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Linear Power-Flow Models in Multiphase
Distribution Networks

Andrey Bernstein and Emiliano Dall’Anese

Abstract—This paper considers multiphase unbalanced distri-
bution systems and develops approximate AC power-flow models
wherein voltages, line currents, and powers at the point of
common coupling are linearly related to the nodal net power in-
jections. The linearization approach is grounded on a fixed-point
interpretation of the AC power-flow equations, and it is applicable
to distribution systems featuring a variety of connections for loads
and generation units (e.g., wye and ungrounded delta, as well
as line-to-line and line-to-grounded-neutral at the secondary of
the distribution transformers). The approximate linear models
can be naturally leveraged to facilitate the development of
computationally-affordable optimization and control applications
— from applications for advanced distribution management
systems to online and distributed optimization routines. The
approximation accuracy of the proposed method is evaluated
on different feeders.

I. INTRODUCTION

Nonlinearity of the AC power-flow equations poses sig-
nificant challenges for the development of computationally-
affordable control and optimization tasks – with applications
ranging from traditional centralized state-estimation and dis-
patch problems [1]–[3] to emerging real-time distributed op-
timization frameworks [4], [5]. For example, the nonlinearity
of the (exact) AC power-flow equations renders difficult the
centralized and distributed solution of AC optimal power flow
(OPF) problems; recent approaches involve convex relaxation
methods (e.g., semidefinite program [1]) and linearization
techniques [6]–[8]. Approximate linear models have been
recently utilized to facilitate the development of real-time and
distributed OPF solvers for distribution systems [4], [5] with
optimality and input-to-state stability guarantees. Similarly,
approximate linear models have been leveraged to design
decentralized control algorithms under the purview of well-
defined stability criteria [9], [10].

This paper focuses on the so-called fixed-point linearization
method recently proposed in [11]. The linear approximation
methodology is applicable to multiphase distribution networks
with generic topologies (either radial or meshed) and multi-
phase constant-power buses [12]. At each multiphase node, the
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model of the distribution system can have: (i) grounded wye-
connected loads/sources; (ii) ungrounded delta connections;
(iii) a combination of wye-connected and delta-connected
loads/sources; or, (iv) a combination of line-to-line and line-to-
grounded-neutral devices at the secondary of the distribution
transformers [12]. Models (i)–(iii) pertain to settings when
the network model is limited to (aggregate) nodal power
injections at the primary side of the distribution transformers.
Particularly, the combined model (iii) can be utilized when
different distribution transformers with either delta and/or
wye primary connections are bundled together at one bus
for network reduction purposes (e.g., when two transformers
are connected through a short, low-impedance distribution
line); see Figure 1(a) for an illustration. Load model (iv)
is common, for example, in North America for commercial
buildings and residential customers, and it can be utilized
when the network model includes the secondary side of the
distribution transformers; see Figure 1(b) and test feeders
[13], [14]. Settings with only line-to-line or line-to-ground
connections at the secondary are subsumed by model (iv).

Expanding on [11], we derive linear models for the (i) volt-
age phasors, (ii) voltage magnitudes, (iii) line currents, and
(iv) power flows at the substation. We show numerically that
these models provide a very good approximation to the exact
power-flow solution over a wide range of loading conditions
and network scale. The proposed linear models have several
important advantages. First, they are computationally more
affordable compared to, e.g., the first-order Taylor method [6].
Second, we show that the coefficients of the models can be
updated in a distributed fashion. We illustrate this property by
designing network-cognizant droop controllers. Finally, they
provide a better global approximation than classical local
methods.

The methodology proposed in the present paper can be uti-
lized to broaden the applicability of [3]–[5], [10] to multiphase
unbalanced distribution systems.

Notation: Upper-case (lower-case) boldface letters are used
for matrices (column vectors); (·)T for transposition; |·| for the
absolute value of a number or the element-wise absolute value
of a vector or a matrix; and the letter  for  :=

√
−1. For a

complex number c ∈ C, <{c} and ={c} denote its real and
imaginary part, respectively; and c denotes the conjugate of c.
For a given N×1 vector x ∈ CN , ‖x‖∞ := max(|x1|...|xn|),
‖x‖1 :=

∑N
i=1 |xi|, and diag(x) returns a N × N matrix

with the elements of x in its diagonal. For an M × N
matrix A ∈ CM×N , the `∞-induced norm is defined as
||A||∞ = maxi=1,...,M

