Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

Kandler Smith*, Aron Saxon, Matthew Keyser, Blake Lundstrom
National Renewable Energy Laboratory

Ziwei Cao, Albert Roc
SunPower Corp.

American Control Conference
Seattle, Washington May 23-26, 2017

*NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Applications of Energy Storage (ES) on the Grid

Focus of present ES system life study

Batteries can provide up to 13 services to three stakeholder groups.

Figure credit: Rocky Mountain Institute
Example Application: Behind-the-meter ES enables PV use in locations such as Hawaii (where power export is prohibited)

Figure: "Solar Plus: An Holistic Approach to Distributed Solar PV" Eric O'Shaughnessy, Kristen Ardani, Dylan Cutler, Robert Margolis (NREL Pub #68371)
Outline

• Degradation mechanisms
• Modeling approach
• Aging tests
• Model and parameter identification
• Example life prediction
Li-ion Working Principles

Neg. Electrode
Graphite
Hard carbon
Silicon
Titanate
Li metal

Pos. Electrode
LiXO$_2$,
$X =$ NiMnCo
 Co
 NiCoAl
LiMn$_2$O$_4$,
LiFePO$_4$

Figure credit: Gi-Heon Kim
Electrochemical Operating Window

Potential vs. Li (V)

SOC

U+

U−

Cobalt Oxide

Graphite

Potential measured at cell terminals

Figure credit:
Ilan Gur (ARPA-E) & Venkat Srinivasan (LBNL), 2007

(x in LiₓC₆ or y in Li₁-0.6yCoO₂)

Potential measured at cell terminals

Figure credit:
Ilan Gur (ARPA-E) & Venkat Srinivasan (LBNL), 2007

(x in LiₓC₆ or y in Li₁-0.6yCoO₂)
Electrochemical Window – Degradation

Figure: Ilan Gur (ARPA-E) & Venkat Srinivasan (LBNL) 2007

Cycling at
- High T & high DOD
- Low T, & high C-rate

Cycling at low T, & fast charging

Time at high SOC & T. Accelerated with DOD

Potential vs. Li (V)

SOC

(x in Li_xC_6 or y in Li_1-0.6yCoO_2)
Reduced-order models for physical fade mechanisms, e.g.

- SEI growth & damage
- Particle fracture
- Electrode isolation
- Electrolyte decomposition
- Gas generation, delamination
- Li plating

Semi-automated software aids model equation selection and parameter identification

Table: NREL Battery Life Predictive Model Framework

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Trajectory equation</th>
<th>State equation</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion-controlled reaction</td>
<td>$x(t) = k t^{3/2}$</td>
<td>$\dot{x}(t) = k \frac{2}{ \text{x}(t) }$</td>
<td>k - rate (p=1/2)</td>
</tr>
<tr>
<td>Kinetic-controlled reaction</td>
<td>$x(t) = k t$</td>
<td>$\dot{x}(t) = k$</td>
<td>k - rate (p=1)</td>
</tr>
<tr>
<td>Mixed diffusion/kinetic</td>
<td>$x(t) = k t^p$</td>
<td>$\dot{x}(t) = k p \frac{1}{2} \left(\frac{k}{ \text{x}(t) } \right)^{1/2}$</td>
<td>k - rate p - order, $0.3 < p < 1$</td>
</tr>
<tr>
<td>Diffusion controlled reaction with mechanical damage</td>
<td>See Appendix A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic fade - linear</td>
<td>$x(N) = k N$</td>
<td>$\dot{x}(N) = k$</td>
<td>k - rate (p=0)</td>
</tr>
<tr>
<td>Cyclic fade - accelerating</td>
<td>$x(N) = \left[x_0^{1-p} + k x_0^p (1+p) N \right]^{1-p}$</td>
<td>$\dot{x}(N) = k \left(\frac{x_0}{x(N)} \right)^p$</td>
<td>k - rate p - order, $0 > p > 3$</td>
</tr>
<tr>
<td>Break-in process</td>
<td>$x(t) = M (1 - \exp(-k t))$ or $x(N) =$</td>
<td>$\dot{x}(t) = k (M - x(t))$</td>
<td>M - maximum fade k - rate</td>
</tr>
<tr>
<td>Sigmoidal reaction</td>
<td>$x(t) =$</td>
<td>$x(N) =$</td>
<td></td>
</tr>
</tbody>
</table>

Model assumes measured capacity is minimum of:

1. Cycleable lithium, Q_{Li}
2. Negative electrode sites, Q_{neg}
3. Positive electrode sites, Q_{pos}
Aging tests – Kokam 75Ah Gr/NMC Li-ion cells

