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1 Introduction 
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of 
electricity generators, transmission, and storage needed to reliably serve load over many years or 
decades. Various forms of CEMs are used to evaluate systems ranging from local utilities and 
regional entities (e.g., WECC 2013; ABB 2016; Mai et al. 2015) to national systems (e.g., Eurek 
et al. 2016; EIA 2014; EPRI 2017). Global versions have been used in the integrated assessment 
model (IAM) community to evaluate optimal pathways for decarbonizing the global electricity 
system (e.g., Pietzcker et al. 2014, 2017; IPCC 2015; Edelenbosch et al. 2017). CEMs can be 
computationally complex and are often forced to estimate key parameters using simplified 
methods to achieve acceptable solve times or for other reasons.  

In this paper, we discuss one of these parameters—capacity value (CV). We first provide a high-
level motivation for and overview of CV. We next describe existing modeling simplifications 
and an alternate approach for estimating CV that utilizes hourly “8760” data of load and VG 
resources. We then apply this 8760 method to an established CEM, the National Renewable 
Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model (Eurek et 
al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader 
CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be 
easily implemented in other power sector models when data is available, more accurately 
captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a 
flexible modeling framework from which other 8760-based system elements (e.g., demand 
response, storage, and transmission) can be added to further capture important dynamic 
interactions, such as curtailment. 

1.1  Why Capacity Value Matters: Reliability  
Existing grid integration analyses have shown that power systems will require greater levels of 
flexibility to accommodate higher levels of variable generation (VG) resources, such as wind and 
solar, which are variable and uncertain1 (e.g., Mai et al. 2014; Lew et al. 2013; Palchak and 
Denholm 2014; Bloom and Novacheck 2017). In addition, as VG penetration levels increase, the 
contribution of these VG resources to reliably meeting load becomes more dependent on the 
evolution of and interaction with the rest of the system. For example, VG’s useful capacity and 
energy contributions tend to decline as more VG is added to the system due to the coincident 
nature of the resource with other resources of the same type. Furthermore, the addition of storage 
or other flexibility options can mute or otherwise modify this trend. While many CEMs account 
for at least some aspect of this declining VG value trend, associated modeling simplifications can 
result in inaccurate representations, particularly at higher VG penetrations when the sensitivity 
and magnitude of the declining VG value trend are amplified.  

CV is one key parameter that reflects the reliability attributes of VG resources.2 Other factors 
that reflect the impact of VG on an evolving power system, which are outside of the scope of this 

                                                 
1 Variability means that the output fluctuates over time. Uncertainty means that some of the fluctuations are unpredictable. 
2 CV is often used synonymously with capacity credit, which we assume in this paper. However, we note that at least one 
technical report (Mills and Wiser 2012) suggested the naming convention of “capacity credit” to represent physical capacity and 
“capacity value” to represent the monetary value of this capacity (units of $/MWh). Capacity credit (or capacity value as used 
here) is equivalent to the additional load (units of MW) that the electrical system could serve while maintaining the same level of 
reliability, which is the Effective Load Carrying Capability (ELCC). As described in Section 2.3, we calculate the CV as the 
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paper, include ramping capabilities of the thermal fleet, transient stability, system inertia, 
frequency response, and market rules (Miller et al. 2014; Ela et al. 2014).  

1.2 Capacity Value Principles and Methods 
CV is a measurement of the contribution of installed capacity to planning reserves and is 
typically used by power system planners in long-term reliability assessments. For example, a 100 
MW generator with a 30% CV would be expected to reliably contribute 30 MW of capacity 
during the highest “risk” hours. These hours are by definition those with the highest loss of load 
probability (LOLP) and are often, but not always, the hours with the highest net load (load minus 
VG). Historically, system planners have ensured that sufficient capacity is built to meet peak 
load plus an extra planning reserve margin to account for uncertainties, such as forced outages. 
However, the spatial and temporal correlations between actual load and VG resources ideally 
require more robust and resolved “risk-based” methodologies for calculating the reliable capacity 
contribution of these resources as renewables’ share in the power system increases (Dent et al. 
2016). 

