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FEEDBACK-BASED PROJECTED-GRADIENT METHOD FOR REAL-TIME OPTIMIZATION
OF AGGREGATIONS OF ENERGY RESOURCES

Emiliano Dall’Anese1, Andrey Bernstein1, and Andrea Simonetto2

1National Renewable Energy Laboratory, Golden, CO, USA
2IBM Research Ireland, Dublin, Ireland

ABSTRACT

This paper develops an online optimization method to maximize
operational objectives of distribution-level distributed energy re-
sources (DERs), while adjusting the aggregate power generated
(or consumed) in response to services requested by grid operators.
The design of the online algorithm is based on a projected-gradient
method, suitably modified to accommodate appropriate measure-
ments from the distribution network and the DERs. By virtue of
this approach, the resultant algorithm can cope with inaccuracies
in the representation of the AC power flows, it avoids pervasive
metering to gather the state of noncontrollable resources, and it nat-
urally lends itself to a distributed implementation. Optimality claims
are established in terms of tracking of the solution of a well-posed
time-varying convex optimization problem.

1. INTRODUCTION

We address the problem of optimizing the operation of aggregations
of heterogeneous energy resources connected to (a portion of) a dis-
tribution system — a research task that has gained significant inter-
est from academic and industrial sectors because of the increased
deployment of distributed energy resources (DERs) along with the
shaping of (albeit futuristic) distribution-level ancillary-service mar-
kets. We focus on real-time optimization methods, wherein the term
“real time” refers to an operational setting in which the power set-
points of the DERs are updated on a second or subsecond timescale
to maximize the operational objectives while coping with the vari-
ability of ambient conditions and noncontrollable energy assets.

A main challenges in this context is related to the computational
complexity, which may render infeasible the solution of optimization
problems on a second or subsecond timescale to compute the optimal
power setpoints to the DERs [1–3]. Further, when the optimization
problem is solved in a distributed fashion, multiple communication
rounds are necessary in order to converge to the optimal setpoints
for the DERs. Another challenge is related to the need for pervasive
metering to collect measurements of the state of non-controllable
assets, which serve as inputs to the optimization task.

To address these challenges, we start from the formulation of
a time-varying convex optimization problem that takes into account
the operational objectives of DERs as well as target setpoints for the
aggregate power provided by the DERs. We then design an online
algorithm based on a projected-gradient method by suitably modify-
ing the gradient method to accommodate appropriate measurements
from the distribution network and the DERs. The resultant algo-
rithm can cope with inaccuracies in the representation of the AC

The work of E. Dall’Anese and A. Bernstein was supported by the Ad-
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power flows, avoids pervasive metering to gather the state of non-
controllable resources, and affords a distributed implementation.

The idea of accommodating measurements into primal-dual-
type methods goes back to [4–6] and it was applied to real-time
optimization of power systems in [7], wherein a centralized con-
troller was developed based on projected-gradient methods. Online
algorithms were developed in [8], [9], [10], and [11] to find solutions
of AC optimal power flow (OPF) problems, with [10] establishing
results in terms of tracking of solutions of a time-varying linearized
AC OPF and [11] in terms of tracking of solutions of a time-varying
relaxed AC OPF. Recently, a projected-gradient method on the
(static) power flow manifold was proposed in [12, 13].

The method outlined in this paper builds on [7, 10], but: i) it is
implemented for multiphase systems; ii) it accounts for DERs with
nonconvex operational sets; and, iii) it involves a simplified imple-
mentation that can be used even in the case when only active powers
are controlled using the proposed algorithm but reactive powers fol-
low existing Volt/VAr rules [14]. Related to ii), the operational sets
of DERs are convexified for the purpose of setpoint computation,
whereas implementable setpoints are computed by utilizing a vari-
ant of the error-diffusion algorithm [15–17].