- **Tests design to include both benign and highly accelerated aging**
 - Some real-world, some reaching 30% capacity fade in 6-9 months
- **Pure storage (0%), partial cycling (50% DC*), & fully accelerated cycling (100% DC)**
 - Separate calendar from cycling fade
- **Capacity check run at test temperature**
 - Simplifies testing but makes model ID more difficult
- **Ideal test matrix would include more aging conditions**

Cycling tests

<table>
<thead>
<tr>
<th>Temperature</th>
<th>DOD</th>
<th>Dis./charge rate</th>
<th>Duty-cycle*</th>
<th># of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>23°C</td>
<td>80%</td>
<td>1C/1C</td>
<td>100%</td>
<td>2</td>
</tr>
<tr>
<td>30°C</td>
<td>100%</td>
<td>1C/1C</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>30°C</td>
<td>80%</td>
<td>1C/1C</td>
<td>50%</td>
<td>1</td>
</tr>
<tr>
<td>0°C</td>
<td>80%</td>
<td>1C/0.3C</td>
<td>100%</td>
<td>2</td>
</tr>
<tr>
<td>45°C</td>
<td>80%</td>
<td>1C/1C</td>
<td>100%</td>
<td>1</td>
</tr>
</tbody>
</table>

Storage tests

<table>
<thead>
<tr>
<th>Temperature</th>
<th>SOC</th>
<th># of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°C</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>45°C</td>
<td>65%</td>
<td>1</td>
</tr>
<tr>
<td>45°C</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>55°C</td>
<td>100%</td>
<td>1</td>
</tr>
</tbody>
</table>

Gr = Graphite negative electrode
NMC = Nickel-Manganese-Cobalt positive electrode
C/5 Capacity vs. Time

- Tight agreement for replicate cells 1&2 at 23°C
- Some divergence for replicate cells 6&7 at 0°C
- Unexplained temporary capacity increase for 55°C storage cell
C/5 Capacity vs. Cycles

- Storage data omitted
- Just 6% capacity loss after 3000 cycles at 23°C, 80% DOD
Capacity Evolution—Reversible and Irreversible

State

- Q_{Li}
- Q_{Neg}
- Q_{Pos}

Mechanism

0) Temperature (reversible)

1) SEI growth $\sim t^{1/2}$

2) Cycling fatigue $\sim N$

3) Break-in
 a) Damage $\sim 1 - \exp(-\lambda t)$
 b) Increase $\sim 1 - \exp(-\lambda \Delta t)$

Dependence on operating condition

- Temperature
 \[\exp \left(-\frac{E_a}{R_{\text{eff}}(T(t))} \right) \]
- State of charge
 \[\exp \left(\frac{a_{\text{ref}} F \eta(t)}{R_{\text{ref}} T(t)} \right) \quad \eta = U_\text{ref} - U_{\text{ref}} \]
- Depth-of-discharge
 \[(1 + \theta DOD_{\text{max}}) \exp \left[\eta (DOD_{\text{max}}) \right] \]
 \[(DOD)^\beta \exp \left[\eta (DOD_{\text{max}}) \right] \]
- C-rate
 \[\frac{C_{\text{rate,2}}}{\sqrt{C_{\text{rate,1}}}} \]
- Electrochemical
 \[\eta = U_\text{ref} - U_{\text{ref}} - C_\text{rate} R_{\text{film}} \]

Neglect due to insufficient data (present application $\leq 1C$)
Q_{pos} Capacity Break-in & Initial Temperature Dependence

- Hypothesize initial cycles induce microcracks in NMC particles, increasing electrolyte wetting and surface area

\[
Q_{pos} = d_0 + d_3 \left(1 - \exp\left(-A h_{dis} / 228\right)\right)
\]

\[
d_0 = d_{0,ref} \left[\exp\left(-\frac{E_a d_{0,1}}{R_g T_{RPT}(t)} - \frac{1}{T_{ref}}\right) - \left(\frac{E_a d_{0,2}}{R_g T_{RPT}(t) - T_{ref}}\right)^2\right]
\]

Image: Dean Miller & Daniel Abraham, Argonne National Laboratory
QLi Local Models

- **Local models**: Separately fit b_0, b_1, b_2 for each data set, excluding
 - First 50 days of data (allows y-intercept to vary with break-in)
 - Knee at 0°C (to be captured later with Q_{neg} model)

\[
Q_{Li} = d_0 \left[b_0 - b_1 t^{1/2} - b_2 N \right]
\]

- Choice of mechanisms justified by $R^2=0.990$ and flat residuals
Q_{Li} Magnitude of break-in Li-loss

Local model

\[Q_{Li} = d_L \left[b_0 - b_1 t^{1/2} - b_2 N \right] \]