∑N
j=1 |Aij |. Finally, for a vector-
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Fig. 1: Examples of a multiphase point of connection (for
simplicity, only two phases are shown): (a) combination
of wye-connected and delta-connected loads/sources at the
primary of the feeder (e.g., because of network reduction
procedures); (b) combination of line-to-line loads/sources and
line-to-grounded-neutral devices at the secondary of the dis-
tribution transformer.

valued map x : y ∈ RN×1 → x(y) ∈ CM×1, we let
∂x/∂y denote the M × N complex matrix with elements
(∂x/∂y)ik = ∂xi/∂yk = ∂<{xi}/∂yk + ∂={xi}/∂yk,
i = 1, . . . ,M , k = 1, . . . , N .

II. PROBLEM FORMULATION

For brevity, the problem is outlined for three-phase systems;
we describe in Remark 1 below how to apply the analysis
to the general multiphase case (as we do in the numerical
examples in Section IV). Consider a generic three-phase
distribution network with one slack bus and N PQ buses.
With reference to the example illustrated in Figure 1, let
sYj := (saj , s

b
j , s

c
j)

T denote the vector of the grounded wye
sources at node j, where sφj ∈ C denotes the net complex
power injected on phase φ. Similarly, let s∆

j := (sabj , s
bc
j , s

ca
j )T

denote the power injections of the delta-connected sources.
With a slight abuse of notation, sYj and s∆

j represent line-to-
line connections and line-to-ground connections, respectively,
when bus j corresponds to the secondary side of the distri-
bution transformer (this notational choice allows us to avoid
additional symbols).

At bus j, the following set of equations relates voltages,
currents, and power injections:

sabj = (vaj − vbj)iabj ,
sbcj = (vbj − vcj)ibcj ,
scaj = (vcj − vaj )icaj ,
vaj (i

ab
j − icaj ) + saj = vaj i

a
j ,

vbj(i
bc
j − iabj ) + sbj = vbj i

b
j ,

vcj(i
ca
j − ibcj ) + scj = vcj i

c
j ,

where vj = (vaj , v
b
j , v

c
j)

T, ij = (iaj , i
b
j , i

c
j)

T, and
i∆j = (iabj , i

bc
j , i

ca
j )T collect the phase-to-ground voltages

{vφj }φ∈{a,b,c}, phase net current injections {iφj }φ∈{a,b,c}, and
phase-to-phase currents {iφφ

′

j }φ,φ′∈{a,b,c} (for the delta con-
nections and line-to-line connections) of node j, respectively.

We next express the set of power-flow equations in vector-
matrix form. To that end, let v0 := (va0 , v

b
0, v

c
0)

T, i0 :=

(ia0 , i
b
0, i

c
0)

T, and s0 := (sa0 , s
b
0, s

c
0)

T denote the complex
vectors collecting the three-phase nodal voltage, current, and
power injection at the slack bus. Also, let v := (vT

1 , . . . ,v
T
N )T,

i := (iT1, . . . , i
T
N )T, i∆ := ((i∆1 )T, . . . , (i∆N )T)T, sY :=

((sY1 )T, . . . , (sYN )T)T, and s∆ := ((s∆
1 )T, . . . , (s∆

N )T)T be the
vectors in C3N collecting the relevant quantities of the PQ
buses. The load-flow problem is then defined as solving for v
(and i∆, s0) in the following set of equations, where sY , s∆,
and v0 are given:

diag
(
HTi∆

)
v + sY = diag(v)i, (1a)

s∆ = diag (Hv) i∆, (1b)
i = YL0v0 + YLLv, (1c)

s0 = diag(v0)
(
Y00v0 + Y0Lv

)
. (1d)

Here, Y00 ∈ C3×3,YL0 ∈ C3N×3,Y0L ∈ C3×3N , and
YLL ∈ C3N×3N are the submatrices of the three-phase
admittance matrix

Y :=

[
Y00 Y0L

YL0 YLL

]
∈ C3(N+1)×3(N+1); (2)

and H is a block-diagonal matrix defined by

H :=

Γ
. . .

