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Abstract—This paper describes the design rationale for the 
Hierarchical Engine for Large-scale Infrastructure Co-
Simulation (HELICS), a new open-source, cyber-physical-energy 
co-simulation framework for electric power systems. HELICS is 
designed to support very-large-scale (100,000+ federates) co-
simulations with off-the-shelf power-system, communication, 
market, and end-use tools. Other key features include cross-
platform operating system support, the integration of both event-
driven (e.g., packetized communication) and time-series (e.g., 
power flow) simulations, and the ability to co-iterate among 
federates to ensure physical model convergence at each time step. 
After describing the requirements, we evaluate existing co-
simulation frameworks, including High-Level Architecture 
(HLA) and Functional Mockup Interface (FMI), and we conclude 
that none provide the required features. Then we describe the 
design for the new, layered HELICS architecture. 

Keywords—co-simulation; cyber-physical; power systems 
modeling; integrated transmission-distribution simulation; 
information and communication technologies 

I. INTRODUCTION

Energy systems and their associated information and 
communication technology (ICT) systems are becoming 
increasingly intertwined. As a result, effectively designing, 
analyzing, and implementing modern energy systems 
increasingly relies on advanced modeling that simultaneously 
captures both the cyber and physical domains in combined 
simulations [1].  

For the electric power system, the rapid growth in 
distributed energy resources (DERs)—such as solar 
photovoltaic (PV), storage, electric vehicles, and responsive 

demand—makes it increasingly critical to simultaneously 
capture both the transmission and distribution systems. The 
modernization and expansion of smart-grid ICT infrastructure 
introduces further interdependencies that are also necessary to 
capture. In addition, increasing interest in bringing market 
approaches to the distribution-system level suggests a need to 
consider transmission and distribution physical phenomena, 
communication infrastructure, and bulk and distributed market 
(TDC+M) interactions. 

For example, past research has shown that accurately 
capturing communication system delays reveals multifold 
increases in simulated transmission system voltage recovery 
time with some proposed wide-area control architectures that 
are not captured by traditional analysis that ignores 
communication effects [2]. Similarly, communication system 
delays can introduce price spikes in distribution-level 
transactive energy markets [3], a phenomena that requires 
simultaneously capturing full TDC+M interactions. 

Although some customized stand-alone tools (e.g., [4]–[6]) 
can capture a subset of these cyber-physical phenomena for 
reduced-scale systems, fully capturing their interactions has 
increasingly relied on co-simulation (e.g., [2], [7]–[10]); 
however, as will be discussed in Section III, current co-
simulation approaches face a number challenges, particularly 
when fully converging among federates and when scaling to 
the size and complexity of realistic electric grids. 

This paper describes the design of the Hierarchical Engine 
for Large-scale Infrastructure Co-Simulation (HELICS), a new, 
layered, high-performance co-simulation framework that builds 
on the collective experience of multiple national laboratories 
[2], [9], [10] to offer increased scalability and advanced 
features for modeling highly integrated cyber-physical-energy 
systems. Section II introduces the requirements for this system, 
and Section III presents an evaluation of existing co-simulation 
frameworks. Section IV presents an in-depth description of the 
layered HELICS architecture. Section V concludes and 
discusses next steps. 
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II. ESTABLISHING REQUIREMENTS 
As part of the U.S. Department of Energy’s Grid 

Modernization Initiative [11], the team first developed a 
comprehensive set of grid analysis test cases, including: 

• Impact of DER’s on bulk system reliability; 
• Load modeling under high penetrations of DERs; 
• Wide-area voltage stability support using DERs; 
• Voltage and frequency ride-through settings for smart 

inverters; 
• Real-time co-simulation of electric power systems and 

communication networks; 
• Communication architecture evaluation for high 

penetrations of solar; 
• Centralized vs. distributed control paradigms to 

prevent voltage stability collapse; 
• Wide-area monitoring, protection, and control; 
• Impacts of DERs on wholesale market operations; 
• Mitigating transmission-distribution interface 

congestion through demand-side management; 
• Regional coordinated electric vehicle charging; and  
• Real-time coordination of large-scale PV and energy 

storage.  