Throughout literature and among leading task force groups, e.g., IEEE (Keane et al. 2011; 
Duignan et al. 2012), NERC (Milligan and O’Malley 2011), and IEA (Holttinen 2013), the 
preferred method for assessing the CV of wind and solar generation is a probabilistic approach 
grounded in the well-established LOLP and related reliability metrics (see Milligan et al. 2017 
for an overview). Traditional probabilistic methods include convolution-based LOLP or 
Effective Load Carrying Capability (ELCC) 3, e.g., Keane et al. (2011) for wind and Duignan et 
al. (2012) for solar. ELCC can be calculated with a reliability model or by directly using historic 
hourly load and VG data, but some studies suggest that 8 years of data are required to account 
for inter-annual variability and converge on long-term values (Hasche et al. 2011; Milligan et al. 
2017). Using these methods, CV can be calculated for conventional generators, VG resources, 
and storage.  

Numerous factors impact the CV of VG resources. These include broader system interactions 
and operating constraints, as well as assumptions regarding the quality and quantity of data used 
to calculate CV. Ideally, CVs account for the impact of other system components, such as 
transmission, storage, and flexible load resources. For example, the impact of geospatial 
diversity—including the spatial distribution of VG resources, intra- and inter-regional 
transmission interconnections, and outages of these units and lines—can impact the contribution 
of local generators, storage devices, and reserve requirements to meeting resource adequacy and 
real-time energy balancing requirements (Milligan et al. 2017; Ibanez and Milligan 2012). 
Similarly, thermal fleet operating constraints can limit the useful contribution from those units as 
well as from VG resources. In addition, the quality, quantity, and resolution of data used for 
calculating CV can, in some cases, significantly over- or under-estimate the resulting CV 
outputs, highlighting the importance of ideally using sub-hourly, error-free, measured load and 
VG resource data from multiple years (Gami, Sioshansi, and Denholm 2017).  
                                                                                                                                                             
fraction of nameplate capacity that contributes to the top peak net load hours; this is done for existing wind and PV generators, as 
well as the “marginal” value for potential new wind and PV deployment. 
3 LOLP and related methods were first introduced by Calabrese (1947). These methods convolve together, at a minimum, load 
data with generator capacity and forced outage data to quantify the probability (LOLP) and expected value (LOLE) of a system 
outage. ELCC is the contribution (units of MW which can then be reported as a fraction of the installed capacity to represent CV) 
that an additional resource provides to meeting the system’s load while maintaining a fixed system-wide reliability level. 
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In practice, such as in utility resource planning studies, a variety of methods are used to calculate 
VG CVs. These methods range from risk-based ELCC approaches, to using averages of historic 
performance for various geographic areas and/or time periods, to using a simple peak period 
capacity factor or other simple rules of thumb (Dent et al. 2016; Mills and Wiser 2012). Some 
planning entities use CEMs to design candidate portfolios, which consist of a diverse set of 
possible resource fleets to meet various system and regulatory requirements, for assessing 
capacity needs (Mills and Wiser 2012); the methods presented in this paper are of direct 
relevance to such efforts. 

1.3 Capacity Expansion Model Capacity Value Simplifications 
Within CEMs and similar planning tools, the ideal calculation of CV and other variability 
metrics requires an explicit co-optimized investment-dispatch treatment with many years of 
time-synchronous VG and load data at an hourly or subhourly resolution. Because of data and 
computational limitations, existing CEMs typically approximate system dispatch with simplified 
methods, including the use of a subset of hours from a full year, screening curves, and other 
duration-curve-based approaches to evaluate generator performance and select the optimal mix 
of units (Sullivan et al. 2014; Ueckerdt et al. 2017).  

Approximation methods specifically for CV can be broadly divided into two categories. First, 
CV can be estimated as the ELCC by relating the addition of new capacity and LOLP, e.g., Z-
method (Dragoon and Dvortsov 2006) and Garver’s method (D’Annunzio and Santoso 2008; 
Garver 1966). The second category approximates CV as the capacity factor, either based on the 
hours of highest risk, e.g., Hale et al. (2016), Milligan and Parsons (1999), Madaeni et al. (2013), 
and Pietzcker et al. (2017), or predefined by VG resource supply bins (Sullivan et al. 2013). 
Across both of these categories, improvements have been suggested, including better defining 
supply bins or model “timeslices” to capture key, distinct periods of VG and load alignment (or 
misalignment) to more accurately represent CV within those bins or timeslices (IRENA 2017).  

However, many of the above simplifications are prone to inaccurate estimations of the impact of 
VG on the broader power system, particularly when (1) only a subset of hours are included, (2) 
the hourly time-synchronous interactions of load and VG resources are not explicitly captured or 
are averaged across a larger time block, or (3) pre-defined distributions or other relationships are 
used to extrapolate the impact of VG to higher penetration levels and different system buildouts. 
For example, ReEDS formerly estimated CV using the Z-method (Dragoon and Dvortsov 2006), 
which assumes normal distributions for the contribution of VG to meeting load at a fixed 
reliability LOLP level within each model timeslice. As we show later in this paper, these 
underlying distributions sometimes resulted in CV trends that failed to capture the sharply 
declining value of PV capacity at high penetration levels. Furthermore, the use of timeslices 
often yielded abrupt jumps in CV between timeslices.  