2. PROBLEM FORMULATION

Consider a multiphase distribution network consisting of one slack
bus and N PQ buses. Leveraging the model proposed in [18],
each multiphase node j ∈ N := {1, . . . , N} can feature wye-
connected or delta-connected (aggregations of) DERs. For ease of
exposition, suppose that all the nodes are three-phase, and let sYj :=

(saj , s
b
j , s

c
j)

T denote the vector net injected powers at phases φ ∈
{a, b, c} at node j from grounded-wye-connected DERs. Similarly,
let s∆

j := (sabj , s
bc
j , s

ca
j )T denote the power injections of the delta-

connected sources, where sφj ∈ C, φ ∈ {ab, bc, ca}, denotes the net
complex power injected from delta-connected DERs. When devices
are modeled at the secondary side of the distribution transformer, sYj
and s∆

j denote the line-to-line and line-to-ground connections, re-
spectively [18]. Finally, we let p0 := (pa0 , p

b
0, p

c
0)T ∈ R3 denote the

active power flow at the point of connection with the rest of the grid.
For future developments, let xj,φ := (<{sφj },={s

φ
j })

T collect
the active and reactive setpoints of the DER at node j, where φ ∈
{a, b, c} for wye connections and φ ∈ {ab, bc, ca} for delta connec-
tions. To further simplify the notation, consider stacking in the vec-
tor x := ({xj,φ}, φ ∈ {a, b, c} ∪ {ab, bc, ca}, j = 1, . . . , N)T ∈
R12N the active and reactive power setpoint of DERs at all phases
and nodes. If no controllable DERs are present at a given location,
the corresponding vector xj,φ is trivially set to 0.

To facilitate the development of computationally-affordable al-
gorithms, we postulate the following approximate linear relation-
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ship:

p̃0(x)=M(x−x`)+m :=

N∑
j=1

∑
φ∈P

Mj,φ(xj,φ−xj,φ,`)+m, (1)

where P := {a, b, c}∪{ab, bc, ca} for brevity, xj,φ,` represents the
noncontrollable loads, and the model parameters {Mj,φ} ∈ R3×3

and m ∈ R3 can be obtained as shown in, e.g., [19, 20].
Consider a discrete-time operational setting wherein the set-

points of the DERs are updated at time instants tk = δk, with k ∈ N
and sampling period δ > 0 based on the specific implementation re-
quirements (e.g., second, subsecond, or a few seconds) [7, 8, 10]. At
each time tk, the performance objectives of a DER at phase φ ∈ P
and node j are modeled by means of a time-varying convex and
differentiable function C(k)

j,φ : R2 → R, which is to be minimized at
each time tk. The set of feasible power setpoints of the same DER
is denoted as Y(k)

j,φ ⊆ R2. We assume that the set Y(k)
j,φ is convex and

compact; we will address nonconvex sets (and, in particular, discrete
sets) in Section 3.2. When a group of DERs are located at a node,
sφj ∈ C represents the net power generated, and Y(k)

j,φ is given by the
Minkowski sum of the operating regions of the individual DERs. Fi-
nally, consider a setpoint p

set,(k)
0 for the aggregate power at the point

of connection p0(x(k)), which can be given by a utility company or
an aggregator incentivizing customers to provide services.

With these definitions in place, consider the following optimiza-
tion problem to compute the DERs’ setpoints at time tk:

(P1)(k) min
x

N∑
j=1

∑
φ∈P

C
(k)
j,φ (xj,φ) +

γ

2

∥∥∥pset,(k)
0 − p̃0(x)

∥∥∥2

2
(2a)

s. to : xj,φ ∈ Y(k)
j,φ , ∀ φ ∈ P, j ∈ N (2b)

where p̃0(x) is given by (1), and γ > 0 is a design parameter that
influences the ability to track the reference signal {pset,(k)

0 , k ∈ N}.
Problem (P1)(k) is a time-varying convex optimization problem;

however, solving (P1)(k) in batch fashion at each time tk might be
impractical because of the following three main challenges:
• c1: Complexity. For real-time implementations (e.g., when δ is on
the order of a second or subsecond), it might be unfeasible to solve
(P1)(k) to convergence, especially in a distributed setting.
• c2. Model inaccuracy. The linear model (1) provides only an
approximate relationship between power injections and p0(x(k)).
As a result, the optimal solution of (P1)(k) might not necessarily
track p

set,(k)
0 accurately enough.

• c3. Pervasive metering. Solving (P1)(k) requires collecting mea-
surements of the (aggregate) noncontrollable loads xj,φ,` at all loca-
tions in real time.

We will design a feedback-based online algorithm that tracks
the optimal solution of (P1)(k) over time, while coping with model
inaccuracies and avoiding ubiquitous monitoring.

