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A First-order Prediction-Correction
Algorithm for Time-varying (Constrained)

Optimization

Andrea Simonetto ˚ Emiliano Dall’Anese ˚˚

˚Université catholique de Louvain, Louvain-la-Neuve, Belgium
(e-mail: andrea.simonetto@uclouvain.be)

˚˚National Renewable Energy Laboratory, Golden, CO, USA
(e-mail: emiliano.dallanese@nrel.gov)

Abstract: This paper focuses on the design of online algorithms based on prediction-correction
steps to track the optimal solution of a time-varying constrained problem. Existing prediction-
correction methods have been shown to work well for unconstrained convex problems and for
settings where obtaining the inverse of the Hessian of the cost function can be computationally
affordable. The prediction-correction algorithm proposed in this paper addresses the limitations
of existing methods by tackling constrained problems and by designing a first-order prediction
step that relies on the Hessian of the cost function. Analytical results are established to quantify
the tracking error. Numerical simulations corroborate the analytical results and showcase the
performance and benefits of the algorithms.

Keywords: Convex optimization, continuous time system estimation, distributed control and
estimation, online algorithms, time-varying optimization.

1. INTRODUCTION

Convex optimization is fundamental to many engineer-
ing, societal, and financial problems (Boyd and Vanden-
berghe, 2004). Core optimization tasks involve numeri-
cal algorithms to find the optimal decision variables of
a convex program with given inputs and problem pa-
rameters. In many applications, one is faced with the
formulation (and the solution) of convex programs that
vary continuously over time. Typical examples include
adaptive control, where control actions are generated de-
pending on a (parametric) varying optimization prob-
lem (Jerez et al., 2014; Hours and Jones, 2016); and,
signal processing problems (Jakubiec and Ribeiro, 2013),
where model parameters are estimated online based on
streaming observations – including time-varying compres-
sive sensing settings (Angelosante et al., 2010; Yang et al.,
2016; Vaswani and Zhan, 2016). Additional application
domains include robotics (Verscheure et al., 2009), smart
grids (Zhao et al., 2014; Dall’Anese and Simonetto, 2016),
and economics (Dontchev et al., 2013).

In this context, we consider the following time-varying
constrained optimization problem:

x˚ptq :“ argmin
xPX

fpx; tq, for t ě 0 , (1)

where X Ď Rn is a convex set; t P R` is non-negative, con-
tinuous, and it is used to index time; and, f : RnˆR` Ñ R
is a smooth strongly convex function. The goal is to find
(and track) the solution x˚ptq of (1) over time – hereafter
referred to as the optimal solution trajectory. Problem
(1) can be conceivably solved based on a continuous time
platform (Rahili and Ren, 2016; Fazlyab et al., 2016a,b);
alternatively, leveraging sampling arguments, it can be

interpreted as a sequence of time-invariant problems. In
particular, upon sampling the objective functions fpx; tq
at time instants tk, k “ 0, 1, 2, . . . , where the sampling
period h :“ tk ´ tk´1 can be chosen arbitrarily small, one
can solve the sequence of time-invariant problems:

x˚ptkq :“ argmin
xPX

fpx; tkq, k P N. (2)

By decreasing h, an arbitrary accuracy may be achieved
when approximating problem (1) with (2). However, solv-
ing (2) in a batch fashion for each sampling time tk may
not be computationally affordable in many application
domains, even moderately sized problems.

Focusing on unconstrained optimization problems, the
works in (Simonetto et al., 2016b,a) developed an on-
line prediction-correction method to find and track the
solution trajectory x˚ptq up to a bounded asymptotical
error, starting from an arbitrary guess x0 and without
solving (2) in a batch setting. The prediction step involves
the computation of the inverse of the Hessian of the cost
function, and it is utilized to estimate x˚ptk`1q, based on
information available at time tk; subsequently, once the
cost function is observed, the correction step fine-tunes
the estimate of x˚ptk`1q. This methodology is inspired by
non-stationary optimization (Polyak, 1987; Popkov, 2005),
parametric programming (Robinson, 1980; Dontchev and
Rockafellar, 2009; Zavala and Anitescu, 2010; Dontchev
et al., 2013), and continuation methods in numerical math-
ematics (Allgower and Georg, 1990).

