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Preface 
This paper serves as an update to an earlier paper by the same title published in September 2015. 
The original implementation of the snow model described in this paper in the System Advisor 
Model (SAM) had a bug that, when fixed, changed the results described herein. The bug reduces 
the amount of losses due to snow predicted in the national study, particularly in the northern part 
of the United States. Interestingly, however, the snow model after the bug was fixed shows less 
improvement for the verification systems than the snow model when it still included the bug; 
this fact, in conjunction with the fact that the losses predicted by the incorrect model were still 
within the range found in the literature, are likely why the bug went unnoticed in the original 
implementation. Many thanks to the diligent SAM users who, comparing the SAM 
implementation to Marion’s original model, discovered, and reported the bug. 
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Abstract 
Due to the increasing deployment of PV systems in snowy climates, there is significant interest 
in a method capable of estimating PV losses resulting from snow coverage that has been verified 
for a variety of system designs and locations.  Many independent snow coverage models have 
been developed over the last 15 years; however, there has been very little effort verifying these 
models beyond the system designs and locations on which they were based. Moreover, major PV 
modeling software products have not yet incorporated any of these models into their workflows. 
In response to this deficiency, we have integrated the methodology of the snow model developed 
in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory’s (NREL) 
System Advisor Model (SAM). In this work, we describe how the snow model is implemented in 
SAM and we discuss our demonstration of the model’s effectiveness at reducing error in annual 
estimations for three PV arrays. Next, we use this new functionality in conjunction with a long 
term historical data set to estimate average snow losses across the United States for two typical 
PV system designs. The open availability of the snow loss estimation capability in SAM to the 
PV modeling community, coupled with our results of the nationwide study, will better equip the 
industry to accurately estimate PV energy production in areas affected by snowfall.  
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Introduction 
Snow coverage of PV systems and the associated losses in energy production have been 
recognized by the PV community as a significant loss that must be accounted for (Marion et al. 
2013; Becker et al. 2006; Powers, Newmiller, and Townsend 2010; Andrews, Pollard, and 
Pearce 2013; Sugiura et al. 2003). However, the convoluted dynamics of snow coverage on PV 
systems (snow removal processes in particular), in addition to the large variability in determining 
a location’s typical snowfall over the course of a year, have made a reliable model capable of 
estimating these losses infeasible for general use. Previous studies on this topic have measured 
losses in annual energy production ranging from 0% (Andrews, Pollard, and Pearce 2013) to 
25% (Powers, Newmiller, and Townsend 2010). Of course, these studies vary substantially in 
terms of the type of the PV array employed and the physical location in which the study took 
place. Moreover, several empirical models have been developed by the community that can 
estimate these losses (Townsend and Powers 2011; Andrews and Pearce 2012); however, in 
almost all cases there has been little or no effort to verify these models beyond the systems on 
which their design was based. There is a clear need within the community for a model capable of 
reliably predicting PV snow losses for a variety of PV system types and in a variety of locations.  

For this purpose, we have integrated the PV snow coverage model developed by Marion et al. 
(2013) into the National Renewable Energy Lab’s (NREL) System Advisor Model (SAM). The 
following report details the methodology of the model’s implementation, the results of a 
validation study against three PV systems that were not involved in the model’s creation, and 
finally, the results of a national study using the new snow model in SAM.  
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Implementation 
Marion’s Model 
The PV snow coverage model in Marion et al. (2013) calculates the percentage of a PV array that 
will be covered by snow given daily snow depth measurements as well as hourly system tilt, 
plane of array (POA) irradiance, and temperature values. The model considers snow sliding to be 
the dominant removal process and therefore does not account for snow melting or wind removal 
(except in the case of flat fixed-tilt systems). Other works, independent of Marion’s analysis, 
have also expressed snow sliding as a dominant removal process (Becker et al. 2006; Andrews, 
Pollard, and Pearce 2013; Sugiura et al. 2003). A brief description of the model is provided. 

At the beginning of each day, the model checks to see if a snowfall has occurred during that day. 
If it has, the model assumes that the PV array being simulated will be completely covered by 
snow. If a new snowfall is not detected, the coverage is left at its value at the end of the previous 
day. For each hour in the day, the array will remain covered unless the plane of array incidence 
(the total amount of radiation incident on the PV module) and ambient temperature are sufficient 
to allow some of the accumulated snow to slide off the PV array. More specifically, snow sliding 
will only occur so long as the following inequality is satisfied: 

𝑇𝑇𝑎𝑎 >
𝐼𝐼𝑝𝑝𝑝𝑝𝑎𝑎
𝑚𝑚

 

where 𝑇𝑇𝑎𝑎 represents the ambient temperature, 𝐼𝐼𝑝𝑝𝑝𝑝𝑎𝑎 represents the plane of array irradiance, and 𝑚𝑚 
represents Marion’s empirically defined value −80 𝑊𝑊/(𝑚𝑚^2  °𝐶𝐶). If the model determines that 
sliding is possible during a particular hour, then the amount of the PV array that will be exposed 
in that hour, measured in tenths of a row’s total height (see Figure 1), is a function of the PV 
system’s tilt. 

 
Figure 1. Simplified diagram of a PV array 
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The amount that will be exposed, in tenths of total row height, can be found using: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴 = 1.97 ∗ sin( 𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 ) 

The 1.97 constant in this equation was experimentally determined by Marion et al. (2013) for 
roof-mounted systems and will be referred to as the sliding coefficient. At the end of the hour 
during which the calculation permits sliding, the initial PV snow coverage will be decremented 
by the snow slide amount. Finally, given the new height of snow relative to the PV row’s height 
and the configuration of PV strings in a row, the number of PV strings within the system which 
are not covered with snow is determined. These modules are allowed to operate normally while 
the energy production of the others is set to zero. The model then moves on to the next hour in 
the day and repeats this process. 

