarkMeta {
 string model_id = 1; /// [semantically required]
 OptionalString bookmark_id = 2; /// [semantically optional]
}

message RequestSaveBookmark {
 string model_id = 1; /// [semantically required]
 BookmarkMeta new_bookmark = 2; /// [semantically optional]
}

message FilterExpression {
 oneof expression /// [semantically required]
 {
 FilterNot filter_not = 1;
 FilterUnion filter_union = 2;
 FilterIntersection filter_intersection = 3;
 DomainMeta filter_domain = 4;
 }
}

message FilterNot {
 FilterExpression filter_expression = 1; /// [semantically required]
}

message FilterUnion {
 repeated FilterExpression filter_expressions = 1; /// [semantically require
d]
}

41
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

message FilterIntersection {
 repeated FilterExpression filter_expressions = 1; /// [semantically require
d]
}

enum VariableType
{
 REAL = 0;
 INTEGER = 1;
 STRING = 2;
}

message VarMeta {
 int32 var_id = 1; /// [semantically required]
 string var_name = 2; /// [semantically required]
 string units = 3; /// [semantically optional]
 repeated sint32 si = 4; /// [semantically optional]
 double scale = 5; /// [semantically optional]
 VariableType type = 6; /// [semantically optional]
}

message ModelMeta {
 string model_id = 1; /// [semantically required]
 string model_name = 2; /// [semantically required]
 string model_uri = 3; /// [semantically required]
 repeated VarMeta variables = 4; /// [semantically required]
 repeated DomainMeta inputs = 5; /// [semantically optional]
}

message ModelMetaList {
 repeated ModelMeta models = 1; /// [semantically optional]
}

message RequestModelsMeta {
 OptionalString model_id = 1; /// [semantically optional]
}

message VarInterval {
 Value first_value = 1; /// [semantically optional]
 Value last_value = 2; /// [semantically optional]
}

message VarSet {
 repeated Value elements = 1; /// [semantically optional]
}

message DomainMeta {
 int32 var_id = 1; /// [semantically required]
 oneof domain /// [semantically required]

42
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 {
 VarInterval interval = 2;
 VarSet set = 3;
 }
}

message RequestWork {
 string model_id = 1; /// [semantically required]
 repeated VarValue inputs = 2; /// [semantically optional]
}

message VarValue {
 int32 var_id = 1; /// [semantically required]
 Value value = 2; /// [semantically required]
}

message Record {
 int64 record_id = 1; /// [semantically required]
 repeated VarValue variables = 2; /// [semantically optional]
}

message RecordList {
 repeated Record records = 1; /// [semantically optional]
}

message RecordTable {
 repeated int32 var_ids = 1; /// [semantically required]
 repeated int64 rec_ids = 2; /// [semantically required]
 oneof list /// [semantically required]
 {
 DoubleList reals = 3;
 IntegerList integers = 4;
 StringList strings = 5;
 }
}

message RecordData {
 oneof style /// [semantically required]
 {
 RecordList list = 1;
 RecordTable table = 2;
 }
}

message RequestRecordsData {
 string model_id = 1; /// [semantically required]
 uint64 max_records = 2; /// [semantically optional]
 repeated int32 var_ids = 3; /// [semantically optional]
 oneof filter /// [semantically optional]

43
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

 {
 string bookmark_id = 4; /// [semantically optional]
 FilterExpression expression = 5; /// [semantically optional]
 }
}

message Response {
 uint32 version = 1; /// [semantically required]
 OptionalUInt32 id = 2; /// [semantically optional]
 int32 chunk_id = 3; /// [semantically optional, but r
ecommended]
 int32 next_chunk_id = 4; /// [semantically optional]
 oneof type /// [semantically optional]
 {
 string error = 5;
 ModelMetaList models = 6;
 RecordData data = 7;
 BookmarkMetaList bookmarks = 8;
 }
}

message RequestCancel {
 OptionalUInt32 id = 1; /// [semantically required]
}

message Request {
 uint32 version = 1; /// [semantically required]
 OptionalUInt32 id = 2; /// [semantically optional,
but recommended]
 bool subscribe = 3; /// [semantically optional]
 oneof type /// [semantically required]
 {
 RequestModelsMeta models_metadata = 4;
 RequestRecordsData records_data = 5;
 RequestBookmarkMeta bookmark_meta = 6;
 RequestSaveBookmark save_bookmark = 7;
 RequestCancel cancel = 8;
 RequestWork work = 9;
 }
}

44
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

References
CoreOS. 2017a. “App Container Basics: Coreos.” Accessed September 6, 2017.
https://coreos.com/rkt/docs/latest/app-container.html.

CoreOS. 2017b. “Rkt Container Engine with Coreos.” Accessed September 6, 2017.
https://coreos.com/rkt.

Fowler, Martin. 2017. “UML Distilled.” Accessed April 11, 2017.
http://my.safaribooksonline.com/book/software-engineering-and-
development/uml/0321193687/sequence-diagrams/ch04.

Google Developers. 2017a. “Protocol Buffers | Google Developers.” Accessed April 11, 2017.
https://developers.google.com/protocol-buffers/.

Google Developers. 2017b. “Protocol Buffers: Google’s Data Interchange Format.” Accessed
April 11, 2017. https://github.com/google/protobuf/blob/master/README.md.

Internet Engineering Task Force. 2017. “RFC 6455 - The Websocket Protocol.” Accessed
April 11, 2017. https://tools.ietf.org/html/rfc6455.

Oren Ben-Kiki, Clark Evans, Ingy döt Net. 2017. “YAML Specification Index.” Accessed
September 6, 2017. http://www.yaml.org/spec/.

Project Haystack. 2017. “Home - Project Haystack.” Accessed September 6, 2017. http://project-
haystack.org/.

https://coreos.com/rkt/docs/latest/app-container.html
https://coreos.com/rkt
http://my.safaribooksonline.com/book/software-engineering-and-development/uml/0321193687/sequence-diagrams/ch04
http://my.safaribooksonline.com/book/software-engineering-and-development/uml/0321193687/sequence-diagrams/ch04
https://developers.google.com/protocol-buffers/
https://github.com/google/protobuf/blob/master/README.md
https://tools.ietf.org/html/rfc6455
http://www.yaml.org/spec/
http://project-haystack.org/
http://project-haystack.org/

	Acronyms and Glossary
	Overview
	Use Cases
	Static Data
	Dynamic Data
	Simulations
	Bookmarks
	Filtering

	Records API, Version 4
	Message Groups
	General Conventions
	Messages
	Scalar Value Types

	Implementations
	Haskell Client and Server Library and Applications
	C++ Server and Client
	JavaScript Client Library and Web-Based Browser
	Python Client Library

	Appendix
	Protocol Buffers for Records API Version 4

	References