Compared to (Simonetto et al., 2016b,a), the contribution
of this paper is twofold:

i) We develop prediction-correction methods to track
the solutions of the time-varying constrained prob-
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lems (1) and provide analytical bounds to character-
ize their tracking performance;

ii) We develop first-order algorithms that do not involve
the computation of the inverse of the Hessian of
the cost function, as required in (Simonetto et al.,
2016b); the proposed prediction-correction method is
computationally lighter, as it requires only matrix-
vector multiplications. We offer a trade-off between
tracking capabilities and computational effort.

In addition, our methods, being first-order, can be directly
implemented on networks of computing and communicat-
ing nodes, if the problem to be solved is a time-varying
networked (i.e., multi-user) optimization problem with lo-
cal constraints. In this case the methods are automatically
distributed, without requiring further approximations as
required in Simonetto et al. (2016a).

The design and analysis of proposed prediction-correction
methods are grounded on the theory of generalized equa-
tions and implicit function theorems (Dontchev and Rock-
afellar, 2009). 1

2. PREDICTION-CORRECTION ALGORITHM

In this section, we focus on problem (1) and design a
prediction-correction algorithm to track the (unique) op-
timal solution trajectory. Pertinent modeling assumptions
will be assumed (e.g., the existence and uniform bound-
edness of the Hessian and higher order derivatives), as
explained in Section 3.

Consider sampling (1) at times tk, k P N, and constructing
a sequence of time-invariant problems (2). In lieu of solving
(2) at each time step, the goal of the prediction-correction
strategy is to determine an approximate optimizer for (1)
at tk`1 in a computationally affordable manner as ex-
plained next.

2.1 Prediction

Suppose that xk is an approximate solution of (2) at time
tk. Given xk, the prediction step seeks an approximate
optimizer for (1) at tk`1, given the only information
available at time tk. Let xk`1|k denote the output of the
prediction step.

Notice first that solving the time-invariant problem (2)
associated with time tk is equivalent to solving the gener-
alized equation:

∇xfpx˚ptkq; tkq `NXpx˚ptkqq Q 0 (3)

1 Notation. Vectors are written as x P Rn and matrices as A P

Rnˆn. We use } ¨ } to denote the Euclidean norm in the vector space,
and the respective induced norms for matrices and tensors. The
gradient of the function fpx; tq with respect to x at the point px, tq is
denoted as ∇xfpx; tq P Rn, while the partial derivative of the same
function with respect to (w.r.t.) t at px, tq is written as ∇tfpx; tq P R.
Similarly, the notation ∇xxfpx; tq P Rnˆn denotes the Hessian of
fpx; tq w.r.t. x at px, tq, whereas ∇txfpx; tq P Rn denotes the partial
derivative of the gradient of fpx; tq w.r.t. the time t at px, tq, i.e. the
mixed first-order partial derivative vector of the objective. The tensor
∇xxxfpx; tq P Rnˆnˆn indicates the third derivative of fpx; tq w.r.t.
x at px, tq, the matrix ∇xtxfpx; tq “ ∇txxfpx; tq P Rnˆn indicates
the time derivative of the Hessian of fpx; tq w.r.t. the time t at px, tq,
and the vector ∇ttxfpx; tq P Rn indicates the second derivative in
time of the gradient of fpx; tq w.r.t. the time t at px, tq.

where NX : Rn Ñ Rn is the normal cone operator, while
x˚ptkq is the optimizer of (2) at tk.

In order to compute the predictor xk`1|k, one may wish
to solve the generalized equation

∇xfpxk`1|k; tk`1q `NXpxk`1|kq Q 0, (4)

yet this is not possible at time tk. Instead, substitute
the gradient ∇xfpxk`1|k; tk`1q with a first-order Taylor
approximation as:

∇xfpxk`1|k; tk`1q « ∇xfpxk; tkq`
∇xxfpxk; tkqpxk`1|k ´ xkq ` h∇txfpxk; tkq, (5)

which is now computable with information available at tk,
and seek the solution of the following perturbed general-
ized equation

∇xfpxk; tkq `∇xxfpxk; tkqpxk`1|k ´ xkq`
h∇txfpxk; tkq `NXpxk`1|kq Q 0. (6)

That is, the prediction step produces a solution that
is optimal w.r.t. a perturbed (first-order) version of the
original generalized equation (4). We can now replace (6)
with the following equivalent formulation

xk`1|k “ argmin
xPX

!1

2
xT∇xxfpxk; tkqx` p∇xfpxk; tkq

` h∇txfpxk; tkq ´∇xxfpxk; tkqxkqTx
)