Marion et al. (2013) also provided a sliding coefficient for ground-mounted systems, which is 
reported as 6.0 tenths of PV row height per hour. The discrepancy between these two values 
stems from the necessity of roof mounted systems to account for snow accumulating at the lower 
edge of an array and preventing snow removal from the lower modules. To date, however, only 
the sliding coefficient for roof-mounted systems has been incorporated into SAM because it was 
determined from a larger sample size in Marion’s analysis and therefore better validated. 

Implementation in SAM 
The final implementation of Marion et al.’s (2013) model in SAM is procedurally very similar to 
Marion’s original model; however, there are a small number of differences that warrant 
discussion. Two of the changes were overrides that prevent illogical behavior. The first of these 
simply checks the snow coverage at the end of each time step and prevents the coverage from 
going below 0%. Second, when calculating the snow coverage at the beginning of each time step, 
we included an additional check for zero snow depth at that time. We assume that if the snow 
depth at that time is zero, then the coverage percentage on the PV array should also be zero. This 
check accounts for zero-degree fixed-tilt PV arrays on which, in the original model, snow would 
never slide off once it had accumulated. This second check was not required in Marion’s original 
model since that model was designed for system tilts between 10° and 45°. However, as we will 
discuss in the validation section, with this override the implemented PV snow coverage model is 
also effective for flat systems. 

Following this, by conducting a review of the currently available snow depth sensors, we found 
that many devices have an uncertainty between 0.5 and 1.0 cm. Therefore we also included 
threshold values for minimum depth and minimum change in depth (delta), which are intended to 
filter out noise in the snow depth measurements and reduce spurious responses to data 
uncertainty, such as findings of new snowfall during summer months. We incorporated these 
thresholds within the portion of the implementation that determines whether a new snowfall has 
occurred. If the original model identifies a new snowfall but either the snow depth is less than the 
depth threshold or the change in snow depth (with respect to the previous time step’s depth) is 
less than the delta threshold then we assume this is an erroneous detection and it is ignored. We 
set these thresholds equal to 1 cm for consistency with snow depth measurement uncertainties; 
an additional sensitivity analysis on these threshold values indicated that different depth 
threshold values within a range of 0.5 to 1.5 cm do not significantly affect estimated snow losses. 
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Lastly, Marion’s original model applied snow losses for an hourly simulation using a daily snow 
depth data set which was measured every day at 7am. However, SAM users may have access to 
more resolved snow depth data. Additionally, SAM is capable of simulating PV performance for 
sub-hourly time intervals. Therefore, it was necessary to adapt the snow model’s implementation 
to allow for the usage of hourly and sub-hourly snow depth data sets as well as to accommodate 
sub-hourly simulations. 

First, we sought to determine if the model would lose accuracy if the check for a new snowfall is 
performed hourly versus once a day. In order to compare the two methods fairly, we fabricated 
an hourly snow depth data set from a pre-existing daily data set by setting each hour in a single 
day to the snow depth record of the corresponding day in the daily set. Then, we executed the 
model in both its original daily form (including the changes discussed up until this point) and in 
another form that checks for a new snowfall at the start of each hour. We found that, as expected, 
the two methods produced identical results. Similarly, we conducted another study where we 
considered NREL’s Research Support Facility 2 (RSF2) PV array, which has hourly measured 
power outputs and meteorological data, including hourly snow depth data. We converted the 
hourly snow depth data for this site to a daily data set (by setting all values in a day to the value 
at 7 a.m. in the hourly set in accordance with Marion’s data collection procedure) and ran 
simulations in SAM with both sets. We found that the simulation with the hourly data set 
resulted in less error in annual energy compared to measured data than the simulation with the 
daily set. The method used to calculate these errors will be discussed further in the validation 
section. Because checking for a new snowfall at the beginning of hour as opposed to at the 
beginning of each day produced no difference when a daily snow depth data set was converted to 
an hourly set, and because the algorithm was shown to lose accuracy when the opposite 
conversion was performed, we decided to check for a new snowfall at the beginning of each time 
step for the final implementation. 

Second, we accounted for sub-hourly calculations. The workflow of the snow model is 
unchanged with the exception that the sliding coefficient and the delta threshold, which were 
originally determined as hourly values, are both scaled by the inverse of the number of time steps 
in an hour. For example, if SAM is provided with 15-minute weather data, then the sliding 
coefficient and the delta threshold are each multiplied by 0.25 to convert them from hourly to 15-
minute values. 

Snow Model Usage in SAM 
The resulting PV snow coverage model can be accessed in two separate ways: by running the 
model in conjunction with an ongoing PV simulation or by invoking the model after a complete 
PV simulation has occurred. In the desktop version of SAM, the snow model can be activated by 
navigating to the ‘Shading and Snow’ design page and selecting the ‘Estimate losses due to 
snow’ check box. Doing so will instruct the snow model to run in conjunction with the PV 
simulation and will logically be applied at the same point as similar losses (shading and soiling). 
In SAM’s workflow this occurs after losses associated with the modules themselves (module 
efficiency and degradation) are applied, but before the inverter model is run. The same behavior 
can be achieved either through SAM’s LK scripting language or in one of the SDK extension 
languages by setting the ‘en_snow_model’ variable to 1; its default value is 0, which deactivates 
the snow model. Once the snow model is activated, a SAM PV simulation can be executed 
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normally and the final power reports will reflect snow loss estimations. Moreover, time series 
arrays of the amount of energy lost in each subarray due to snow coverage can be accessed 
through the ‘subarray[n]_snow_loss’ variables, where [n] is replaced with a specific subarray’s 
identification number. For more information on how to use SAM’s LK scripting language or 
access the SDK, visit the SAM webpage at sam.nrel.gov. 