We contribute to this broader set of CV approximation methods by implementing an improved 
approach to characterizing reliable capacity contributions within the ReEDS CEM. This updated 
ReEDS methodology is based on the commonly used load and net load duration curves4 to 
                                                 
4 Other variants of load duration curve methods, such as “residual load duration curves” (RLDCs) to represent capacity, energy, 
and curtailment characteristics, have been used in IAMs (Ueckerdt et al. 2015, 2017; Collins et al. 2017). IAMs generally require 
more simplified temporal and spatial treatment to accommodate greater model complexity from inclusion of all energy sectors 
and carriers, all world regions, and the full 21st century. 
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estimate the contribution of VG to system capacity during high load and net load hours. This 
method considers time-synchronous hourly generation and load values across all hours of the 
year (“8760 data”), thereby capturing tail events that can be missed by simplification methods 
that only use a subset of hours from a year, or by statistical methods requiring load and resource 
distribution assumptions that may not match actual distributions. Our method also takes into 
account how the system evolves within each of the scenarios. Other methods, such as those 
based on exogenous functions or binning, lack this sort of self-consistent framework and could 
therefore result in erroneous extrapolations. Furthermore, our approach offers flexible 
application to any year and model given availability of 8760 data, as well as a flexible platform 
that can include additional model features (e.g., storage, demand response, and transmission). 
We apply this approach to the ReEDS CEM and compare annual CV outputs for wind and PV, 
demonstrating improved accuracy with only a modest increase in computational burden relative 
to the former ReEDS statistical method.  
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2 New ReEDS CV Methodology 
2.1 ReEDS Overview 
ReEDS is a CEM of the contiguous United States developed in the General Algebraic Modeling 
System (GAMS) (Eurek et al. 2016). ReEDS optimizes the regional mix of technologies that 
meets physical and policy requirements of the electric sector at least cost. The model is spatially 
resolved into 134 load balancing regions. Load balancing, reserve requirements, and most policy 
and operational constraints are applied at these 134 regions. These regions are also aggregated 
into 18 Regional Transmission Operators (RTOs) that very roughly represent regional 
cooperation areas (Figure 1). ReEDS is temporally resolved into 17 timeslices to capture 
seasonal and diurnal variations in load and resources. The model previously estimated CV using 
a statistical approach that considered simple summary metrics (variance and expected value) 
from the underlying hourly load and resource data within each of these 17 timeslices. ReEDS 
optimizes investment decisions within 2-year solve periods, sequentially solving from the present 
day system out to the model horizon of 2050. The CV parameters are updated between each of 
these 2-year solve periods. 

 
Figure 1. Map of ReEDS 134 "Balancing Area" regions and 18 “RTOs” 

2.2 New ReEDS 8760-Based Method 
The improved methodology for calculating CV presented here is based on explicit hourly (8760) 
tracking and dynamic interaction of load and VG resource, with the capability to add storage, 
transmission, and other operational factors in the future. The CV calculations use a capacity 
factor proxy that is applied to top hours in load and net load duration curves (LDCs and NLDCs).  

Figure 2 shows how the current ReEDS 17-timeslice approach misses key information in the 
load and net load duration curve tails that are captured by an 8760 methodology, as explained 
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previously. The solid lines show the current ReEDS methodology that uses 17 representative 
timeslices, which are identified by numbers above the curves. The placement of these timeslices 
can significantly differ between the load and net load duration curves (blue versus red) based on 
the VG contribution within each timeslice, as reflected by the different ordering between the blue 
and red numbers. The dashed lines show the new ReEDS method using the 8760 time series. The 
new 8760-based methodology, which estimates an annual CV, is better able to capture the 
highest load and net load hours on the duration curves, thereby supporting a more accurate 
representation of CV. 

 
Figure 2. Representative load and net load duration curves for a single ReEDS region 

Timeslice identifiers are shown above the duration curves. 