The HELICs team then evaluated these use cases to 
determine the key requirements for the co-simulation 
framework: 

• Highly scalable: able to support the co-simulation of 
2–100,000+ federates, thus supporting the entire range 
from small-scale interaction studies to interconnection-
scale use cases;1 

• Cross-platform: supporting everything from 
Windows/OSX laptops to Linux high-performance 
computers to enable both use of commercial tools and 
very-large scale analysis; 

• Modular: able to easily build-up co-simulations from 
a wide variety of tools in a number of arbitrary 
scenarios; 

• Minimally invasive: able to rapidly integrate diverse, 
existing, domain-specific simulation tools, without 
requiring extensive interface development and without 
expecting roll-back support; 

• Open source, but able to interact with commercial 
power-systems tools; 

• Able to support a wide range of simulation types: 
o Discrete-event simulation (e.g., communication) 
o Quasi-steady-state time series (e.g., time-varying 

power flow) 
o Phasor dynamics (e.g., transient stability 

analysis); and 
• Capable of co-iteration to enable inter-federate 

convergence before advancing time, such as to ensure 
transmission-distribution power flow convergence. 

                                                             
1  The number 100,000 is the estimated number of federates required to 

capture the transmission system, sufficient distribution feeders, multiple 
balancing authority area markets, control systems, and communication 
interactions for the Western Interconnection. 

III. EVALUATING EXISTING CO-SIMULATION FRAMEWORKS 
Before embarking on a new design, we evaluated multiple 

existing co-simulation frameworks to determine if an off-the-
shelf solution met the requirements and to learn best practices 
and existing innovations to incorporate into HELICS. 

A. Functional Mockup Interface  
Functional Mock-up Interface (FMI) is a tool-independent 

standard to support dynamic differential equation-based model 
exchange and more general co-simulation [12] The standard 
presents a well-designed API for electrical, mechanical, and 
software simulation, allowing tools that have FMI capabilities 
to integrate, simulate, and analyze the coupling of models. FMI 
is ideal for simulating dynamic, detailed system models 
because the interface can efficiently describe the detailed the 
equations of such models and because many off-the-shelf tools 
support such model exchange. The co-simulation interface 
provides a standard for coupling multiple full simulation tools 
rather than equation-based models. 

For co-simulation, FMI uses a master-slave arrangement 
with the master being directly analogous to the desired co-
simulation hub. Though there are multiple slave-ready models 
and tools for slave generation, the set of masters is somewhat 
more limited. The majority of FMI master implementations are 
specialized for particular purposes, such as automotive 
simulation or whole building modeling, and the available 
generic co-simulation masters are typically either designed to 
work with functional mock-up units (FMUs) generated by a 
specific tool and/or are only available for a single platform, e.g. 
Windows. Further, many generic masters would be difficult to 
deploy in an HPC environment because they are Java-based.  

We did evaluate the use of a Python-based FMI co-
simulation master, but quickly realized it would not scale to the 
desired number of federates or provide the desired high-speed 
runtime performance. It also would be difficult to support co-
iteration (multiple iterations for convergence within a single 
time step), particularly with existing interfaces. Still, although 
FMI did not provide an off-the-shelf solution for the TDC+M 
co-simulation needs, it did provide a number of useful design 
inspirations including its lightweight interface description, and 
the value based data transfer mechanisms are heavily 
influenced by the design of the FMI standard. As a result, 
HELICS plans to directly support FMUs, thereby providing 
access to a range of existing models and controls. 