Γ

 , Γ :=

 1 −1 0
0 1 −1
−1 0 1

 . (3)

The solution v to the set (1) can be found from the following
fixed-point equation [11]:

v = GsY s∆(v)

:= w + Y−1
LL

(
diag(v)−1sY + HTdiag (Hv)

−1
s∆
)
,

(4)

where1 w := −Y−1
LLYL0v0 is the zero-load voltage. In

[11], explicit conditions for the existence and uniqueness of
solutions to (4) were given. In the next section, we examine
linear models that are based on (4).

Remark 1. Observe that (4) can be straightforwardly utilized
in cases when a network features a mix of three-phase, two-
phase, and single-phase buses. In particular, in that case, the
vectors v, sY , and w collect their corresponding electrical
quantities only for existing phases; the vector s∆ collects
the existing phase-to-phase injections; and the matrix H
contains rows that correspond to the existing phase-to-phase
connections. For example, if a certain bus has only a single ab
connection, it will contain only a row with (1,−1, 0) for that
bus. In this case, H is N∆ × Nphases matrix, where N∆ is
the total number of phase-to-phase connections, and Nphases

is the total number of phases in all the buses.

Remark 2. For exposition simplicity, the proposed method is
outlined for the case of a constant-power load model. This is
also motivated by recent optimization and control frameworks
for distribution systems, wherein distributed energy resources
as well as noncontrollable assets are (approximately) modeled

1The matrix YLL is typically invertible; see [7], [15] for details.



as constant-PQ units [1], [3]–[5], [8]. However, the results in
this paper can be naturally extended to a more general ZIP
load model using a technique similar to [16].

III. LINEAR POWER-FLOW MODELS

In this section, we propose a method to linearize the power-
flow equations (1). The method is based on a single iteration
of the fixed-point equation (4).

Let pY := <{sY }, qY := ={sY }, p∆ := <{s∆}, q∆ :=
={s∆}, xY := ((pY )T, (qY )T)T, and x∆ := ((p∆)T, (q∆)T)T

collect the active and reactive power injections. Also, let |v|
collect the voltage magnitudes. Our goal is to derive linear
approximations to (1) in the form

ṽ = MY xY + M∆x∆ + a, (5a)

|ṽ| = KY xY + K∆x∆ + b, (5b)

s̃0 = GY xY + G∆x∆ + c. (5c)

Based on (5a), we are also interested in the approximate linear
relationship between line currents and net injected powers as:

ĩij = JYijx
Y + J∆

ijx
∆ + cij , (6)

where iij := (iaij , i
b
ij , i

c
ij)
> ∈ C3, and iφij is the current

entering phase φ of line (i, j) at bus i.
Note that the motivation for the explicit linear model for

the voltage magnitudes (5b) stems from a typical constraint of
the form vmin ≤ |ṽ| ≤ vmax, which is nonconvex in xY and
x∆, even if ṽ itself is linear in these variables. Also, observe
that the explicit linear model for the current magnitudes is
not required because the typical constraint used in power-
network control and optimization is of the form |̃iij | ≤ imax,
which is convex whenever ĩij is linear in xY and x∆. Finally,
the motivation for the linear model for the power flow at the
substation (5c) stems from aggregation and virtual power plant
applications.

A. Voltage Phasors

Let v̂, ŝY , ŝ∆ be a given solution for the fixed-point equa-
tion (4). Consider the first iteration of the fixed-point method
initialized at v̂:

ṽ = w+Y−1
LL

(
diag(v̂)−1sY + HTdiag

(
Hv̂
)−1

s∆

)
, (7)

which gives an explicit linear model (5a) provided by

MY :=
(
Y−1
LLdiag(v̂)

−1,−Y−1
LLdiag(v̂)

−1
)

M∆ :=

(
Y−1
LLHTdiag

(
Hv̂
)−1

,−Y−1
LLHTdiag

(
Hv̂
)−1

)
and a = w.

This linear model has several important advantages. First,
it is computationally efficient compared to, e.g., the first-
order Taylor method [6], [11]. Second, the coefficients (MY )ij
depend only on the voltage of bus j for all i and similarly
for M∆. Thus, this model naturally lends itself to distributed
control and OPF methods. We refer to this second property
as distributability and illustrate its utility in Section V-A.

p

v

w

p̂

v̂

Best local

FPL

Exact

Fig. 2: Illustration of the difference between the tangent-plane
and fixed-point linearization (FPL) methods. By definition, the
tangent-plane method is the best local approximator.