3. FEEDBACK-BASED ONLINE ALGORITHM

3.1. Design of the Online Algorithm

We begin with a modeling assumption pertaining to the cost func-
tions functions {C(k)

j,φ (xj,φ)}.

Assumption 1. The functions C(k)
j,φ are convex and continuously

differentiable for each φ, j and k. Let

f (k)(x) :=
({
∇C(k)

j,φ (xj,φ), φ ∈ P, j = 1, . . . , N
})T

(3)

denote the column-vector gradient map. We assume that:
A1.i. There exists η > 0 such that (f (k)(x)− f (k)(x′))T(x−x′) ≥
η‖x− x′‖22, for all x,x′ ∈ Y(k), where Y(k) is given by the Carte-
sian product of the sets {Y(k)

j,φ , φ ∈ P, j = 1, . . . N}; and,
A1.ii. The gradient map f (k) is Lipschitz continuous with constantL
over the compact set Y(k) for all k; that is ‖f (k)(x)− f (k)(x′)‖2 ≤
L‖x− x′‖2 for all x,x′ ∈ Y(k). �

Assumption A1.i states that the cost
∑N
j=1

∑
φ∈P C

(k)
j,φ (xj,φ) is

strongly convex in x. Notice that if the cost function specified
for the DERs is not strongly convex, a regularization term such as
(η/2)‖x − xreg‖22, where xreg is a given point and η > 0, can be
added; see e.g., [10, 21].

Consider then the following projected gradient method to track
the optimal solution of (P1)(k) over time:

x
(k+1)
j,φ = ProjY(k)

j,φ

{
x

(k)
j,φ − α

(
∇C(k)

j,φ (x
(k)
j,φ)

+ γMT
j,φ

[
p̃0(x(k))− pset,k

0

] )}
∀φ ∈ P, j ∈ N (4)

whereα > 0 is the stepsize and ProjY{y} := arg minx∈Y ‖x−y‖2
is the projection of y onto the convex setY . By suitably choosing the
stepsize, (4) can address the challenge c1 identified above by prov-
ably tracking the time-varying solution of (P1)(k) [22]. However, (4)
does not address c2-c3, as it relies on an approximate representation
of the powers flows at the point of coupling and requires collecting
measurements of xj,φ,` from all the nodes. Further, the projected
gradient method (4) requires knowledge of the entire vector x(k) at
every DER j; thus, it does not afford a distributed implementation.

To address the challenges c2-c3 identified above and enable a
distributed algorithmic implementation, the idea is to suitably mod-
ify (4) to accommodate measurements from the distribution system
– i.e., the “feedback”. To this end, let p̂

(k)
0 and x̂

(k)
j,φ denote, respec-

tively, the measurement of the power flows at the point of connection
and the output power of DER located at phase φ of node j at time
step k. In the spirit of [7, 10], we then propose the following feed-
back-based online algorithm:

x
(k+1)
j,φ =ProjY(k)

j,φ

{
x̂

(k)
j,φ−α

(
∇C(k)

j,φ (x̂
(k)
j,φ)+γMT

j,φ

[
p̂

(k)
0 −pset,k

0

])}
∀φ ∈ P, j ∈ N . (5)

Note that the update (5) does not require information regarding the
noncontrollable loads, as the effect of xj,φ,` on the power at the point
of coupling is already captured in the measurement p̂

(k)
0 .

In lieu of the linearlized model p̃0(x), (5) utilized measurements
p̂

(k)
0 of the power at the point of coupling; the only information

needed is the matrix M that models network-related sensitivities,
and which can be updated at a slower timescale [7, 10]. Further,
update (5) affords a distributed implementation provided that the
measurement p̂

(k)
0 is broadcasted to every DER. Convergence and

tracking capabilities of (5) will be assessed in Section 4. But first, an
extension to DERs with nonconvex operating regions is presented.

3.2. Nonconvex Resources

Suppose that Y(k)
j,φ is nonconvex for a given DER. This is the case,

for example, for electric vehicles (EVs with discrete charging lev-
els, energy storage systems with minimum power factor constraints,
and electric water heaters,to mention a few. Consider then replacing
Y(k)
j,φ in (5) with its convex hull chY(k)

j,φ . Once the potential setpoint

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 1: Online algorithm: distributed implementation.

x
(k+1)
j,φ ∈ chY(k)

j,φ is computed, an additional step is required to gen-
erate a feasible setpoint within the set Y(k).