B. High-Level Architecture  
High-Level Architecture (HLA) is a U.S. Department of 

Defense specification for co-simulation [13]–[15]. HLA targets 
distributed simulations with support for multiple programming 
languages and platforms. In HLA, the run-time infrastructure 
(RTI) provides time synchronization and communication 
among the federated simulators. Multiple implementations 
exist, including several open-source versions.  

A principle concern was the ability of the HLA RTI to scale 
to the size of problems of interest (100,000 federates). Previous 
research highlighted performance concerns with HLA and 
proposed innovative high-performance HLA RTI 
implementations, but these do not appear to be production 
ready [16], [17]. Of the well-supported open-source HLA 
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implementations, previous studies showed that the CERTI 
HLA-based Ptolemy framework scaled reasonably well for 
thousands of actors [18]. However, the CERTI HLA RTI uses a 
centralized process (called the RTIG) to which all federates 
connect when registering [19], [20]. The connection to the 
RTIG is managed through a separate process (RTIA) that is 
launched during federate initialization; each launched federate 
thus has two processes: the federate and an RTIA. The 
centralized architecture using a single RTIG process raises 
concerns about very large scaling.  

To evaluate larger-scale simulations, we performed 
additional scaling tests on the CERTI HLA RTI directly. We 
expanded a simple process/controller example program from 
the CERTI HLA RTI distribution to support multiple client 
federates interacting with one controller federate. For our 
indented problem space, the controller federate approximates a 
transmission system, and the client federate approximates a 
distribution system. Our extensions supported an arbitrary 
number of distribution systems. Data was exchanged at 1 Hz 
for 300 seconds resulting in 300 message exchanges per 
simulation. Though an extremely limited test, it enabled a 
quick evaluation of how well the CERTI RTI RTIG could 
launch and run a large number of federates. The study used 
Lawrence Livermore National Laboratory’s Cab system, a 
standard Linux cluster machine with 1,200 batch nodes each 
with 2 Intel 8-core Xeon E5-2670 computer processing units 
and 32 GB of memory. Nodes are interconnected with a high-
speed InfiniBand network. 

We evaluated “weak” scaling—how performance changes 
when computing resources are increased proportionally to 
problem size. This scaling is important for many TDC+M 
studies of interest because with off-the-shelf tools, the amount 
of available memory can drive a need to scale to large numbers 
of nodes. For example, past integrated transmission-distribution 
simulations have found that typical GridLAB-D distribution 
models use approximately 1 GB of memory each [21]. The 
available large-scale (1,000 or more nodes) systems at the U.S. 
Department of Energy national laboratories have 24–64 GB per 
node, with 12–32 cores per node. Using these observations as a 
guide, we chose to launch 64 distribution stand-in processes per 
node and scale to the number of nodes used; the transmission 
and RTGI processes where run on a separate node. Fig. 1 
shows the total run time for the simulation with 64–1,024 
distribution systems (2–17 compute nodes). The runs do not 
scale well; ideally, the time should be constant. At larger 
scales, we observed failures to launch because federates 
attempted to contact the single RTGI process. Extrapolating the 
curve shows that running 100,000 federates would be 
infeasible. 

In addition to scalability, we were interested in portability 
across platforms. To evaluate portability beyond X86 cluster 
supercomputers, we attempted to build CERTI HLA on an 
IBM BlueGene architecture, but had to abandon the effort 
because of the number of dependencies required by CERTI 
HLA RTI and the cross-compiling environment on the IBM 
BlueGene machine. We also found a compilation bug in the 
implementation for big endian architectures indicating that 
CERTI is not routinely compiled/tested on PowerPC machines. 
Portability to architectures other than X86 clusters is interesting 

because several of the new exascale architectures are not based 
on X86. 

Despite these shortcomings, HLA has many powerful 
design features that we are adopting in HELICS.. The HLA’s 
community’s extensive work on time synchronization [22] is 
heavily influencing the time-advancement strategies in 
HELICS, and. we are employing the conservative time-
synchronization approach adopted by HLA. The use of a 
callback-based API is also being leveraged to help avoid 
polling and busy loops. 