The second method of accessing the snow model—invoking the model after a simulation has 
occurred—can only be accomplished by using either SAM’s LK scripting language or through 
the SDK. Additionally, invoking the snow model in this manner requires that a time series array 
of the modeled system’s energy output be provided as an input to the snow model. This can be 
accomplished in one of two ways: One, by executing a full SAM PV simulation, without having 
activated the snow model, in which case the required output variable will already be present in 
the SAM instance, or, two, by manually providing an energy output array, through the method 
discussed in SAM’s operating manual, and defining it as the ‘gen’ variable. The input ‘gen’ array 
can be either DC or AC energy, a fact which we will discuss next. Once invoked, the snow 
model will calculate loss estimates due to snow coverage at each time step and will deduct the 
appropriate losses from the initial energy time series. Regardless of when the snow model is 
applied, its success is dependent on the input weather file containing valid snow depth data. 

AC Versus DC Side Application 
Snow coverage on PV arrays immediately results in a decreased DC power output by the array, 
so it makes the most sense to apply the losses estimated by a snow model at the same time that 
similar losses (shading and soiling) are applied. The empirical correlations in Marion’s model, 
however, were formulated using the measured AC power, so we examined whether the model is 
still valid when applied to the DC side of power conversion. 

As discussed previously, the way in which the model was implemented into SAM allows for 
execution of the snow model either simultaneously with SAM’s PV model workflow—
equivalent to applying snow losses on the DC side of power conversion—or independently after 
a SAM PV simulation has completed—equivalent to AC-side application. Fortunately, this made 
comparing the application of the model on either side a straightforward process. We ran a series 
of comparisons, each consisting of two simulations using identical system designs and weather 
files. One simulation included the snow model that ran during the SAM PV simulation (on the 
DC side) and the other simulation included the snow model that ran after the SAM PV 
simulation (on the AC side). In each case, the final annual energy values predicted by the two 
simulations were within approximately 2% of each other, which is within an acceptable error 
margin. This suggests that the side to which the snow model is applied is not of great 
importance. Nevertheless, users should be aware that slight differences are expected, particularly 
if they wish to post-process PV performance data obtained elsewhere using SAM’s snow loss 
model. Unless otherwise specified, it should be assumed that the snow model was applied on the 
DC side for the remaining analyses discussed in this work. 



 

6 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Non-Monotonic Effect of Increased Tilt in the Model 
When using Marion’s model as implemented in SAM, increasing the tilt of the system does not 
necessarily cause a monotonic decrease in annual snow loss percentage as it would be expected 
to in the real world (see Figure 2). This is due to the model’s assumption that if a string is even 
partially covered by snow, it produces zero power, combined with the fact that the model is run 
at discrete time intervals. Let us assume that the time interval for a simulation is one hour. As tilt 
increases, the amount of snow that slides off of an array in a given hour also increases—but it 
must increase to a certain point before a new string is completely uncovered one hour sooner 
than at a lower tilt, and can produce power for that additional hour. Before that point, no 
additional power is produced, but additional plane-of-array irradiance strikes the array as a result 
of the increased tilt. Therefore, the amount of power lost due to snow actually increases until it 
hits the point where a new string is uncovered one hour sooner in a given snow event, and then 
snow loss decreases with a sudden jump. This effect becomes less pronounced as the number of 
modules along the side of a row (nmody) increases, as demonstrated by the three different lines 
in Figure 2, because fraction of snow that must slide to uncover a new string—and therefore how 
much time it takes for a new string to be uncovered—decreases with increasing numbers of 
strings in a row. This effect would also decrease if the time interval of the simulation were 
decreased. It is important to recognize that this is not a real-world phenomenon but rather a result 
of model assumptions and discrete time intervals. 

 

Figure 1. An example system showing a non-monotonic decrease in annual snow losses with 
increased system tilt 

This is not a real-world phenomenon but rather a result of model assumptions and discrete time intervals. 
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Error Reduction Demonstration 
Snow models have been available to the PV industry for close to two decades; however, in most 
cases there has not been a large validation effort. User confidence in the conclusions reached 
using a snow model may increase with greater similarity between the user’s system and the 
system, or systems, from which the snow model was developed. However this is not equivalent 
to systematic validation. Naturally, a complete validation of a snow model would require 
comparing simulation results to measured data sets for representatives of each type of system 
design in each type of weather climate—an effort which is far beyond the scope of this study 
even if such data sets existed. Nevertheless, in order to build confidence in the results reported 
by the PV snow coverage model implemented in SAM, we demonstrated the model’s 
effectiveness in reducing the error in estimating annual energy production with respect to 
measured data for three systems. None of these validation systems played a role in Marion’s 
original model’s conception. 

Fixed-Tilt Systems 
Two of the systems that were used for validation were the Forrestal system, located on the James 
Forrestal Building in Washington, D.C., and the RSF2 system, located on NREL’s Research 
Support Facility in Golden, Colorado. Both are fixed-tilt systems, with tilt angles of 0° and 10° 
respectively, that have previously been used as case studies for SAM validations. These 
validations showed good agreement with SAM predictions excluding system downtime and time 
periods with heavy snowfall (Freeman et al. 2013). The concurrent weather data and measured 
data for the two systems come from the same data set used in Freeman et al. (2013): Nov. 2009 - 
Jul. 2010 for the Forrestal system and 2012 for the RSF2 system. 

