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I. Introduction
Traceable radiometric data sets are essential for solar energy plant operations, solar 
resource assessment, validation of satellite-based models, and solar radiation 
forecasts. The measurement uncertainty of current radiometers is 2%–5% and 
sometimes higher[1]. 

The National Renewable Energy Laboratory (NREL), manufacturers, and many other 
organizations are currently conducting research on identifying and quantifying 
uncertainties, improving measurement performance, and developing a consensus 
standard methodology for radiometric measurements.  

This poster demonstrates the impact of various sources of uncertainties—such as 
cosine response, thermal offset, spectral response, and others—on the accuracy of 
data from several radiometers. The study provides insight on how to reduce the impact 
of some of the sources of uncertainties.  

B. Cosine Response
Uncertainty

A measure of deviation due to responsivity 
change versus solar zenith angle. 

D. Thermal Offset
Uncertainty

Energy imbalances not directly caused by the 
incident shortwave radiation. 

E. Spectral Uncertainty
A deviation introduced by the change in the 
spectral distribution of the incident solar 
radiation and the difference between the spectral 
response of the radiometer with respect to a 
radiometer with completely homogeneous 
spectral response in the wavelength range of 
interest.

F. Soiling
A percentage change in measurement due to 
the amount of soiling on the radiometer’s 
optics. 

A. Calibration Uncertainty
The difference between values indicated by the 
radiometer during calibration and “true value.” 

0.00% 

0.20% 

0.40% 

0.60% 

0.80% 

1.00% 

1.20% 

1.40% 

1.60% 

1 2 3 4 5 6 7 8 9 

Solar_Village_XHA 

Sp
ec

tr
al

 E
rr

or
 (%

) 

AM1 AM1.41 
AM2 AM2.3 
AM2.92 AM3.86 
AM5.76 AM11.47 

Calibrations are conducted under specific 
conditions, whereas radiometers might be 
operated in conditions that are different from 
those of the calibrations. For example, the 
radiometers calibrated during the NREL 
Broadband Radiometer Calibration (BORCAL) 
process use clear-sky conditions. The 
radiometers calibrated in BORCAL are operated 
under all conditions, including cloudy skies, and 
the calibration coefficient might potentially vary 
under those conditions. Another example is when 
a radiometer that is calibrated indoors might have 
a different responsivity when it is calibrated 
outdoors (see figure above). 

Instruments might respond differently based on 
the solar zenith angle. This leads to cosine 
uncertainty if a single value is used for all zenith 
angles (in most cases, 45°responsivity is used). 
An example of the change in responsivity is 
shown in the figure above. It is obvious that a 
single value is generally not representative for 
this instrument when used for measurements 
under various solar zenith angles. 

The responsivity might change over time, as 
shown in the figure.   

The spectral error of shortwave radiometers under 
different air masses (AM) and locations [5]. Note: 
Spectral irradiance simulation was performed using 
SMARTS model.  
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Test Types 

1! Water droplets !
2! Water droplets - water and salt!
3! Water droplets - water, salt & soil!
4! Water droplets - water & soil !

Various degrees of soiling reduce the optical 
transmittance of the glass dome of the 
pyranometer, which ultimately reduces the 
detector output (energy loss). The observed 
reduction was 0.69% to 11%.  
Note: Indoor method to measure soiling to thermopile radiometers. 
The indoor method provides the ability to control the other 
environmental effects. Various simulated soiling types were 
sprayed to the radiometer domes [5]. 

5!
Water droplets - water & extra 
soil !

6! Simulated snow!
7! Simulated dew/condensation!

C. Non-Stability
A percentage change of the responsivity per 
year; it is a measure of long-term non-stability. 

https://www.astm.org/Standards/G213.htm  

The overall uncertainty or expanded uncertainty (U95) is then calculated by multiplying the combined 
uncertainty (standard uncertainty of the sources and sensitivity coefficient) by a coverage factor 
(k=1.96, for infinite degrees of freedom), which represents a 95% confidence level. Details of the 
methodology are described in the ASTM G213-17 standard. 
Each source of uncertainty has a magnitude of contribution to the overall uncertainty (left figure).  
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•! Solar resource data with known and traceable 
uncertainty estimates are essential for the site selection 
of renewable energy technology deployment, system 
design, system performance, and system operations. 

•! Developing consensus methodologies of determining 
solar resource measurement uncertainties are essential 
in obtaining accurate radiometric data.  

•! Calibration differences between manufacturers’ and 
outdoor NREL BORCAL provided irradiance differences 
up to 1% to 2% for pyranometers and less than 1% for 
pyrheliometers.  

•! Spectral mismatch contributed to spectral error up to 
1.6% for indoor transmittance measurement. 

•! Various degrees of soiling reduce the optical 
transmittance of the glass dome of the pyranometer, 
which ultimately reduces the detector output (energy 
loss). The observed reduction was 0.2% to 27%. 

Contacts: 
•! Aron Habte: aron.habte@nrel.gov  
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Surface temperature has a higher temperature 
than the sky temperature. Likewise, thermopile 
radiometers equilibrate to ambient temperature, 
which is typically higher than the sky 
temperature, and this creates an infrared energy 
imbalance between the thermopile radiometer 
and the sky. 
This situation produces a thermal energy 
exchange in which the thermopile emits energy 
to the sky, and this was evident in the data as a 
negative output of irradiance by the thermopile 
radiometers in the absence of solar radiation.   