C. Framework for Network Co-Simulation  
The Framework for Network Co-simulation (FNCS) [10] is 

a lightweight co-simulation platform implemented in C++ with 
interfaces for C, Java, MATLAB, and Python. The FNCS API 
features an intentionally small set of functions for data 
exchange and time synchronization. Although FNCS is not an 
implementation of HLA, it borrows the ideas from a publish-
and-subscribe interface and requests time advances. All data 
exchanges and time requests are made to a centralized broker 
application running as a separate process. Inter-process 
communication uses the flexible ZeroMQ library [23]. 

 
Fig. 1. “Weak” scaling study on 2-17 compute nodes with 64 federates per 
client node shows poor scalability because time is nearly proportional to the 
number of distribution systems rather than remaining nearly constant. 

FNCS has been tested as part of a domain simulation [24] 
as well as stress-tested for this work. The domain test consisted 
of a transactive control layered over integrated transmission 
and distribution systems. The case studies involved 200 
distribution systems modeled by one instance of GridLAB-D 
[6] each. Although the case studies were relatively small, the 
scaling study in [24] showed that FNCS also scales well for a 
few thousand federates. For this paper, we further explored 
FNCS support for tens of thousands of simple federates, but the 
performance was too slow. Further, these simple federates did 
not perform any real simulation and subscribed to two data 
streams each, so we expect that a real domain simulation of this 
size would perform even worse. 

In addition to scalability concerns, FNCS is missing some 
key capabilities needed for our complete set of use cases, 
notably FNCS does not support co-iteration within a time step 
to guarantee convergence among federates. The streamlined 
interface presented by FNCS, though useful for rapid 
prototyping, also uses character strings for all communication, 
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presenting a large overhead and conversion performance 
challenges. Given the scalability issues, as well as its limited 
interface and capabilities, we opted not to use FNCS as the 
basis for HELICS.  

IV. FRAMEWORK DESIGN 
Based on this evaluation, the team determined that existing 

co-simulation frameworks do not meet all of the identified 
requirements, so we embarked on the design of HELICS. 

A. A Layered Approach 
To optimize performance; speed development; and enable 

clean, modular maintainability, HELICS utilizes a layered 
architecture (Fig. 2). Clear Application Programming Interfaces 
(APIs) between each layer, enable development of the 
individual layers to occur in parallel, with each layer free to 
make internal changes and optimize performance without 
impacting the other layers. The rest of this section describes 
these layers in more detail from the bottom up. 

 
Fig. 2. The layered co-simulation architecture showing key subcomponents 
in each layer. 

B. Platform 
Careful thought is required at this lowest level to ensure 

that HELICS can work across operating systems—including 
Windows, Linux, and Macs—and across computational scales, 
from small laptops to large high-performance computer (HPC) 
clusters. To support a wide variety of platforms, two distinct 
communication interfaces are supported. On HPC systems with 
a low latency interconnect, the commonly used Message 
Passing Interface (MPI) is supported for inter-federate 
communication; on other systems where MPI is not available 
or necessary, ZeroMQ will be used. The choice will be made 
when the core and associated communication API is 
instantiated. 

The core and API-related software are also being written in 
cross-platform C++, using C++14 features. A C-based interface 
will be available as a shared library for applications that either 
cannot use C++ or access a sufficient compiler. The build 
system itself uses CMake, and it is tested regularly on multiple 
platforms. The structure of the platform itself is designed to 
integrate easily with existing packages and build on experience 
with previous generations of co-simulation tools.  

C. Core Layer 
The core layer represents the minimum set of features 

necessary for a co-simulation, including time management and 
data exchange for combined discrete event (e.g. 
communication) and time series (e.g. power system) 
simulations. These features directly influence the run-time 
mechanics and cannot be abstracted to a higher level. The core 
layer represents an abstract interface that will be implemented 
by both a ZeroMQ- and MPI-based backend, giving maximum 
performance for desktops, small clusters, and the high-
performance networks of supercomputers.  