The results of the snow model validation study are shown in Figure 3. For each month in a year, 
the figure shows SAM’s predicted energy output using the snow model in blue, the actual 
measured output of the system in green, and SAM’s predicted energy output when not using the 
snow model in red. For months with snow, the number of hours within each month that have a 
snow coverage percentage above zero, with regards to the snow model simulation, is displayed 
above the bars. Each system had several days of down-time, measurement failure, or missing 
data. For instance, there are no measured data for the Forrestal system spanning the entire 
months of August, September, and October. The Forrestal system is also missing 7 days of data 
in mid-July as well as the first 13 days of November, which is why these months display less 
power output than would be expected during these times. The RSF2 system fares better in the 
sense that the measured data are only missing 38 days throughout the year.  Twenty-two of these 
missing days occur in the month of July and the remaining 16 are distributed sporadically 
throughout the year. For our analysis, if the measured data were missing or were otherwise 
flagged as erroneous for a particular time period, then the simulated outputs for that time period 
were ignored and weren’t factored into error calculations. 
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Figure 3. Results from the validation study using the Forrestal system in Washington, D.C. and the 

RSF2 system in Golden, Colorado 
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Fortunately, very few of the missing days occur during the months with heaviest snowfall 
(January, February, and December). Before error calculations were made, however, a scaling 
factor was applied to the results of each simulation in order to provide the best fit to the 
measured data during the summer months (April – Aug) and these values are displayed in the 
top-left corner of each plot. This was done in order to help isolate any error changes which 
resulted from activating the snow model, rather than having this error skewed by systematic error 
that is present year-round. Table 1 displays the errors compared to measured data associated with 
each of the winter months, as well as the errors in total annual energy. Error calculations were 
performed using: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸 =  
𝑆𝑆𝑆𝑆𝑚𝑚𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 −𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐴𝐴𝐸𝐸𝑆𝑆𝑆𝑆

𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐴𝐴𝐸𝐸𝑆𝑆𝑆𝑆
 ×  100% 

Reductions in absolute error were also included in order to provide a sense of how changes in 
each particular month affected the total annual error. These values are calculated using: 

𝐴𝐴𝐴𝐴𝑀𝑀𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸 𝑅𝑅𝑆𝑆𝑆𝑆𝐴𝐴𝑅𝑅𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 =
( |𝑊𝑊𝑆𝑆𝐴𝐴ℎ𝑆𝑆𝐴𝐴𝐴𝐴 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| − |𝑊𝑊𝑆𝑆𝐴𝐴ℎ 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| ) ∗ 𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐴𝐴𝐸𝐸𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑆𝑆𝐴𝐴ℎ𝑆𝑆𝑙𝑙 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙

𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝐴𝐴𝐸𝐸𝑆𝑆𝑆𝑆 𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑙𝑙
 

In Table 1, positive error values correspond to an over-prediction of the estimated energy 
production, while negative values indicate an under-prediction. A decrease in the absolute value 
of these error percentages, reported as a positive value in the ‘Absolute Error Reduction’ row, 
reflects an improvement in the simulation’s annual prediction, because the estimated energy 
production with the snow model activated is closer to the measured production. In all cases, the 
snow model is observed to improve the absolute monthly error in estimated energy. For both 
systems, the month of February contributed most to annual error before the snow model was 
employed and likewise showed the largest improvement in energy production estimations. Most 
importantly, the snow model is observed to improve SAM’s estimate in annual energy in both 
cases—from total annual error of 9.7% to -2.2% for the Forrestal system and from 8.5% to 4.4% 
for the RSF2 system. 

Table 1. Monthly and Annual Errors With and Without Snow Model 

  January February December Annual 

Forrestal 

With Model (%) -3.1 -85.1 -3.2 -2.2 

Without Model (%) 11.1 336.8 40.2 9.7 

Absolute Error Reduction (%) 0.5 5.4 1.7 7.5 

RSF2 

With Model (%) 1.3 197.4 -10.6 4.4 

Without Model (%) 13.9 306.1 14.5 8.5 

Absolute Error Reduction (%) 0.7 2.1 0.2 4.2 
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The snow model is observed to both over-predict and under-predict energy estimates in an 
unforeseeable fashion on a monthly, daily, or hourly basis. This is expected behavior, however, 
since Marion et al. (2013) states that the original model performs well on an annual average 
despite the fact that “large differences between modeled and measured energy losses should be 
expected for monthly or shorter time periods” (119). For this reason, results from the model 
implemented in SAM should only be factored into annual considerations and not applied to 
monthly or shorter time periods. 

One-Axis Tracking Systems 
Sun tracking systems are believed to be much less affected by snow coverage than fixed-tilt 
systems due to the vibrations and movements of the panels. Nevertheless, the ability to estimate 
snow losses on tracking systems, however slight they may be, is a recognized need. Because it 
does not address any potential effects of system movement, Marion’s PV snow coverage model 
was originally only intended for fixed-tilt systems. Preliminary investigations showed that using 
the snow model as implemented in SAM did still reduce errors for a one-axis tracking system. 

Another potentially interesting research question is the effect of nighttime system position on 
annual energy output. Most single-axis tracking systems are kept in a “stow” position overnight. 
This means that the rows (Figure 1) are positioned such that average wind loads are minimized; 
for one single-axis tracking system (Mesa Top) at NREL, this amounts to a nighttime tilt of 5° 
to the east. Lower tilt angles inhibit snow removal by sliding, which is likely the only active 
snow removal process during the night. By instructing the simulation of the Mesa Top system 
to set the nighttime tilt angle to 20° instead of 5°, we found that the energy predictions for the 
simulated system could potentially increase on the order of 1-2% as a direct result of snow 
sliding during the night. This suggests that increasing the tilt angle of the nighttime stow 
position in response to expected snowfall could result in an increase in tracking system 
energy production.  
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National Study 
Following the validation exercises, we applied the snow model to a wide variety of locations in 
order to estimate typical trends in PV snow coverage losses across the continental United States. 
In order to accomplish this, we constructed two common system designs in SAM and then used 
the 1961–1990 NSRDB data set, the underlying historical data used to produce the NSRDB’s 
TMY2 data set. This data set is comprised of hourly meteorological weather data (including 
daily snow depth measurements) for 239 locations across the United States, spanning the years 
of 1961 through 1990. For each of the two system types, two simulations were conducted for 
every year at each location: one without the snow model activated as well as one with the snow 
model activated, and a percent difference was calculated. 

