Why Are We Talking About Capacity Markets?

Bethany Frew

May 16, 2017

EU/US Workshop on Market Design and Operation with Variable Renewables
Fredericia, Denmark

NREL/PR-6A20-68593
Acknowledgments for NREL markets work

• **Full NREL team:** Michael Milligan, Aaron Bloom, Kara Clark, Paul Denholm, Ibrahim Krad, Clayton Barrows, Greg Brinkman, Gord Stephen

• **Partners:** Argonne National Laboratory (ANL) and Electric Power Research Institute (EPRI)

• Funding provided by **U.S. Department of Energy** Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office
So, why ARE we talking about capacity markets?

Reliability

Goal of power system is to ensure reliable delivery of electricity at lowest cost to consumers

Market complexities → “Missing Money” → concerns over resource adequacy
• Market “Failure” and resource adequacy

• Capacity market design considerations for high variable generation (VG) systems

• Towards an optimum capacity market design
Electricity markets are uniquely complex

Fundamental Market Issues
- Demand curve not visible to supplier
- Reliability is public good
- Missing markets
- Uncertainty over future economic and policy factors
- Lumpiness (costs and time)
- Omission of externalities
- Market power

Amplifiers
- Low- or zero-marginal cost generation
- Out-of-market subsidies
- Lack of ample and cost-effective storage
- VG variability and uncertainty

Regulatory Response
- Policy-based reliability requirements
- Administrative pricing rules

Electricity markets are fundamentally different than any other market
United States observations reveal this complexity

- ISO/RTO market monitor reports noting low energy prices, driven by historically low natural gas prices and demand (and wind/solar to lesser degree)
- Nuclear premature proposed/planned shut downs due to insufficient revenues, resulting in subsidies

Are these symptoms of a deeper problem or an appropriate response to an evolving system?
Current market designs to ensure revenue sufficiency

1) Supplement energy-only market with A/S products and scarcity pricing

2) Forward capacity markets or capacity payments

3) Power purchase agreements or other contracting approaches paid for with retail rates/cost recovery

Strategies to deal with this problem depend on existing market designs, and it remains unclear if/which of these can provide proper incentives to ensure longer-term reliability
What is Resource Adequacy (RA)?

- Having sufficient resources (generation, DR, storage) to supply all demand at a future date/time period/location
- Measured with reliability-based metric(s) that account for system performance
 - Set by policy: often 1 day/10 years loss of load, but any reliability target can be chosen (1d/y, 1d/20y, 4h/10y)
Preferred RA metric is based on LOLP

At the same load level, LOLE is reduced

Additional load that can be served to bring the LOLE back to the target

= ELCC
(Effective Load Carrying Capability)

Milligan et al. 2016)
Recommended approaches for RA

- Adopt a reliability target *such as 1d/10y*
- Derive the percentage reserve margin that corresponds to the reliability target
- Use ELCC to determine any generator’s contribution
 - Wind and solar from net load time series
 - Conventionals with forced outage rates
- Use multiple years of data, and revisit as more data becomes available
- Interconnection or regional analysis
Linking RA with markets

• Ideally want to map LOLP-based methods to the markets to achieve
 o Optimal quantity of “sufficient” capacity
 o Revenue sufficiency

• US capacity markets have used various ‘true-ups’ with LOLP
 o E.g., NYISO – acquires installed capacity (ICAP) based on UCAP estimates (unforced capacity)

• ERCOT energy-only market includes LOLP in its reserve scarcity pricing (Operating Reserve Demand Curve, or ORDC)
Outline

• Market “Failure” and resource adequacy

• Capacity market design considerations for high VG systems

• Towards an optimum capacity market design
Declining CV with VG penetration level

Solar PV sees a similar decline, with marginal capacity values approaching 0 around 20% energy penetration (e.g., Munoz and Mills 2016)
...And inconsistent methods for calculating CV