Finally, if global behavior is of interest, it can also provide
a better approximation than local methods; see, e.g., Figure
2, theoretical and numerical results in [11], and numerical
experiments in Section IV of the present paper. In particular,
Figure 2 shows that the fixed-point linearization method is
an interpolation between two load-flow solutions: (w,0) and
(v̂, ŝ). This is in contrast to standard linearization methods that
typically yield the tangent plane of the power-flow manifold at
a given linearization point (e.g., the first-order Taylor method
in [11] or the methodology of [8]).

B. Voltage Magnitudes

A straightforward approach to obtain a linear model for the
voltage magnitudes |v| in (5b) is to leverage the following
derivation rule:

∂|f(x)|
∂x

=
1

|f(x)|
<
{
f(x)

∂f(x)

∂x

}
. (8)

It then follows that matrices KY and K∆ are given by:

KY :=
∂|v|
∂xY

= diag(|v̂|)−1<
{
diag(v̂)MY

}
, (9a)

K∆ :=
∂|v|
∂x∆

= diag(|v̂|)−1<
{
diag(v̂)M∆

}
, (9b)

b := |v̂| −KY x̂Y −K∆x̂∆. (9c)

However, observe that model (9) lacks the important dis-
tributability property of model (7). Particularly, the coefficients
(KY )ij depend on both the voltage at bus i and j, and
similarly for K∆.

We therefore develop a linear approximation of the voltage
magnitudes based on the assumption that the voltage drops are
much smaller than the nominal voltage, similar to, e.g., [17].
To this end, let W = diag(w). By taking the absolute value
on both sides of (7), we obtain

|ṽ| =
∣∣w + MY xY + M∆x∆

∣∣
= |W|

∣∣1 + W−1(MY xY + M∆x∆)
∣∣

≈ |W|
(
1 + <

{
W−1(MY xY + M∆x∆)

})
(10)

where the approximate equality follows under the assumption
that ∥∥W−1(MY xY + M∆x∆)

∥∥
∞ � 1. (11)



Based on (10), we obtain a linear model (5a) with

KY := |W|<
{
W−1MY

}
, (12a)

K∆ := |W|<
{
W−1M∆

}
, (12b)

b := |w|. (12c)

Note that, compared to (9), the model (12) is distributable
because the coefficients (KY )ij depend only on the voltage at
node j for all i, and similarly for K∆. In Section IV, we assess
numerically the validity of assumption (11) and the accuracy
of the proposed approximation.

C. Power Flow at the Substation

We obtain (5c) by directly utilizing (5a) and (1d), so that

GY = diag(v0)Y0LM
Y
, G∆ = diag(v0)Y0LM

∆
, (13a)

c = diag(v0)
(
Y00v0 + Y0La

)
. (13b)

Note that this model is distributable as well.

D. Line Currents

Let Zij ∈ C3×3 denote the phase impedance matrix2 of
distribution line (i, j), and Y

(s)
ij ∈ C3×3 denote the shunt

admittance matrix of the same line [12]. Per bus i, define the
matrix Ei := [03×3(i−1), I3,03×3(N−i)], and notice that the
voltage vector vi = (vai , v

b
i , v

c
i )
> can be rewritten as vi =

Eiv. With these definitions in place, the line currents iij can
be related to the voltage vector v as follows:

iij =Y
(s)
ij vi + Z−1

ij (vi − vj)

=
(
Y

(s)
ij + Z−1

ij

)
Eiv − Z−1

ij Ejv

=
[(

Y
(s)
ij + Z−1

ij

)
Ei − Z−1

ij Ej

]
v. (14)

Using (5a) in (14), it follows that a linear approximation iij =
JYijx

Y + J∆
ijx

∆ + cij can be readily obtained by setting the
model parameters JYij , J∆

ij , and cij to:

JYij :=
[(

Y
(s)
ij + Z−1

ij

)
Ei − Z−1

ij Ej

]
MY (15a)

J∆
ij :=

[(
Y

(s)
ij + Z−1

ij

)
Ei − Z−1

ij Ej

]
M∆ (15b)

cij :=
[(

Y
(s)
ij + Z−1

ij

)
Ei − Z−1

ij Ej

]
w . (15c)

IV. NUMERICAL EVALUATION

In this section, we assess numerically the approximation
error of the proposed linear models; for theoretical analysis,
refer to [11]. Two benchmark networks are used to perform
the experiments: the IEEE 13-node feeder [18] and the Electric
Power Research Institute (EPRI) J1 feeder [14]. The former
is characterized by having short, relatively highly loaded
overhead and underground lines, shunt capacitors, an in-line
transformer, and unbalanced mixed wye and delta loading. The
latter is a large network in the northeastern United States with
approximately 2000 nodes and 800 connections at the primary
side.