The system designs we used follow the tilt-equals-latitude and tilt-equals-20° conventions, both 
of which are common in the PV industry. In the first case, not only is it thought that setting the 
tilt angle of a fixed-tilt PV array to the latitude of its location will maximize the total solar 
radiation over a single year (ignoring shading effects of the surrounding environment), but also, 
since snowy climates are generally found in the northern areas of the country, the larger tilt 
angles at these locations are expected to promote quicker snow removal, thereby mitigating the 
array’s losses from snow coverage. On the other hand, system tilts of 20° are found fairly 
commonly in the industry due to the simplicity and common availability of this system design. 
The system of 18 modules was also set to be a single row: 3 modules tall by 6 modules wide. 
Beyond these settings, all other parameters have been left as the SAM defaults for the detailed 
photovoltaic/ no financial model in version 2015.6.30. This facilitates replication and avoids 
listing the many input parameters required by SAM’s pvsamv1 compute module. The results of 
this study are shown in Figure 5, and the tabulated results for each site for each of the two 
simulations are listed in Appendix A. 

As expected, the tilt-equals-latitude systems show lower snow losses than their 20°-tilt 
counterparts in the continental United States1, but for both system designs, the highest PV snow 
loss is concentrated in an area beginning in the Northeast, spanning the Great Lakes, and 
continuing into the Midwest and the northern Rocky Mountains. This trend is consistent with the 
general weather patterns of the regions. However, there are pockets of higher 
elevation/mountainous areas, even as far south as Arizona, that experience higher snow losses 
than their nearby neighbors. One such example is Flagstaff, Arizona, which was modeled to 
experience 3%–5% snow losses depending on the tilt, whereas its nearest neighbor Phoenix, 
Arizona, was not modeled to experience any snow losses. Note that quite a bit of variation might 
be expected around these pockets; the more variable the terrain in a given area, the more variable 
we would expect snow cover to be in that area. The highest annual snow losses seen for both 
system designs in the continental United States were almost 16%, located in Minnesota and 
Michigan. However, three sites in northern Alaska (not shown in Figure 5 but tabulated in 
Appendix A) experienced higher losses, with the tilt-equals-latitude annual snow loss reaching 
almost 40% for one site. 

                                                 
1 This trend is actually not true for multiple systems in Alaska (not shown in Figure 5 but tabulated in Appendix A). 
We expect that, although the 20° systems likely suffer a higher percentage of monthly snow loss in the winter 
months than their tilt-equals-latitude counterparts, the benefit of lower tilt angles during the summer at these high 
latitudes is enough to overcome this effect when looking at snow loss as a function of annual energy production. 
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The points in Figure 5 were subsequently used to create maps of general trends in snow losses 
across the United States for these two system configurations. Figure 6 displays these maps. They 
can be utilized as a starting point for snow loss estimations of PV systems. For instance, if a 20°-
tilt PV system is to be built in Nebraska and a simulation, which does not account for snow, of 
this system estimated that it would produce 8,000 kWh annually, this figure then indicates that 
the designer might also want to include a 4%–7% loss attributed to snow. It is important to note, 
however, that these values may not be representative of any particular year nor do they account 
for any microclimates that might be present. Rather, these values are only meant to represent a 
starting point for estimating snow losses in a given area before a more specialized analysis can 
be performed. See Appendix B for larger shareable versions of the maps shown in Figure 6.
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Figure 2. Results from a national study modeling annual average PV production losses due to 
snow coverage using both a fixed-tilt-equals-latitude and a constant 20°-tilt system design, the 

historical TMY2 data set, and the newly implemented snow model in SAM 
Note: The values displayed at each of the data sites in this study were found by determining, for 
each individual year and system type, the difference between the results of a simulation without the 
snow model activated and a simulation with the snow model activated, normalized by the value 
without the snow model activated. Then an average and standard deviation of these loss 
percentages were calculated from the 30 years at each of the locations. 
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Figure 6. General trends in average snow losses as a percentage of annual energy production. 

Please see Appendix B for larger, shareable versions of these maps.  
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By sorting information based on snow depth rather than geographic location, we were also able 
to find an interesting correlation between total snow depth throughout a year and the total 
percent loss resulting from snow coverage for the tilt-equals-latitude system. The results of this 
are displayed in Figure 7. This figure uses the sum of hourly snow depths, found using 

𝑆𝑆(ℎ) =  � snow_depth[𝑆𝑆]
ℎ

𝑖𝑖=0

 

where S indicates the sum of hourly snow depths, h indicates the hour in the year, and 
snow_depth[𝑆𝑆] refers to the measured snow depth at the ith hour. This quantity takes into account 
both the total snow depth throughout the course of a year as well as snow persistence during that 
year. The percent loss reported for each simulation was calculated in the same manner as it was 
for Figure 5: by subtracting the result of the simulation with the snow model activated from the 
result of the simulation without the snow model activated, followed by normalizing this number 
by the latter. Figure 7 shows a predictable trend in which more snow depth throughout a year 
corresponds to higher percent loss, showing more of an exponential or polynomial relationship 
than a linear one. However, Figure 7 also demonstrates clearly that the sum of hourly snow depth 
is not the only factor affecting the energy loss; as mentioned previously, temperature and plane-
of-array irradiance also play a role in determining how long panels remain covered. If continuing 
snow coverage corresponds to low irradiance times, less energy will be lost. 