. (7)

Problem (7) is a constrained optimization problem with
quadratic cost, and unless the dimension of the problem is
small, its solution may be too computational demanding
to be implemented on tight time requirements (as will
be shown in the Numerical Results section). Therefore,
we consider the less computational demanding task of
finding an approximate solution of (7) by computing a
number of projected gradient descent steps – the first key
step towards a first-order prediction-correction method.
Particularly, let px0 be a dummy variable initialized as
px0 “ xk; then, the following steps are performed:

pxp`1 “ PX rpxp ´ αp∇xxfpxk; tkqppxp ´ xkq` (8)

h∇txfpxk; tkq `∇xfpxk; tkqqs,
for p “ 0, 1, . . . , P´1, where P is a predetermined number
of gradient steps, α ą 0 is the stepsize, and PX is the
projection operator over the convex set X. Once P steps
are performed, x̃k`1|k is set to:

x̃k`1|k “ pxP . (9)

2.2 Correction

Once the cost function fp¨; tk`1q becomes available, the
correction step is performed to refine the estimate of
the optimal solution x˚ptk`1q. To this end, a first-order
projected gradient method is considered next. Particularly,
let px0 “ x̃k`1|k be a dummy variable; then, consider the
following projected gradient steps

pxc`1“ PX rpxc ´ βp∇xfppxc; tk`1qs, (10)

for c “ 0, 1, . . . , C´1, where C is a predetermined number
of gradient steps and β ą 0 the stepsize. The estimate of
the optimal solution x˚ptk`1q is then computed as xk`1 “
pxC . Notice that a Newton step could be implemented;
however, to develop computationally light online schemes
that naturally afford a distributed implementation, this
paper considers first-order methods.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Algorithm 1
Constrained First-Order Prediction-Correction (C-FOPC)

Require: Initial variable x0. Initial objective function fpx; t0q, no.
of prediction steps P and correction steps C

1: for k “ 0, 1, 2, . . . do
2: // time tk
3: Prediction: initialize px0 “ xk

4: for p “ 0 : P ´ 1 do
5: Predict the variable by the gradient step [cf (8)]

pxp`1“ PX rpx
p ´ αp∇xxfpxk; tkqppx

p ´ xkq`

h∇txfpxk; tkq `∇xfpxk; tkqqs

6: end for
7: Set the predicted variable x̃k`1|k “ pxP

8: // time tk`1

9: Acquire the updated function fpx; tk`1q

10: Initialize the sequence of corrected variables px0 “ x̃k`1|k
11: for c “ 0 : C ´ 1 do
12: Correct the variable by the gradient step [cf (10)]

pxc`1“ PX rpx
c ´ βp∇xfppx

c; tk`1qs

13: end for
14: Set the corrected variable xk`1 “ pxC

15: end for

2.3 Complete Algorithm

The complete algorithm Constrained - First-Order Predic-
tion Correction (C-FOPC) is tabulated as Algorithm 1.
Steps 4-7 are utilized to compute x̃k`1|k based on the
information available at tk. Provided that the projection
operator is easy to carry out (setX is simple), and the Hes-
sian is easy to evaluate, the computational complexity of
these steps is OpPn2q, which is quadratic (due to matrix-
vector multiplications) in the number of scalar decision
variables. This is in contrast with the algorithms presented
in (Simonetto et al., 2016b), which involve the compu-
tation of the Hessian inverse. Steps 10-14 are utilized to
compute xk`1, based on the information available at tk`1.
Provided that the projection operator is easy to perform
(set X is simple) and the gradient is easy to evaluate, the
computational complexity of these steps is OpCnq, which
is linear in the number of scalar decision variables.