To calculate CV, we use the 8760 Module that is written in R (Figure 3). The 8760 Module runs 
outside of the core GAMS-based ReEDS code between each 2-year solve period. The 8760 
Module implements the installed VG generator capacities from the previous 2-year solve period 
in ReEDS, as well as 8760 VG and load time series. The raw 8760 load data is adjusted based on 
ReEDS inter-regional transmission flow results to account for the imports/exports between 
regions. This 8760 Module returns the existing and marginal CVs.5 The 8760 Module is 
designed with the flexibility to incorporate additional 8760-based features, such as the capability 
for explicit chronological treatment to estimate curtailment and storage usage; this aspect is a key 
focus for future work. 

                                                 
5 We refer to “existing” CV as the reliable capacity contribution from resources that have already been deployed in the model 
prior to the buildout of additional “marginal” resources. 
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Figure 3. ReEDS data flow for new 8760-based CV methodology 

2.3 New ReEDS Capacity Value Calculation 
The improved ReEDS method for calculating CV uses duration curves of load and net load for 
the entire year. The method was developed in coordination with the CV method implemented in 
NREL’s Resource Planning Model (RPM) (Hale, Stoll, and Mai 2016) and is similar to the 
approach used by the International Energy Agency’s World Energy Model (IEA 2015).  

Figure 4 is a graphic representation of the new ReEDS CV methodology. The LDC reflects the 
total load in a given modeling region, which is sorted from the hours of highest load to lowest 
load and is shown by the blue line. The NLDC represents the total load minus the time-
synchronous contribution from VG, where the resulting net load is then sorted from highest to 
lowest, as shown by the solid red line.6 The NLDC(δ), which represent further addition of VG 
resources, can be created by subtracting the time-synchronous generation of an incremental 
capacity addition from the NLDC, where the resulting time series is again sorted from highest to 
lowest; this is shown by the dashed red line.  

 
Figure 4. LDC-based approach to calculating CV 

The amount of load that the existing VG capacity can meet while maintaining the same level of 
reliability is the ELCC. We calculate the ELCC as the difference in the areas between the LDC 
and NLDC during the top 100 hours of the duration curves, as shown by the dark blue shaded 
area in Figure 4. These 100 hours are a proxy for the hours with the highest risk for loss of load, 
                                                 
6 Residual LDC (RLDC) is an equivalent term to NLDC used in the literature. 
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i.e., LOLP.7 Similarly, the contribution of an additional unit of capacity to meeting peak load is 
the difference in the areas between the NLDC and the NLDC(δ), as shown by the light blue 
shaded area in Figure 4. We assume 100 MW for the incremental capacity size of new solar and 
wind builds in ReEDS; see Section 3.1 for a discussion on the sensitivity of this incremental 
value. These areas are then divided by the corresponding installed capacity and number of top 
hours (100 in this case, but this can be flexible) to obtain a fractional annual-based CV.  

The resulting CV values then feed into ReEDS (right side flow arrow in Figure 3) to quantify 
each VG resource’s capacity contribution to the planning reserve requirement, which is based on 
North American Electric Reliability Corporation planning reserve margin assessments and the 
peak load by region. This use of CV within a planning reserve constraint is consistent with many 
other CEMs and IAMs (IRENA 2017). Thus, these CV metric inform the investment decision of 
new VG by impacting the capacity-based value of those new VG additions. 

In the ReEDS 8760 Module, these calculations are done by region and technology for the 
existing CV, and by region, technology, and resource class8 for the marginal CV. For existing 
VG units, the user can define the regional level to either the 134 ReEDS regions or the 18 
broader RTO regions. All marginal calculations are performed at the 134 region level. Future 
work will refine the intra- and inter-regional transmission impacts. 

  

                                                 
7 We currently use only a single year of wind, solar, and load data to calculate CV. Expansion of this method to use multiple 
years of data would increase the robustness of this calculation. 
8 In addition to VG regions and technology types, ReEDS further categorizes VG resources into resource quality classes with 
corresponding resource supply curves.  
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3 Verification of New ReEDS Capacity Value Method 
Because the CV is an explicit calculation based on the load and net load profiles, the CV outputs 
from the 8760 Module were verified against a manual calculation of the difference between the 
load and net load in each of the top 100 hours. Figure 5 shows existing and marginal PV and 
wind CV outputs from the 8760 Module, which matched the manual verification calculations. In 
this figure, the wind generation level was held constant while PV capacity alone was increased to 
achieve higher VG penetration levels. Thus, the marginal PV CV values diminish at higher VG 
penetration levels due to the coincident nature of the solar resource, while the existing and 
marginal CV of wind slightly increases in response to the shifting peak net load period to more 
windy (and less sunny) hours. This reduction in marginal PV CV is consistent with the literature, 
which shows rapid decrease in capacity contribution beyond 20% penetration levels (Mills and 
Wiser 2012). 