The core layer contains constructs to model value based and 
message based interactions from defined end points. In addition 
to end-point registration and explicit pairwise communication 
among end points, an end-point filter can be attached to 
orchestrate special operations, such as communication latency 
or complex message interactions. By exposing the semantics of 
end-point communication, our core layer is ready to explicitly 
model network communication within the application layer. 

The core layer features semantics similar to other co-
simulation standards. After initializing the core layer, federates 
are registered to the federation. Multiple federates can be 
registered within the same process, taking advantage of modern 
multithreading constructs. Time management is a key 
capability, allowing federates to operate with differing 
timescales as well as co-iterate at any time step to achieve 
convergence. Time management is coordinated via 2 global 
synchronization calls to enter initialization and execution 
states, and a timeRequest function to indicate to the core that 
the federate is ready to proceed to the next time step or that it 
requires further co-iteration exchange The core coordinates 
among the different federates to determine which federates can 
proceed in an ordered manner. Application Layer 

The application layer is the primary low-level interface 
among application federates interacting with the co-simulation 
framework and the core API. Although the core API 
communication layer was designed to be simple and generic, 
the application layer API is intended to make it easier for 
generic applications of different types to interact in a flexible 
fashion. The API defines three types of federates with different 
types of interaction supported by the core.  

1) Value Federates: Value federates interact through a 
publish-and-subscribe mechanism: outputs are published, and 
inputs are subscribed. The actual nature of the values is 
arbitrary and includes explicit support for both generic data 
blocks and many common types, such as floating-point 
numbers, integers, strings, complex numbers, and arrays. 
These types can be checked for matching types and will 
support unit conversion. The federate API also provides 
functions to query if a value is updated, obtain the value, and 
note the time of the update. Classes are also available that 
encapsulate the interactions of a single subscription or 
publication. The structure and definitions for a value federate 
are intended to match the features of an FMU for co-
simulation, and an FMI-specific application will be made 
available to directly support co-simulation FMUs. Value 
federates also support iterative loops or superdense time steps 
in the FMU nomenclature. 
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2) Message Federates: While the value federate is targeted 
at applications and components interacting at a direct physical 
level, the message federate is intended to interact with 
federates simulating an ICT exchange. Unlike value 
publication in a value federate, which has no specific 
destination; a message has a specific source, destination, and 
time sent. These messages could represent communication 
packets, events, or anything else that two federates mutually 
understand. A message federate defines end points that are the 
sources and destinations for the message-based federate 
interaction. An end point may also subscribe to a value-based 
publication.  

3) Message Filter Federates: The third type of federate 
arose from a requirement to support communication 
simulations at various levels without forcing the other message 
federates to be aware of them. This concept requires the ability 
of a federate to insert itself into the interaction paths. The 
message filter federate builds on a message federate to add 
additional ability to modify or manipulate a message itself or 
its timing. Message filters can be defined for sources and/or 
destinations. For example, consider modeling the interaction 
of an automatic generation control (AGC) system with a 
generator. In the simple model, control signals are sent as 
messages from the AGC controller directly to the generator. A 
more complex co-simulation requires that the full 
communication path between the generator and controller be 
modeled. With the message filter API, filters can be inserted to 
translate the orginal message to a specific communication 
packet format, to send the packet through a full 
communication network simulation, and to decode the packet 
back to the raw signal the generator model itself understands, 
all without changing anything in the generator or controller 
federates. The message structure itself is such that it keeps a 
record of the original source and destination end points as well 
as the most recent intermediate end point. This structure 
allows for things such as message delays, random loss, 
message translation, or full-stack communication simulation to 
be included in a co-simulation without requiring existing 
federates to be aware of the individual filter manipulations.  