2The phase impedance matrix is typically invertible; see [12].
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Fig. 3: Approximation error for voltages for the 13-bus feeder.
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Fig. 4: Verification of the “small votlage drop” assumption
(11) for the 13-bus feeder.

To assess the performance for different generation/loading
conditions, we perform a continuation analysis: given a refer-
ence vector of power injections sref, we evaluate the approx-
imation error of the linear models by setting s = κsref, for
κ ∈ R. All the computations were performed in the per unit
(pu) system of the corresponding feeder.

A. IEEE 13-Bus Feeder

Similar to prior works [1], [3]–[5], [8], we first translate all
constant-current and constant-impedance sources in the IEEE
data set into constant-power sources. Denote this reference
power injection vector by sref . Figure 3 shows the results
of the continuation analysis for the relative errors for the
voltage phasors and voltage magnitudes using κ ∈ [−1, 2].
The relative error for the voltage vectors v and ṽ is defined
by ‖v − ṽ‖2/‖v‖2, and similarly for the magnitudes. As
shown, linear models behave very well with relative errors less
than 0.2%. Moreover, the methods provide for a good global
approximation. This corroborates the intuitive illustration in
Figure 2. Also, Figure 4 confirms that assumption (11) holds
for the considered range of power setpoints.

In Figure 5, we show the results of the continuation analysis
for the power flow at the substation in terms of the normal-
ized error ‖s0 − s̃0‖2/Smax, where Smax is the maximum
apparent power observed during this experiment. Also here,
the approximation is good with errors less than 1.5%. Finally,
Figure 6 shows the results of the continuation analysis for the
current phasor of a line that connects buses 692 and 675 of the
feeder. This line was chosen because it is an underground line
with a non-negligible shunt admittance. The utilized metric



-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5
E

rr
o

r 
in

 %
 o

u
t 

o
f 

th
e

 m
a

x
im

u
m

 p
o

w
e

r

Fig. 5: Approximation error for power at the substation for
the 13-bus feeder.
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Fig. 6: Approximation error for the current phasor of line 692-
675 of the 13-bus feeder.

is the normalized error ‖iij − ĩij‖2/Imax, where Imax is the
maximum current magnitude observed during this experiment.
The obtained errors are less than 4%, confirming that our
approach also provides good global approximation for the
line currents. The errors for the other lines are on a similar
scale, and the corresponding results are omitted due to space
limitation.

B. EPRI J1 Feeder

Although the original feeder contains both delta and wye
connections, the available data from [14] contains the equiva-
lent wye injections for every bus. Using this injection vector
as sref , the continuation analysis for the voltages, voltage
magnitudes, power flow at the substation, and line currents
was performed using κ ∈ [−1, 2]. Figure 7 shows the relative
errors for the voltage phasors and voltage magnitudes. It can
be seen that the errors are less than 0.6%, illustrating that the
proposed linear model performs well also for large distribution
networks. The results for the power flow at the substation and
line currents are on a scale that is similar to those for the
13-bus feeder, and they are omitted here because of space
constraints.

V. APPLICATION EXAMPLES

In this section, we consider several applications in the
context of real-time control.

A. Volt/VAR/Watt Control

Consider the design of the network-cognizant distributed
Volt/VAR/Watt real-time controllers (or voltage droop con-
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Fig. 7: Approximation error for the voltages for the EPRI J1
feeder.

trollers) similar to [9], [10]. In particular, the controllers react
proportionally to the changes in voltage magnitude in real
time. For brevity, let x := ((xY )T, (x∆)T)T and ρ := |ṽ|.
Consider a given reference solution (ρ,x) to the linear model
(10). Let k = 1, 2, . . . denote the time-step index, and let the
voltage magnitudes at time step k be expressed as

ρ(k) = K(x(k) + ∆x(k)) + b, (16)

where K = (KY ,K∆) ∈ R3N×12N , x(k) ∈ R12N is the
vector of the power-setpoints throughout the feeder at time
step k, and ∆x(k) ∈ R12N is the vector of the active and
reactive power adjustments of the Volt/VAR/Watt controllers
given by