A naı̈ve approach is to choose a closest point to x
(k+1)
j,φ in

Y(k)
j,φ . However, as shown in, e.g., [23], this approach might lead

to poor tracking performance. On the other hand, we propose
selecting a feasible point x̃

(k+1)
j,φ that on average coincides with

x
(k+1)
j,φ . This would lead a notion of optimality with respect to the

optimal solution of the relaxed problem (P1)(k) in terms of energy
produced/consumed.

Once x
(k+1)
j,φ is computed from (5) using chY(k)

j,φ , one of the fol-
lowing additional steps can be performed to obtain an implementable
point x̃

(k+1)
j,φ ∈ Y(k)

j,φ :

(i) Randomized rounding. Choose x̃
(k+1)
j,φ randomly using a prob-

ability measure induced by the distance of x
(k+1)
j,φ to points in Y(k)

j,φ .

(ii) Error diffusion. Choose x̃
(k+1)
j,φ using the following rule:

x̃
(k+1)
j,φ ∈ ProjY(k)

j,φ

{x(k+1)
j,φ + e

(k)
j,φ}, (6)

where e
(k)
j,φ :=

∑k
`=1(x

(`)
j,φ − x̃

(`)
j,φ) is the accumulated error up to

time step k [23].
The first option is suitable for discrete sets Y(k)

j,φ , whereas the
second option is equally applicable to the cases of discrete and con-
tinuous sets. In this paper, we utilize the second option due to its
simplicity and applicability to a large family of nonconvex sets.

4. ANALYSIS

Recall that Y(k) is the Cartesian product of the sets {Y(k)
j,φ , φ ∈

P, j = 1, . . . N} and define the following mapping Φ(k) : R12N →
R12N as Φ(k)(x) := f (k)(x) + γMT

[
p̃0(x)− pset,k

0

]
. This

way, the projected-gradient step (4) can be compactly rewritten as
x(k+1) = ProjY(k){x(k) − αΦ(k)(x(k))}. Regarding the map
Φ(k)(x), we have the following result.

Lemma 1. Under Assumption 1, the mapping Φ(k) is strongly
monotone with constant η, and is Lipschitz continuous over Y(k)

with constant LΦ := L+ γ‖MTM‖2.

Let x∗,k denote the unique optimizer of (P1)(k) at time tk. To
characterize analytically the tracking properties of (5) in terms of
distance from the optimal trajectory {x∗,k, k ∈ N}, define

σ(k) := ‖x∗,k+1 − x∗,k‖2 (7)

and notice that the sequence {σ(k)} represents a measure of the time-
variability of the optimization problem (P1)(k). Further, since (5)
relies on measurements, define the following quantities:

e(k)
x := ‖x(k) − x̂(k)‖2, e

(k)
0 := ‖p̃0(x̂(k))− p̂

(k)
0 ‖2 . (8)

Note that e(k)
x captures (i) measurements errors, (ii) discrepancy be-

tween setpoints and actual output powers of the DERs, and (iii) the
error introduced by using the error-diffusion algorithm (6) in the case
of nonconvex resources. Finally, e(k)

0 captures measurement errors
as well as approximation errors introduced by (1). We assume that
the error sequences are uniformly bounded.

Assumption 2. There exist finite constants σmax, emax
x , and emax

0

such that, for all k, σ(k) ≤ σmax, e(k)
x ≤ emax

x , and e(k)
0 ≤ emax

0 .

Tracking properties of (5) are characterized next.

Theorem 1. Consider the sequence {x(k)} generated by (5). Let
Assumption 1 hold. If the stepsize α > 0 is chosen such that α <
2/LΦ, then

‖x(k) − x∗,k‖2 ≤ (ρ(α))k‖x(0) − x∗,0‖2 +

k−1∑
j=0

(ρ(α))j∆(k−j−1)

(9)
where ρ(α) := max{|1 − α η|, |1 − α LΦ|} < 1, and ∆(k) :=

ρ(α)e
(k)
x + αγ‖M‖2e(k)

0 + σ(k), and e(k)
x , e

(k)
0 , and σ(k) are given

by (8) and (7), respectively.