 
Figure 7. Correlation between the sum of the hourly snow depth array and the resulting percent 

loss for each year of each location in the tilt-equals-latitude national study 
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Conclusions and Future Work 
For several years, the PV community has expressed a need for a reliable model that estimates 
losses in PV energy production resulting from snow coverage. In an effort to fill this void, we 
have implemented a snow model into SAM and demonstrated its effectiveness against two fixed-
tilt systems and a one-axis tracking system, none of which were a part of the model’s original 
development. Subsequently, we conducted a nationwide study to estimate national trends in 
snow loss percentages to serve as a starting point for more accurate modeling of PV production 
in snowy areas. 

The final implemented PV snow coverage model was kept as similar as possible to Marion’s 
original model (Marion et al. 2013). A few changes were necessary, however, in order to prevent 
illogical behavior of the model when implemented in SAM, as well as to accommodate for 
hourly and sub-hourly simulations. We showed that the model could be applied on either the DC 
or the AC side of power conversion with very little effect (<2%) on the resulting energy 
estimates. During our validation study, we observed that our implemented model decreased the 
estimated annual energy error (in comparison to measured values) by over 45% for the fixed-tilt 
systems and could potentially reduce error for single-axis tracking systems as well. These 
represent significant improvements to SAM’s performance in snowy conditions and, as a result, 
we are confident the snow model will provide meaningful snow loss estimations to SAM users. 
In this analysis, we also postulated that increasing the tilt angles of tracking systems during the 
night could slightly increase the annual energy production of those systems. 

Our national study showed that PV snow coverage losses for fixed-tilt systems ranges from 0% 
to 16% in the continental United States (although some sites in Alaska were as high as 40%), 
which is summarized in maps of general estimated snow loss trends across the continental United 
States for tilt-equals-latitude and 20°-tilt systems. The results from this study can potentially be 
used as a starting point for future predictions of PV snow losses in these areas. Lastly, we were 
also able to demonstrate a correlation between total snow depth summed over a year and the 
percent loss for fixed-tilt, tilt-equals-latitude systems which could also be a good starting point 
for snow loss estimations if a user has access to snow depth data. 

There are certainly areas for improvement in the snow model. It has been shown to improve 
energy predictions on an annual scale, but the model can both over-predict or under-predict snow 
losses for any given hour, day, or month. Any effort to reduce these variations will do much to 
further improve upon the model’s accuracy. This could mean incorporating snow removal 
processes other than sliding, such as melting and wind removal. Another possible improvement 
would be to investigate whether or not the sliding coefficient discussed in the implementation 
section is a function of snow consistency or module temperature. Additionally, the model does 
not account for time-delayed effects, such as a particularly cold night freezing the bottom layer 
of snow onto a PV array and preventing sliding during the day. Lastly, although we 
demonstrated the model’s efficacy against three independent systems, this model will certainly 
not always produce reliable results for any PV system in any location. As measured data sets for 
other systems in snowy areas become available, we hope to continue validation of this snow 
model with additional systems. 
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In the meantime, we hope that this tool will allow the PV community to make more accurate 
annual energy estimates for systems in all areas of the United States, particularly in the areas 
which are heavily affected by snow, thereby encouraging more informed technical and financial 
decisions in the development of future PV systems.  
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Appendix A. Tabulated Results from National Study 

Table A-1. Results from National Study 

State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

AK Anchorage 7.1 6.6 2.6 3.0 
AK Annette 1.3 0.9 1.0 0.8 
AK Barrow 33.0 38.3 8.7 9.1 
AK Bethel 14.2 14.0 5.9 6.5 
AK Bettles 17.3 18.1 4.0 4.9 
AK Big Delta 12.9 15.7 3.5 4.4 
AK Cold Bay 7.3 6.0 2.8 2.5 
AK Fairbanks 12.0 14.2 3.9 4.6 
AK Gulkana 11.2 11.7 3.4 3.3 
AK King Salmon 8.9 8.2 5.0 5.0 
AK Kodiak 3.6 2.6 1.9 1.4 
AK Kotzebue 19.9 20.1 6.7 7.7 
AK Mcgrath 14.0 15.7 4.6 5.6 
AK Nome 15.3 12.6 6.6 5.7 
AK St Paul Is. 10.2 8.7 5.2 4.3 
AK Talkeetna 8.9 7.6 2.7 2.7 
AK Yakutat 6.2 4.4 2.6 2.3 
AL Birmingham 0.1 0.1 0.2 0.2 
AL Huntsville 0.4 0.3 0.5 0.4 
AL Mobile 0.0 0.0 0.1 0.1 
AL Montgomery 0.0 0.0 0.1 0.1 
AR Fort Smith 0.6 0.4 0.6 0.4 
AR Little Rock 0.4 0.3 0.5 0.3 
AZ Flagstaff 4.7 3.0 1.5 1.0 
AZ Phoenix 0.0 0.0 0.0 0.0 
AZ Prescott 0.8 0.5 0.6 0.4 
AZ Tucson 0.0 0.0 0.1 0.1 
CA Arcata 0.0 0.0 0.0 0.0 
CA Bakersfield 0.0 0.0 0.0 0.0 
CA Daggett 0.0 0.0 0.0 0.0 
CA Fresno 0.0 0.0 0.0 0.0 
CA Los Angeles 0.0 0.0 0.0 0.0 
CA Sacramento 0.0 0.0 0.0 0.0 
CA San Diego 0.0 0.0 0.0 0.0 
CA San Francisco 0.0 0.0 0.0 0.0 
CA Santa Maria 0.0 0.0 0.0 0.0 
CO Alamosa 4.4 3.0 1.7 1.3 
CO Boulder 5.5 3.9 1.4 1.2 
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State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