∆x(k) = G∆ρ(k − 1). (17)

In (17), ∆ρ(k − 1) := ρ(k − 1)− ρ is the voltage deviation
from the reference value; and G is the 12N × 3N real matrix
composed of G = (GY

p ,G
Y
q ,G

∆
p ,G

∆
q )

T, where the matrices
GY
p ,G

Y
q ,G

∆
p ,G

∆
q are diagonal 3N ×3N matrices collecting

the corresponding droop coefficient on their diagonals.
Using (16) and (17), the dynamical system for the voltage

deviation vector ∆ρ(k) is given by

∆ρ(k) = K∆xnc(k) + KG∆ρ(k − 1), (18)

where ∆xnc(k) := x(k) − x is the uncontrollable deviation
from the reference power setpoint. As in [10], consider that
a forecast µ is available for ∆xnc(k), and let the modified
dynamical system be:

e(k) = Kµ+ KGe(k − 1), (19)

which converges to

e∗ = (I−KG)−1Kµ ≈ (I + KG)Kµ (20)

under the condition that the spectral radius of KG is less
than 1; the approximate equality follows by using the first
two terms of the Neuman series of a matrix [19] (see [10] for
further details and stability analysis). We note that e∗ is an
approximation of the asymptotic voltage deviation from the
reference value.

We next propose a network-cognizant distributed method
to minimize (20). The idea is to to minimize the voltage
deviation by bringing KG as close as possible to −I while



keeping the spectral radius of KG below 1 for stability. The
key to this is the fact that the columns of KG depend only
on the voltage of the corresponding bus of the network and
on the droop coefficients of this bus. In particular, let αj
denote that j-th column of KG. Because the linear model is
distributable, αj depends only on the voltage at bus j and on
the droop coefficients of bus j; let us denote this dependency
as αj(v̂j ,gj), where the vector gj ∈ R12 collects the droop
coefficients of bus j.

Moreover, the stability condition can also be ensured in a
distributed way by upper bounding the spectral radius with the
`1-induced matrix norm. Specifically, we can ensure

‖KG‖1 = max
j
‖αj(v̂j ,gj)‖1 < 1 (21)

by ensuring ‖αj(v̂j ,gj)‖1 < 1 for every j in a distributed
fashion.

To summarize, the following distributed algorithm is pro-
posed:

(i) At the beginning of the process, send to all the devices
the network model in the form of the matrices Y−1

LL and
H.

(ii) On a slow time-scale (e.g., every 5-15 minutes or when
there are significant voltage changes), solve the following
optimization problem at every device j:

inf
gj
‖αj(v̂j ,gj) + ej‖22 (22a)

subject to

‖αj(v̂j ,gj)‖1 < 1, (22b)

where ej is the j-th column of the identity matrix. Note
that to make (22) practically useful, the strict inequality
constraint (22b) needs to be replaced with the inequality
constraint by introducing stability margin parameter; see
[10] for details. As αj(v̂j ,gj) is a linear function of gj ,
the problem (22) is a convex optimization problem that
can be solved efficiently.

(iii) In real time, adjust the active and reactive power set-
points according to (17) using the droop coefficients
computed in step (ii).

Note that the algorithm proposed in this section is a
simple example of how to design a network-cognizant, dis-
tributed real-time control algorithm using the distributable
linear power-flow model. A thorough treatment of this and
other control algorithms, including theoretical analysis and
numerical experiments, is a subject of ongoing work.

B. Extension of Existing Methods

Approximate linear models that relate voltages and powers
at the point of common coupling with net nodal power
injections were utilized in [4], [5] to develop real-time and
distributed OPF solvers for distribution systems with optimal-
ity and input-to-state stability guarantees. The models (12)
and (13) can be leveraged to broaden the applicability of the
algorithms proposed in [4], [5] to multiphase settings with a
variety of electrical connections.

Similarly, the local control methods proposed in [9], [10]
for voltage-regulation purposes can be re-engineered based
on (12) to control renewable sources of energy with line-to-
line connections.

VI. CONCLUSION

This paper outlined linear power-flow models for general
multiphase distribution systems. The models are computation-
ally efficient and are useful in decentralized and distributed
OPF and real-time control settings due to their distributability.
The performance of the models was numerically evaluated on
two test feeders, and application examples were presented.
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