Proof. Define the following time-varying mapping

Φ(k)
e (x) := f (k)(x) + γMT

[
p̂

(k)
0 − pset,k

0

]
(10)

which allows us to rewrite (5) as x(k+1) = ProjY(k){x̂(k) −
αΦk

e(x̂(k))}. Consider the norm ‖x(k) − x∗,k−1‖2, which cap-
tures the distance between x(k) and the optimizer x∗,k−1 of
(P1)(k−1). By standard optimality conditions, we have x∗,k−1 =
ProjY(k−1)

{
x∗,k−1 − αΦk(x∗,k−1)

}
. It follows then that

‖x(k)−x∗,k−1‖2 =
∥∥∥ProjY(k−1)

{
x̂(k−1) − αΦ(k−1)

e (x̂(k−1))
}

− ProjY(k−1)

{
x∗,k−1 − αΦ(k−1)(x∗,k−1)

}∥∥∥
2

≤ ‖x̂(k−1)−αΦ(k−1)
e (x̂(k−1))−x∗,k−1+αΦ(k−1)(x∗,k−1)‖2,

(11)

where the inequality follows by the nonexpansivity property of the
projection operator. Observe that∥∥∥Φ(k−1)

e (x̂(k−1))−Φ(k−1)(x̂(k−1))
∥∥∥

2

≤ γ‖MT(p̂
(k−1)
0 − p̃0(x̂(k−1)))‖2 ≤ γ‖M‖2e(k−1)

0 . (12)

We can now expand and bound the right-hand side of (11) as

‖x̂(k−1) − αΦ(k−1)
e (x̂(k−1))− x∗,k−1 + αΦ(k−1)(x∗,k−1)‖2 ≤

‖x̂(k−1) − αΦ(k−1)(x̂(k−1))− x∗,k−1 + αΦ(k−1)(x∗,k−1)‖2
+ αγ‖M‖2e(k−1)

0 , (13)

where we have used the triangle inequality. By using the results of
Lemma 1 and the fact that Φ is a gradient mapping, the first term in
the right-hand side of (13) can be written as

‖x̂(k−1)−αΦ(k−1)(x̂(k−1))−x∗,k−1 +αΦ(k−1)(x∗,k−1)‖2 ≤

ρ(α)‖x̂(k−1) − x∗,k−1‖2. (14)

where we let ρ(α) := max{|1− α η|, |1− α LΦ|} (see [24]).

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
3



By putting together (11), (13), and (14), we have that

‖x(k) − x∗,k−1‖2 ≤ ρ(α)‖x̂(k−1) − x∗,k−1‖2 + αγ‖M‖2e(k−1)
0

≤ ρ(α)‖x(k−1) − x∗,k−1‖2 + ρ(α)‖x(k−1) − x̂(k−1)‖2
+ αγ‖M‖2e(k−1)

0

= ρ(α)‖x(k−1) − x∗,k−1‖2 + ρ(α)e(k−1)
x + αγ‖M‖2e(k−1)

0 ,
(15)

where the equality follows from (8). Next, consider the distance
between x(k) and the optimizer of (P1)(k), i.e., ‖x(k) − x∗,k‖2. By
using the triangle inequality and (15), it follows that

‖x(k) − x∗,k‖2 ≤ ‖x(k) − x∗,k−1‖2 + σ(k−1)

≤ ρ(α)‖x(k−1) − x∗,k−1‖2 + ρ(α)e(k−1)
x

+ αγ‖M‖2e(k−1)
0 + σ(k−1). (16)

If ρ(α) < 1, then (16) represents a contraction, and applying it re-
cursively, we obtain (9).

Theorem 1 has the following immediate corollary.

Corollary 1. Under the conditions of Theorem 1, we have that

lim sup
k→∞

‖x(k) − x∗,k‖2 ≤
∆max

1− ρ(α)
, (17)

where ∆max := ρ(α)emax
x + αγ‖M‖2emax

0 + σmax.

Theorem 1 provides an a-posteriori bound as it is formulated in
terms of the actual realization of the errors at each iteration.

We conclude the section by stating a result from [23] establish-
ing average tracking properties of the error-diffusion rule (6). To
this end, we introduce some pertinent definitions and assumptions
regarding buses j and phases φ at which error diffusion is performed.
The Voronoi cell associated with a set Y ⊆ R2 and a point x ∈ Y is
defined as VY(x) :=

{
y ∈ R2 : ‖x− y‖ ≤ ‖x′ − y‖,∀x′ ∈ Y

}
.