In Figure 1, we offer a pictorial representation of one
step of the exact prediction-correction methodology. This
picture is displayed to offer some intuition on the algorithm
and on what the first-order strategy tries to approximate.
The time-varying problem is a constrained (over the set
X) problem in two dimensions x1 and x2. The function
varies over time by moving rigidly on the plane. Two
time instances tk and tk`1 are represented, while we see
in orange the continuous optimal trajectory traversing
the constraint set. At time step tk, we are given the
approximate optimizer xk P X. We then predict the new
approximate optimizer xk`1|k. For simplicity, imagine that
the constraint set is not active, so that we can solve (7)
exactly as

xk`1|k “ xk ´ h r∇xxfpxk; tkqs´1∇txfpxk; tkq
loooooooooooooooooooomoooooooooooooooooooon

p1q
´

r∇xxfpxk; tkqs´1∇xfpxk; tkq
loooooooooooooooooomoooooooooooooooooon

p2q
. (11)

Therefore, we compute xk`1|k by combining two terms:
term (1) is towards points that have similar gradient

∇xfpxk; tkq at time tk`1, while term (2) is a Newton term
towards the optimizer at tk. The first-order approximated
strategy that we employ in Algorithm 1 attempts to
mimic this behavior, moving both in the direction of
equal gradients at successive times (i.e., following the
movement of the function) and in the direction of reduced
suboptimality at time tk. Lastly, the correction step moves
towards the optimizer at tk`1.

Remark 1. [Time-derivative approximation] The time deriva-
tive of the gradient ∇txfpx; tq can be substituted with
an approximate version, as explained in (Simonetto et al.,
2016b).

Remark 2. [Unconstrained problems] The presented algo-
rithm works for unconstrained problems too, by substitut-
ing X “ Rn. In this case, Eq. (11) is an improvement
compared to the prediction step of (Simonetto et al.,
2016b) (featuring only term (1)). A detailed discussion is
available in (Simonetto and E. Dall’Anese, 2016).

3. CONVERGENCE ANALYSIS

In this section, we establish analytical results to bound
the discrepancy between the optimal solution x˚ptq and
the iterates xk produced by the prediction-correction
scheme presented in the previous section. Some technical
conditions are required as stated next

Assumption 1. The function fpx; tq is twice differentiable
and m-strongly convex in x P X and uniformly in t; that
is, the Hessian of fpx; tq with respect to x is bounded
below by m for each x P X and uniformly in t,

∇xxfpx; tq ľ mI, @x P X, t.
Assumption 2. The function fpx; tq is sufficiently smooth
both in x P X and in t; in particular, fpx; tq has bounded
second and third-order derivatives with respect to x P X
and t:

}∇xxfpx; tq} ď L, }∇txfpx; tq} ď C0, }∇xxxfpx; tq} ď C1,

}∇xtxfpx; tq} ď C2, }∇ttxfpx; tq} ď C3.

Assumption 1 guarantees that problem (1) is strongly
convex and has a unique solution for each time instance.
On course, uniqueness of the solution implies that the
solution trajectory is also unique. This setting is common
in the the time-varying optimization domain; see, for
instance (Popkov, 2005; Dontchev et al., 2013; Jakubiec
and Ribeiro, 2013; Ling and Ribeiro, 2014; Simonetto
et al., 2016b,a). Assumption 2 ensures that the Hessian
is bounded from above; this property is equivalent to
the Lipschitz continuity of the gradient; it also ensures
that the third derivative tensor ∇xxxfpx; tq is bounded
above (typically required for the analysis of Newton-
type algorithms), as well as boundedness of the temporal
variability of gradient and Hessian. These last properties
ensure the possibility to build a prediction scheme based
on the knowledge of (or an estimate of) how the function
and its derivatives change over time.

Assumptions 1 and 2 are sufficient to show that the
solution mapping t ÞÑ x˚ptq is single-valued and locally
Lipschitz continuous in t; in particular, from (Dontchev
and Rockafellar, 2009, Theorem 2F.10) we have that

}x˚ptk`1q´x˚ptkq} ď 1

m
}∇txfpx; tq}ptk`1´tkq ď C0h

m
,

(12)
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X

fpx; tkq fpx; tk`1q

Fig. 1. Pictorial representation of one step of the exact prediction-correction strategy applied on a moving quadratic
cost function.

for sufficiently small sampling periods h. This result estab-
lished link between the sampling period h and the tempo-
ral variability of the optimal solutions; further, (12) will
be utilized to substantiate the convergence and tracking
capabilities of the proposed prediction-correction methods.