- Least degraded cells show ~3-4% excess Li capacity
- High temperature causes rapid loss in first 50 days
 - Open-circuit voltage and DOD also increase loss
 - Evidence of film layer formation at positive electrode?

b_0 magnitude model

\[
y_0 - b_3 \left(1 - \exp\left(-t / \tau_{b_3} \right) \right) = b_{3,\text{ref}} \exp \left[-\frac{E_a b_b}{R_{\text{opt}}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right) \right] \exp \left[\frac{\alpha_{b_b} F (V_{\text{OC}}(t) - V_{\text{ref}})}{R_{\text{opt}} \left(T(t) - T_{\text{ref}} \right)} \right] (1 + \theta \text{ DOD}_{\text{max}})
\]
Local model

\[Q_{Li} = d_0 \left[b_0 - b_1 t^{1/2} - b_2 N \right] \]

\[Q_{Li} \text{ Calendar fade rate} \]

Visualization of rates suggests rate model equations

Fitted rate model parameters provide initial guess for global model parameters
QLi Global Model

- With equations known, parameters fit to all data simultaneously
- \(R^2 = 0.985, \text{ RMSE } = 1\% \text{ of capacity, flat residuals} \)

\[
Q_{Li} = d_0 \left[b_0 - b_1 t^{1/2} - b_2 N - b_3 \left(1 - \exp(-t/\tau_{b3})\right)\right]
\]

\[
b_1 = b_{1,\text{ref}} \exp\left[-\frac{E_{a,b}}{R_{ag}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right) \right] \exp\left[\frac{\alpha_b F (U_{\text{OC}}(t) - U_{\text{ref}})}{T(t)} \right] \exp\left[\gamma_b (DOD_{\text{max}})^{\beta_b} \right]
\]

\[
b_2 = b_{2,\text{ref}} \exp\left[-\frac{E_{a,b}}{R_{ag}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right) \right]
\]

\[
b_3 = b_{3,\text{ref}} \exp\left[-\frac{E_{a,b}}{R_{ag}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right) \right] \exp\left[\frac{\alpha_b F (V_{\text{OC}}(t) - V_{\text{ref}})}{T(t)} \right] (1 + \theta DOD_{\text{max}})
\]
Q\textsubscript{Neg} Model

- Captures **knee** with cold temperature cycling
- Minor importance in most real-world scenarios

\[\frac{dQ_{\text{neg}}}{dN} = \left(\frac{c_2}{Q_{\text{neg}}} \right) \]

\[Q_{\text{neg}} = \left[c_0^2 - 2c_2c_0N \right]^{\frac{1}{2}} \]

\[c_0 = c_{0,\text{ref}} \exp \left[\frac{E_{a,c0}}{R_{\text{eg}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right)} \right] \]

\[c_2 = c_{2,\text{ref}} \exp \left[\frac{E_{a,c2}}{R_{\text{eg}} \left(\frac{1}{T(t)} - \frac{1}{T_{\text{ref}}} \right)} (\text{DOD})^{\beta_2} \right] \]
Life-time analysis – PV self consumption

- Model reformulated in rate-based form
- SOC(t) discretized into microcycles, DOD\textsubscript{i}, using Rainflow algorithm
- Application data
 - Multi-year, 4-season simulation
 - Same cycle each
- Impact of DOD and thermal management

\textbf{Graphs:}

- Cell current (A)
- SOC
- T (°C)
- Voltage

\textbf{Graphs:}

- Time (years)
- Depth of discharge (%)
- Years to 70% of nameplate, winter season

\textbf{Thermal management:}

- 20°C < T\textsubscript{cell} < 30°C
- 5°C < T\textsubscript{cell} < 35°C
Conclusions

• Battery energy storage can enable increased integration of renewable power generation on the grid

• Battery life modeling methodology formalized, aiding systems design process
 o Capacity error: \(L_2 = 1\%, \ L_\infty = 5\% \)
 o For studied Gr/NMC Li-ion ES technology, best to restrict daily cycles < 55% DOD with occasional larger excursions
 o Thermal management extends life from 7 to 10 years

• Battery aging experiments are time consuming & expensive

• Additional model validation needed
 o Longer duration
 o Variable cycling & temperature

• Life model accuracy may be enhanced in the future by coupling with electrochemical modeling & diagnostics
Acknowledgements

- U.S. DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program
- SunPower Corporation
Extra Slides
Previous Validation of Life Model

Cell-level aging tests
Prognostic model characterization

Eaton Corp. ARPA-E AMPED project resulting in 35% smaller HEV battery (PI: Dr. Chinmaya Patil/Eaton)

Pack-level HIL tests
HEV prognostic control algorithm validation

Model tuned to 6 months simple cell aging data matches 33 months 4-season cycling with same accuracy