<table>
<thead>
<tr>
<th>Operator</th>
<th>Geographic Resolution</th>
<th>Sampling Period</th>
<th>Intra-annual distinction</th>
<th>Historical Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>Site-specific</td>
<td>Summer afternoons, Winter evenings</td>
<td>Monthly</td>
<td>3 years</td>
</tr>
<tr>
<td>ERCOT</td>
<td>System-wide (solar), Coastal vs non-coastal (wind)</td>
<td>Top 20 load hours</td>
<td>Summer, Winter</td>
<td>3 years (solar) 10 years (wind)</td>
</tr>
<tr>
<td>MISO</td>
<td>Nodal disaggregated from system-wide</td>
<td>Top 8 load hours</td>
<td>Annual</td>
<td>11 years (wind)</td>
</tr>
<tr>
<td>NE-ISO</td>
<td>Site-specific</td>
<td>Summer afternoons, Winter evenings, shortage events</td>
<td>Summer, Winter</td>
<td>5 years</td>
</tr>
<tr>
<td>PJM</td>
<td>Site-specific</td>
<td>Summer afternoons</td>
<td>Summer only</td>
<td>3 years</td>
</tr>
</tbody>
</table>
Increased need for flexible capacity

NREL’s Eastern Renewable Generation Integration Study (2016)
Market designs must incentivize the building of resources with the flexibility attributes for long-term needs so that flexibility is available for short-term operational needs.

- e.g., CAISO flexible capacity requirement based on projected maximum 3-hour upward net load ramp by month.
Merit Order Effect

modified from (Gallo, 2016)
Outline

• Market “Failure” and resource adequacy

• Capacity market design considerations for high VG systems

• Towards an optimum capacity market design
What is the objective of a capacity market?

Provide units that are needed for reliability sufficient opportunity to recover their fixed costs that cannot be recovered in energy and A/S markets

- Planning – will market encourage investors to build needed resources?
- Flexibility – will market ensure that future capacity is flexible enough for a high-VG world?
- How deal with unintended consequences?
- Is market design robust to resource mix? (eg. lots of recips or aeros or DR or ??)
- Is there an optimal mix of market pricing and administrative pricing/subsidies?

Need to consider expected revenues and capabilities (as incentivized) from energy and A/S markets...
Reliability and revenue sufficiency require full-market view

NREL collaborative work with ANL and EPRI

- Create a **multi-timescale market and reliability modeling framework**
- Quantify **reliability** and **revenue sufficiency** challenges and solutions under a wide range of market design options in an evolving power system

<table>
<thead>
<tr>
<th>Resource Adequacy</th>
<th>Flexibility Needs and Incentives</th>
<th>Essential Reliability Services Incentives</th>
<th>Price Impacts and Formation</th>
<th>Differing decision making criteria</th>
<th>Market Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flexible Capacity</td>
<td>Operational Flexibility</td>
<td>A/S</td>
<td>FESTIV PFR model rules</td>
<td>Self-Commit</td>
</tr>
<tr>
<td>Capacity payments (link with ANL)</td>
<td>Add flexible capacity incentive</td>
<td>High Gen Outage</td>
<td>Spin, Reg, Flex Up</td>
<td>FESTIV SFR model rules (e.g., net provision vs. "mileage" payments)</td>
<td>Self-Dispatch</td>
</tr>
<tr>
<td>Premature retirement (nuclear)</td>
<td>Lower Ramp Rates</td>
<td>Up and Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Trans. Outage</td>
<td>Vary reserve code uncertainty bands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Congestion</td>
<td>Multi-mode CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Forecast Errors</td>
<td>ERCOT Reserves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limited gas fuel supply</td>
<td>ORDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low/High storage</td>
<td>Add nonspin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low/High DR</td>
<td>Adjust reserve requirement during curtailment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resource Adequacy: Includes sufficient reserves, load forecasts, and fuel availability.

Flexibility Needs and Incentives: Includes capacity payments, operational flexibility, and availability.

Essential Reliability Services Incentives: Includes FESTIV PFR and SFR model rules.

Price Impacts and Formation: Includes self-commit, static markups, and price caps.

Differing decision making criteria: Includes different ownership structures.

Market Solver: Includes market operational sequence and storage dispatch methods.
GridMod RTS parametric analysis

Frequency of unit-specific “uplift” across 5-min intervals

![Graph showing frequency of unit-specific uplift across 5-min intervals for different scenarios and generator types.]
References and additional resources