Eq. (12) provides a link between the sampling period h and
the allowed variations in the optimizers. This also gives a
better understanding on the time-varying assumptions on
the uniform boundedness of the time derivatives of the
gradient ∇txfpx; tq and ∇ttxfpx; tq. In fact, the bounds
C0 and C3 require that the change and the rate of change
of the optimizer be bounded. If the optimizer were the
position of a moving target to be estimated, then C0 and
C3 would be a bound on its velocity and acceleration.
Finally, the bound on ∇xtxfpx; tq means that the quantity
∇txfpx; tq is Lipschitz continuous w.r.t. x uniformly in t;
i.e., that close by points x and x1 need to have similar
gradient time-derivatives: e.g., if the target position is
perturbed by a small amount δx then its velocity is
perturbed by an amount not bigger than C2δx.

We now study the convergence properties of the sequence
txkukPN generated by the algorithm C-FOPC, for different
choices of the stepsize. In the following theorem, we
show that the optimality gap }xk ´ x˚ptkq} converges
exponentially to a given error bound.

Theorem 1. Consider the sequence txkukPN generated by
C-FOPC, and let Assumptions 1-2 hold true. Define the
following quantities

%P “ maxt|1´αm|, |1´αL|u, %C “ maxt|1´βm|, |1´βL|u,
(13)

and let stepsizes α and β be such that

α ă 2{L, β ă 2{L. (14)

Further, select τ P p0, 1q, the number of prediction steps
P , and the number of correction steps C in a way that
%PP%

C
C ă τ .

There exist an upper bound on the sampling period h̄ and
a convergence region R̄, such that if the sampling period
is chosen as h ď h̄ and the initial optimality gap satisfy
}x0 ´ x˚pt0q} ď R̄, then the sequence t}xk ´ x˚ptkq}ukPN
converges linearly with rate τ to an asymptotical error
bound, and

lim sup
kÑ8

}xk ´ x˚ptkq} “ Oph2 %CCq `Oph %PP%CCq. (15)

In addition, the bounds h̄ and R̄ are given as

h̄“ τ´%CC%PP
%CCp%PP+1q

´C1C0

m2
+
C2

m

¯´1

, R̄“ 2m

C1

´C1C0

m2
+
C2

m

¯

ph̄´hq.
(16)

Proof. See (Simonetto and E. Dall’Anese, 2016), where
we also characterize the constants in the right-hand side
of (15).

Theorem 1 asserts that the sequence txkukPN generated by
C-FOPC locks to a neighborhood of the optimal solution
trajectory x˚ptq. In particular, for a choice of prediction
and correction steps P and C, there exist an upper bound
on the sampling period and an attraction region, such
that if the sampling period is smaller than the bound and
the initial optimality gap is in the attraction region, then
the sequence converge (at least) linearly to an asymptotic
bound. The bound depends on the sampling period and
on the selection of prediction and correction steps P and
C. When one performs an optimal prediction (that is
P Ñ 8), then the bound goes as Oph2q, which is similar
to the bounds derived in (Simonetto et al., 2016b). When
one performs the correction step exactly, i.e., C Ñ8, then
the asymptotic bound goes to zero (in fact, in that case
each the time-invariant problem is solved exactly).

The presence of an attraction region is due to Newton steps
in the prediction stage (that is, the presence of the gradient
∇xfpxk; tkq in the generalized equation (6)). When the
function is quadratic, then C1 “ 0, and the convergence is
global.

4. NUMERICAL RESULTS

To appreciate the merits of the proposed algorithm, con-
sider an optimization problem with n “ 1000 (scalar)
variables. The cost function we study has the form

fpx; tq “ 1

2
}x`1n}2Q`

n
ÿ

i“1

κi sin2pωt`ϕiq exppµpxpiq´2q2q,
(17)
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where we have defined 1n as the column vector of all
ones of dimension n, while xpiq is the i-th component of
x P Rn. In addition, the matrix Q is chosen as Q “ In `
µµT{n with µ being a vector randomly generated by a
normal distribution of mean 0 and variance 1, κi „ Ur0,1s,
ω “ 0.1π, ϕ „ N p0, πq, and µ “ 0.25.

We study the time-varying problem

minimize
xPr0,0.4sn

fpx; tq. (18)

We notice that the cost function f verifies the Assump-
tions 1-2 on on r0, 0.4sn, which is our optimization set
(even though it would not satisfy them on the whole Rn).
In particular, m “ 1 and L “ 6.07.

We focus our performance analysis on realistic run-time
constraints and we compare our prediction-correction
strategy with state-of-the-art correction-only methodolo-
gies (i.e., no prediction step is performed) [See Simonetto
and E. Dall’Anese (2016) for a detailed discussion on these
methodologies].