 
Figure 5. Existing and marginal CV outputs from ReEDS and manual calculation 

3.1 Sensitivity of Incremental Capacity Size 
The new ReEDS CV methodology assumes a static 100 MW increment size (“incCap”) for new 
wind and solar builds. This means that the marginal CV calculated with this additional 100 MW 
of new capacity is assumed to scale linearly for any buildout quantity in the following 2-year 
ReEDS solve period. Consequently, this 100 MW selection may not represent actual capacity 
deployment increments. For example, if the marginal CV based on the 100 MW increment is 
50%, and ReEDS builds 2000 MW of this high quality resource, then the model may be over-
valuing some portion of this 2000 MW capacity addition. 

To understand the impact of this assumption on marginal CV values and capacity deployment, 
we compared five sensitivity cases with various incremental capacity sizes: 50, 100, 250, 500, 
and 1,000 MW. The 1000 MW case captures at least the 75th percentile of all wind and PV 
regional and resource class level buildouts across all model solve years. As shown in the left 
pane of Figure 6 for PV, the marginal CV generally decreases with increasing incremental 
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capacity size. The marginal CV also declines over time as the penetration level increases. 
However, as shown in the right pane of Figure 6, corresponding deployment is very insensitive 
to the choice of incremental capacity size. Similar results were observed for wind. The 
insensitivity of these results suggests that any capacity increment in this range (50-1000 MW) 
would have a limited effect on deployment and, thus, supports our use of 100 MW for the 
marginal CV calculations. In other words, as long as VG installations for any given 
region/technology/resource class do not significantly exceed 1000 MW, then the choice of the 
incremental capacity size for the marginal CV calculations is inconsequential. 

    
Figure 6. (Left) National PV marginal capacity value (median value across resource regions) by 

incremental capacity value at 2016, 2020, 2030, 2040 and 2050, respectively; (Right) National 
installed PV capacity by year for different incremental capacity value selections 
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4 Comparison of Former and New ReEDS Capacity 
Value Methods  

Results to date suggest that the new 8760 Module offers a more accurate representation of VG 
CV in ReEDS than the former statistical approximation method with less than a 10% increase in 
solve time. The marginal PV CV outputs derived by the former ReEDS statistical method and the 
new 8760 method are shown in Figure 7 for two regions with high quality solar resource: Austin, 
Texas (left pane) and Southern California (right pane). Note that the former ReEDS method 
calculates CV at the timeslice level, while our new method reports annual CV outputs. To 
provide a more equal comparison, we show the former method CV outputs from the timeslice 
with the largest marginal value (“binding timeslice”) in the planning reserve constraint. This is 
often, but not always, the summer afternoon or evening timeslices. 

  
Figure 7. Incremental PV CV using the former and new ReEDS CV method in the Austin, Texas 

region (left) and Southern California region (right) 

The new ReEDS method better captures the declining value of capacity with increasing VG 
penetration levels. Previous work has shown, and Figure 7 supports, that the former ReEDS CV 
method yields abrupt changes in CV between the different timeslices, particularly between 
summer afternoon and evening (Sigrin et al. 2014). These results can be seen in Figure 7’s left 
pane by the sharp drop in the former ReEDS method marginal CV around the 7% PV penetration 
level, where the planning reserve constraint binding timeslice shifts from summer afternoon to 
evening (yellow diamonds). Furthermore, as the right pane shows, the coarse timeslice-based 
values in the former ReEDS method often estimate persistently high CVs for PV even at 
relatively high penetration levels. The new 8760-based method (red triangles), which looks 
across the top 100 net load hours to calculate an annual CV, results in a smoother and more rapid 
decline in CV. 