Assumption 3. Consider the collection of bounded Voronoi cells of
Y(k)
j,φ , k = 1, 2, ...:{
VY(k)

j,φ

(x) : x ∈ Y(k)
j,φ ,

∣∣∣∣VY(k)
j,φ

(x)

∣∣∣∣ <∞, k = 1, 2, . . .

}
.

The sizes of these bounded Voronoi cells are uniformly bounded. �

Assumption 4. The collection {chY(k)
j,φ , k = 1, 2, ...} is a collection

of polytopes such that:
A4.i The sizes of the polytopes are uniformly bounded; and,
A4.ii The set of outgoing normals to the faces of the polytopes is
finite. �

Theorem 2 (Theorem 2 in [23]). Under Assumptions 3 and 4, for
each resource located at (j, φ), there exists a finite constant Ej,φ
such that ‖e(k)

j,φ‖2 ≤ Ej,φ for all k. Consequently,∥∥∥∥∥ 1

k

k∑
`=1

x
(`)
j,φ −

1

k

k∑
`=1

x̃
(`)
j,φ

∥∥∥∥∥
2

≤ Ej,φ
k

(18)

and ‖x(k)
j,φ − x̃

(k)
j,φ‖2 ≤ 2Ej,φ for all k.

Notice that Theorem 2 can be used to upper bound the error
e

(k)
x defined in (8). In particular, assume that the measurement error

is upper bounded as ‖x̃(k)
j,φ − x̂

(k)
j,φ‖2 ≤ emeas. Then, we have that

‖x(k)
j,φ−x̂

(k)
j,φ‖2 ≤ ‖x

(k)
j,φ−x̃

(k)
j,φ‖2 +‖x̃(k)

j,φ−x̂
(k)
j,φ‖2 ≤ 2Ej,φ+emeas.

Finally, notice that extending the framework to time-varying
nonconvex costs and constraints is a subject of ongoing efforts.
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5. ILLUSTRATIVE NUMERICAL RESULTS

Numerical tests are performed by using the IEEE 37-node test
feeder [25]. Similar to e.g., [7, 8, 10, 12], we first convert all
constant-current and constant-impedance loads in the IEEE data
set into constant-power loads. We then create a power profile over
the course of a day based on data provided by a utility in Califor-
nia. We populate the feeder with photovoltaic (PV) systems, energy
storage systems, as well as EVs. Particularly, we consider 32 PV
systems with a collective capacity of 960 kVA, 8 utility-scale bat-
teries with an aggregate inverter nameplate capacity of 3600 kVA
and state-of-charge of 4800 kWh, and 9 EVs with sizes 60, 80, and
130 kWh. Level-2 charging stations are presupposed, with discrete
charging levels of 10, 20, 40, 60, 80, and 100% of the maximum
charging capability of 7.2 kW.

For the algorithm illustrated in Fig. 1, the stepsize is set α = 0.1

and γ = 5. The DER-related cost functions are set to C
(k)
j,φ =

5(P
(k)
av,i,φ−P

(k)
j,φ )2 + (Q

(k)
j,φ)2 for PV systems (with P (k)

av,j,φ denoting

the maximum real power available), C(k)
j,φ = (P

(k)
j,φ )2 + (Q

(k)
j,φ)2, for

the batteries, and C(k)
j,φ = 4(P

(k)
j,φ − Pmax,i,φ)2 for the EVs, where

Pmax,i,φ is the maximum charging rate. With this setting, the DER
are incentivized to follow a given profile for the powers at the point
of coupling, while minimizing the power curtailed from the PV sys-
tems and the deviation from a predetermined (dis)charging profilr
for the batteries. A minimum charging rate is set for the EVs so that
they can be fully charged at the time specified by the drivers.

FFig. 2 compares the tracking error when (P1)(k) is solved on
an offline fashion (labeled as “Opt”) every second and every 30 sec-
onds, and the proposed method. For the same simulation setting, the
proposed method achieves a better tracking accuracy. Fig. 3 corrob-
orates the claims of Theorem 2 for three EVs (one EV arrives at the
charging station at 10:00 and the other two arrive at 10:30).

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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