CO Colorado Springs 4.3 3.4 1.7 1.4 
CO Grand Junction 2.6 1.8 1.4 1.1 
CO Pueblo 3.1 2.4 1.2 0.9 
CT Bridgeport 2.1 1.4 0.9 0.6 
CT Hartford 3.9 2.4 1.2 0.9 
DE Wilmington 1.6 1.1 0.9 0.7 
FL Daytona Beach 0.0 0.0 0.0 0.0 
FL Jacksonville 0.0 0.0 0.1 0.1 
FL Key West 0.0 0.0 0.0 0.0 
FL Miami 0.0 0.0 0.0 0.0 
FL Tallahassee 0.0 0.0 0.0 0.0 
FL Tampa 0.0 0.0 0.0 0.0 

FL 
West Palm 
Beach 0.0 0.0 0.0 0.0 

GA Atlanta 0.1 0.1 0.2 0.2 
GA Augusta 0.1 0.1 0.2 0.1 
GA Columbus 0.0 0.0 0.1 0.1 
GA Macon 0.1 0.0 0.1 0.1 
GA Savannah 0.0 0.0 0.2 0.1 
HI Hilo 0.0 0.0 0.0 0.0 
HI Honolulu 0.0 0.0 0.0 0.0 
HI Kahului 0.0 0.0 0.0 0.0 
HI Lihue 0.0 0.0 0.0 0.0 
IA Des Moines 6.6 5.6 2.8 2.8 
IA Mason City 9.5 8.6 3.2 3.2 
IA Sioux City 6.5 5.9 2.8 2.7 
IA Waterloo 8.0 7.1 3.4 3.4 
ID Boise 2.0 1.3 1.7 1.0 
ID Pocatello 4.6 3.6 1.7 1.6 
IL Chicago 6.1 5.2 2.6 2.6 
IL Moline 5.8 4.8 2.6 2.6 
IL Peoria 5.3 4.3 2.6 2.5 
IL Rockford 7.2 6.0 3.3 3.2 
IL Springfield 4.5 3.8 2.0 1.9 
IN Evansville 2.2 1.7 1.4 1.2 
IN Fort Wayne 5.8 5.0 2.1 2.0 
IN Indianapolis 4.3 3.5 2.2 2.0 
IN South Bend 7.7 6.6 2.1 2.1 
KS Dodge City 2.7 2.1 1.2 1.0 
KS Goodland 4.2 3.2 1.2 1.1 
KS Topeka 3.4 2.7 1.7 1.4 
KS Wichita 2.2 1.8 1.2 1.1 
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State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

KY Covington 3.1 2.6 1.9 1.8 
KY Lexington 2.4 1.9 1.4 1.2 
LA Baton Rouge 0.0 0.0 0.1 0.1 
LA Lake Charles 0.0 0.0 0.1 0.0 
LA New Orleans 0.0 0.0 0.1 0.1 
LA Shreveport 0.2 0.1 0.3 0.2 
MA Boston 2.8 1.9 1.1 0.8 
MA Worchester 5.9 4.1 1.9 1.4 
MD Baltimore 1.4 0.9 0.8 0.6 
ME Caribou 14.4 12.2 3.0 3.1 
ME Portland 5.6 3.5 1.6 1.1 
MI Alpena 10.3 8.4 2.2 2.0 
MI Detroit 5.6 4.5 1.8 1.7 
MI Flint 7.3 5.8 1.8 1.7 
MI Grand Rapids 7.4 5.9 1.8 1.6 
MI Houghton 12.6 10.7 2.1 2.3 
MI Lansing 7.5 6.2 1.8 1.7 
MI Muskegon 7.3 5.9 1.8 1.6 
MI Sault Ste. Marie 15.1 13.9 2.6 2.7 
MI Traverse City 10.2 8.8 2.2 2.3 
MN Duluth 15.1 13.9 3.1 3.4 
MN International Falls 15.9 15.5 3.8 3.8 
MN Minneapolis 10.7 9.5 2.9 2.6 
MN Rochester 11.0 9.9 3.3 3.4 
MN Saint Cloud 11.0 9.7 3.2 3.0 
MO Columbia 3.7 2.9 1.6 1.5 
MO Kansas City 3.7 3.0 1.6 1.4 
MO Springfield 2.3 1.8 1.1 1.0 
MO St. Louis 3.2 2.5 1.6 1.3 
MS Jackson 0.1 0.1 0.3 0.2 
MS Meridian 0.1 0.1 0.2 0.2 
MT Billings 7.7 6.7 2.5 2.5 
MT Glasgow 8.7 8.3 4.0 4.1 
MT Great Falls 7.9 7.2 2.8 2.6 
MT Helena 6.3 5.5 2.4 2.2 
MT Lewistown 10.0 8.5 2.7 2.7 
MT Missoula 4.9 4.0 1.9 1.6 
NC Asheville 1.0 0.6 0.6 0.4 
NC Cape Hatteras 0.1 0.1 0.2 0.1 
NC Charlotte 0.4 0.3 0.3 0.2 
NC Greensboro 0.7 0.4 0.5 0.3 
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State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