For PV, the new 8760-based ReEDS method also often yields larger CVs at lower penetration 
levels, as shown in the right pane of Figure 7, where the marginal PV CV with the new ReEDS 
method is nearly twice as large as the CV calculated by the former ReEDS method at penetration 
levels below about 18%. As we will see later, this drives greater PV deployment in early ReEDS 
years with the new CV method. 
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At the national level, the new ReEDS CV method tends to produce more consistent CVs across 
wind penetration levels as compared to PV. Figure 8 shows the national median marginal CV for 
wind and PV, each as a function of their respective technology energy penetration levels. PV 
CVs tend to decline more rapidly than wind with increasing energy penetration levels. This is 
driven by the stronger correlation of solar with load than wind, resulting in larger PV CV values 
at low penetration levels when the solar resource is coincident with both peak load and net load 
hours. Solar’s strong correlation with load occurs in most of the United States, which typically 
experiences summer afternoon peaking load. However, as the penetration level increases, this 
strong PV-load correlation pushes out high solar-producing hours from the top 100 net load 
hours included in the CV estimation. This shift in high-risk periods from summer afternoon to 
the early evening, which causes the deterioration in the capacity value of solar PV at higher 
penetration levels, has been noted in the literature, e.g., (Munoz and Mills 2015). Similar to 
Figure 5, this PV CV trend aligns well with the results in Mills and Wiser (2012), where the 
marginal CVs rapidly decline as the PV penetration level nears 20%. In contrast, wind-producing 
hours maintain a more consistent presence in these top net load hours to yield more constant 
marginal CVs on a national median basis across the penetration levels included in Figure 8. We 
note, however, that at the regional level, these CV results vary depending on the existing fleet 
and resource profiles. This is particularly true for wind which is more spatially diverse than PV. 
For the limited penetration levels observed in Figure 8, wind CVs fall within the values observed 
in other grid integration studies (Holttinen et al. 2016), though the values vary significantly 
across the different regions reflected by those studies, typically declining to near 5% above 
~30% wind penetration levels. 

 
Figure 8. National median marginal CV for PV and wind as a function of their respective energy 

penetration level with the new ReEDS CV method 

Figure 9 summarizes the impact of the new ReEDS CV method on overall model deployment 
results. As previously discussed, PV capacity value is higher in the earlier years, driving greater 
PV deployment with the new CV method, while the opposite trend is observed in later 
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years. This PV deployment trend is primarily a tradeoff with wind. As shown in the example in 
Figure 9, the end result in 2050 is 120 GW less cumulative PV capacity and 44 GW more wind 
capacity as compared to the capacity buildout with the former ReEDS CV method. 

 
Figure 9. Difference in nationwide cumulative installed capacity between new and former ReEDS 

CV methods (new minus former). 

With the new 8760-based CV method, ReEDS has 44 GW more wind capacity and 120 GW less PV in 
2050. 
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5 Summary and Future Work 
Accurately reflecting the impact of VG on system reliability and flexibility in CEMs is 
increasingly important as VG penetration levels grow. CV is a key parameter that reflects the 
reliability attributes of system generators. The ideal calculation of CV requires capturing the 
interaction of the entire generator fleet, storage, and transmission on both existing and potential 
new VG installations. Various methods exist for approximating CV in CEMs, though many are 
based on a representative subset of hours that can miss important tail events and/or time 
synchronicity issues.  

In this paper we have demonstrated that our approach provides an improved representation of 
CV trends in the ReEDS CEM by explicitly capturing these load and VG interactions across all 
8760 hours of the year, with a specific focus on the top 100 net load hours as a proxy for the 
highest LOLP hours. This method improves upon the former statistical method that assumes 
normal distribution for the contribution of VG to reliably meeting load. These assumed 
distributions may not match actual distributions, especially at higher VG penetration levels. 
Results revealed that this statistical method sometimes yielded CVs that failed to capture the 
declining contribution of PV capacity at high penetration levels. Additionally, by calculating an 
annual CV, the new 8760 method avoids abrupt jumps in CV between timeslices that was 
previously observed with the former ReEDS CV method. The 8760 approach implemented in 
ReEDS could be applied more broadly to CEMs at many different scales where hourly resource 
and load data are available, greatly improving the representation of challenges associated with 
the integration of variable generation resources. 

Our initial results verified our CV calculations and justified our incremental capacity size 
assumption. Future work will continue to improve the CV estimation and application within 
ReEDS by applying multiple years of underlying 8760 data to capture inter-annual variability; 
validating the choice of 100 top hours for our CV calculations; investigating the appropriate 
values to use for reserve margins within the planning reserve constraint; and developing methods 
for calculating CV for non-VG technologies including storage. 

While this improved CV approach is based on the widely used load and net load duration curves, 
the modeling framework under which this method is built provides a flexible platform to 
incorporate additional 8760-based features, including chronological operation (e.g., storage, 
minimum generation constraints, demand response, and transmission). This capability allows our 
8760 approach to further capture important system interactions, such as curtailment, without the 
computationally costly economic dispatch optimization of a more detailed operational model. 
Future work will incorporate such a capability to estimate curtailment and potential reduction in 
curtailment enabled through deployment of storage and more flexible operation of select thermal 
generators.  
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