Every time a new function is available, a number of
correction steps are performed. The number depends on
how fast we need the corrected variable to be available and
the computational time necessary to compute the gradient
and perform the correction step. We fix at r1h, with r1 ă 1
the time allocated for the correction steps, while tC is
the time to perform one correction step. For the above
considerations, we can afford to run

C “ tr1h{tCu, (19)

correction steps. After the corrected variable is available,
one can use it for the decision making process, e.g., to
determine the control law, which may require extra time
to be performed. For the time-varying algorithm perspec-
tive, one can use the variable to either run P gradient
prediction, or C 1 extra correction steps (to improve the
corrected variable for having a better starting point when
a new function becomes available). Fix at r2h, with r2 ă 1
the time allocated for the prediction (or extra correction)
steps. The affordable number of prediction steps can be
determined considering that P prediction steps require a
time equal to t̄ ` PtP, where t̄ is the time required to
evaluate the Hessian, gradient, and time derivative of the
gradient, while tP is the time to perform one prediction
calculation. Thus,

P “ tp r2h´ t̄ q{tPu. (20)

The affordable extra correction steps C 1 can be computed
as in (19), substituting r1 with r2.

In the simulation example, we choose r1 “ r2 “ 0.5, while
by running the experiments on a 1.8 GHz Intel Core i5, we
empirically fix tC “ .76 ms, t̄ “ 10 ms, tP “ .62 ms. Note
that the time that would be needed to solve the prediction
step exactly (by solving a quadratic program) is 190 ms,
which is not affordable in the considered sampling period
range.

In addition, we consider the situation in which one can use
the whole sampling period to do correction, that is r1 “ 1,
while r2 “ 0, and we call this case total correction. This
situation is particularly interesting when one has to make
a choice whether to stop the correction steps to perform
prediction, or to continue to do correction steps till a
new function evaluation becomes available. Note that the
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Fig. 2. Asymptotical worst case error floor with respect to
the sampling time interval h for different algorithms
applied to (18).

correction+extra correction strategy is different from the
total correction one, since the error is computed with the
corrected variable (which is used for the decision making
process), that is after r1h.

In Figure 2, we report the asymptotical worst-case er-
ror w.r.t the sampling period for the three considered
cases (correction+extra correction, total correction, and
prediction-correction, i.e. the C-FOPC algorithm), while
the number of prediction steps and correction steps are
optimized via the available resources as in Eq.s (19)-(20).
With the simulation parameters, for h “ 6 ms, we can per-
form C “ C 1 “ 3 steps of correction and extra correction,
or C “ 7 steps of (total) correction. For h “ 40 ms, these
values are C “ C 1 “ 26 and C “ 52, respectively. For the
prediction-correction strategy, for h “ 22 ms, then C “ 14
and P “ 1, while for h “ 40 ms, C “ 26 and P “ 16.

For sampling times below 22 ms, prediction cannot be
performed due to time constraints. For sampling periods
greater or equal than 22 ms, prediction can be performed
and for h “ r22, 40s ms, then h̄ “ r90, 370s ms, and
R̄ “ r.13, .68s. In this simulation example, if the prediction
is affordable, we see clearly that the prediction-correction
algorithm?our C-FOPC algorithm?is preferred instead of
the correction-only schemes because it achieves a lower
asymptotical worst-case error. We notice that this error
is lower by an half order of magnitude, while the error
of the correction-extra correction and the total correction
strategy are practically the same. For completeness, we
report that x0 is chosen to be zero, while the initial
optimality gap is .30, which indicates that our bounds are
somewhat conservative.

Surprisingly, the result suggests that performing Newton-
like prediction steps on a fixed (Hessian, gradient, time
derivative) triple can be computationally much more in-
teresting that performing correction steps on a varying
(i.e., re-updated) gradient.

In Figure 3, we report the time trajectories of a number
of variables for the three strategies to appreciate how the
constraints are, in fact, active.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 3. Trajectories of txku and optimal trajectory x˚ptq
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22 ms.

5. CONCLUSION

We have presented first-order algorithms to find and track
the solution trajectory of a class of smooth, strongly
convex constrained time-varying optimization problems.
These algorithms rely on a prediction-correction mech-
anism, which exhibit better asymptotical accuracy than
state-of-the-art correction-only schemes, even when com-
putational complexity issues are taken into account.
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