NC Raleigh 0.6 0.4 0.5 0.3 
NC Wilmington 0.2 0.1 0.3 0.2 
ND Bismarck 9.5 8.7 3.4 3.1 
ND Fargo 12.2 11.7 4.0 3.9 
NE Grand Island 5.5 4.4 2.1 1.8 
NE Norfolk 6.5 5.3 2.4 2.1 
NE North Platte 4.8 3.8 1.8 1.7 
NE Omaha 5.8 4.7 2.4 2.0 
NE Scottsbluff 5.2 4.2 1.2 1.1 
NH Concord 6.0 4.1 2.0 1.7 
NJ Atlantic City 1.4 1.0 0.9 0.7 
NJ Newark 2.0 1.2 0.9 0.7 
NM Albuquerque 0.8 0.6 0.5 0.4 
NV Elko 2.9 2.0 1.6 1.1 
NV Ely 4.3 3.0 1.6 1.2 
NV Las Vegas 0.0 0.0 0.1 0.1 
NV Reno 1.5 1.0 0.8 0.6 
NV Tonopah 0.9 0.6 0.5 0.4 
NV Winnemucca 1.6 1.1 1.1 0.9 
NY Albany 5.8 3.9 1.8 1.3 
NY Binghamton 9.7 8.4 2.0 2.1 
NY Buffalo 8.6 7.4 2.0 2.0 
NY Massena 10.7 9.8 2.7 2.6 
NY New York City 1.9 1.2 0.9 0.6 
NY Rochester 8.3 7.0 1.9 2.0 
NY Syracuse 9.1 7.5 1.7 1.8 
OH Akron 6.6 5.7 2.0 2.0 
OH Cleveland 6.7 5.8 1.8 1.8 
OH Columbus 4.1 3.6 2.0 1.9 
OH Dayton 4.6 3.8 2.3 2.2 
OH Mansfield 6.7 5.8 1.8 1.9 
OH Toledo 5.9 4.8 2.0 1.8 
OH Youngstown 7.5 6.5 2.0 2.0 
OK Oklahoma City 1.1 0.8 0.8 0.7 
OK Tulsa 1.2 0.9 1.0 0.8 
OR Astoria 0.2 0.1 0.3 0.2 
OR Eugene 0.3 0.2 0.5 0.4 
OR Medford 0.2 0.1 0.3 0.2 
OR North Bend 0.0 0.0 0.1 0.1 
OR Pendleton 1.6 1.5 1.2 1.2 
OR Portland 0.2 0.2 0.3 0.2 
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State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

OR Redmond 1.7 1.4 0.7 0.7 
OR Salem 0.3 0.2 0.4 0.3 
PA Allentown 3.1 2.0 1.4 1.1 
PA Bradford 11.9 10.5 1.8 2.1 
PA Erie 7.3 6.3 1.7 1.8 
PA Harrisburg 2.5 1.5 1.1 0.7 
PA Philadelphia 1.6 1.1 0.8 0.6 
PA Pittsburgh 5.6 4.8 2.0 1.9 
PA Wilkes-barre 5.2 3.8 1.7 1.5 
PA Williamsport 3.9 2.6 1.5 1.3 
PR San Juan 0.0 0.0 0.0 0.0 
RI Providence 2.8 1.7 0.9 0.7 
SC Columbia 0.1 0.1 0.2 0.2 
SC Greenville 0.3 0.2 0.3 0.2 
SD Huron 8.1 7.3 2.8 2.9 
SD Pierre 6.7 5.7 2.7 2.8 
SD Rapid City 6.6 5.1 2.1 1.9 
SD Sioux Falls 8.2 6.9 3.2 3.0 
TN Bristol 1.6 1.2 1.0 0.8 
TN Chattanooga 0.3 0.2 0.3 0.2 
TN Knoxville 0.9 0.6 0.7 0.6 
TN Memphis 0.5 0.4 0.6 0.5 
TN Nashville 1.1 0.8 0.8 0.7 
TX Abilene 0.5 0.4 0.4 0.4 
TX Amarillo 1.7 1.3 0.9 0.7 
TX Austin 0.1 0.1 0.2 0.2 
TX Brownsville 0.0 0.0 0.0 0.0 
TX Corpus Christi 0.0 0.0 0.0 0.0 
TX El Paso 0.3 0.2 0.3 0.3 
TX Fort Worth 0.3 0.3 0.4 0.4 
TX Houston 0.0 0.0 0.1 0.1 
TX Lubbock 0.9 0.8 0.6 0.5 
TX Lufkin 0.1 0.1 0.2 0.2 
TX Port Arthur 0.0 0.0 0.1 0.0 
TX San Angelo 0.3 0.2 0.2 0.2 
TX San Antonio 0.0 0.0 0.1 0.1 
TX Victoria 0.0 0.0 0.0 0.0 
TX Waco 0.2 0.1 0.2 0.2 
TX Wichita Falls 0.6 0.5 0.5 0.4 
UT Cedar City 3.2 2.2 1.4 1.0 
UT Salt Lake City 3.5 2.3 1.4 1.1 
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State City 
Average Loss 
(%), Tilt=20° 

Average Loss 
(%), Tilt=Lat 

Std Dev Loss 
(%), Tilt=20° 

Std Dev Loss 
(%), Tilt=Lat 

VA Norfolk 0.6 0.4 0.5 0.4 
VA Richmond 1.0 0.7 0.6 0.5 
VA Roanoke 1.0 0.6 0.7 0.4 
VA Sterling 1.5 1.0 0.8 0.6 
VT Burlington 9.3 8.0 2.9 2.9 
WA Olympia 0.5 0.3 0.5 0.3 
WA Quillayute 0.5 0.3 0.5 0.4 
WA Seattle 0.3 0.2 0.4 0.3 
WA Spokane 3.0 2.4 1.4 1.4 
WA Yakima 1.5 1.1 0.9 0.7 
WI Eau Claire 11.4 10.3 3.1 3.4 
WI Green Bay 9.6 8.2 2.9 2.9 
WI Madison 8.0 6.4 2.6 2.7 
WI Milwaukee 7.4 6.2 2.8 2.7 
WV Charleston 3.4 2.8 1.5 1.3 
WV Huntington 2.8 2.2 1.3 1.1 
WY Casper 8.5 6.5 1.9 1.5 
WY Cheyenne 6.0 4.6 1.7 1.3 
WY Lander 9.0 6.6 2.0 1.8 
WY Rock Springs 7.2 5.4 2.1 1.6 
WY Sheridan 8.6 7.0 2.1 2.2 
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Appendix B. Full-Size Figures Showing General Trends in Average Snow 
Losses as a Percentage of Annual Energy Production 
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Figure B-1. General trends in average snow losses as a percentage of annual energy production 
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