4) Programming Interfaces: A number of programming 
options will be available to allow user flexibility to fit with a 
variety of existing simulators. The primary interface is 
developed in C++, and a C++ API will be available making 
use of C++14 standards. A C shared library will be available 
to support applications requiring a simpler, C-style interface 
and for alternate compiler support. In addition, MATLAB and 
Python API’s will also be available. The API package will 
also include a number of supporting classes that can directly 
translate numerical values or other objects in C++ to published 
values or messages and that otherwise attempt to make low-
level interactions with the co-simulation framework as easy as 
possible.  

5) Interaction with Existing Co-simulation Standards: 
Although the underlying core will not interact directly with 
existing co-simulation standards such as FMI and HLA, the 
application layer will expose interfaces for these standards. 
Since, the designs and experience with those standards had a 
significant influence on the structure and design of HELICS, 
many functions and features from these standards map directly 

to concepts and functions in the core and application layers. 
Many FMUs for co-simulations functions will map to the 
concepts in the value federate; and through the FMU-specific 
application, the co-simulation framework will be able to act as 
an FMU master, seamlessly supporting the interaction of FMU 
co-simulation objects with other tools not based on FMU. The 
full HLA architecture is much richer, but we also intend to 
introduce HLA-oriented support for corresponding features.  

6) Interface Flexibility and Local Routing: The internal 
design of HELICS allows for intermediaries between different 
layers. An application can opt to include references to the core 
HELICS libraries directly ; or it can connect through an 
application API layer, which could include an independently 
executing application wrapped around the core API. This 
flexibility in the framework is designed to improve the scaling 
of the application as a whole, and provide sufficient flexibility 
to adapt to different types of co-simulation.  

D. Simulators Layer 
Although the co-simulation environment will support any 

federate that meets the minimum requirements, it is envisioned 
that many TDC+M applications will rely heavily on a common 
style of simulators. As a result, HELICS defines two classes of 
simulator interfaces:  

1. General purpose, including HLA and FMI co-simulation 
interface support for arbitrary user-provided federates such 
as custom controllers; and 

2. Optimized interfaces for common TDC+M application 
types: 
• Transmission simulator (e.g., GridDyn, PSS/E), 
• Distribution simulator (e.g., GridLAB-D, OpenDSS, 

CYMEDIST), 
• Communication simulator (e.g., simple delays, ns-3), 

and 
• Market simulator (e.g., Flexible Energy Scheduling 

Tool for Integrating Variable Generation, or FESTIV 
[25]). 

To facilitate these common use cases, the simulator layer 
provides two key extensions: standardized data exchange 
patterns (variable naming, types, timing/synchronization, etc.) 
for these simulators in common configurations, and a higher-
level API for certain common TDC+M co-simulation 
operations (e.g., three-phase to positive-sequence voltage 
send/receive).  

E. User Interface Layer 
Often with integrated co-simulations, particularly at 

medium to large scales, the simulation itself proves to be the 
easy part, with considerable more effort required to assemble 
all of the required input data, organize and run the co-
simulation, and parse the results [21]. The HELICS user 
interface layer attempts to streamline these processes by 
providing tools and standardized approaches to: 

• Manage and convert input data; 
• Structure folders; 
• Generate scenarios and populate required data; 
• Automate simulation runs;  
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• Display simulation status and progress; and 
• Collect, visualize, and compare results. 

The user interface layer builds on similar past efforts 
among the team including [9], [26]. 

V. CONCLUSIONS AND NEXT STEPS 
Next-generation analysis of modern electric power systems 

increasingly requires capturing TDC+M interactions; however, 
despite past research successes, no known existing 
environment is fully capable of such analysis, particularly at a 
very large scale and across multiple-platforms. 

As described above, the new HELICS framework will 
allow for unprecedented ability to simulate modern power 
systems. Through co-simulation, it will enable leveraging 
existing off-the-shelf tools for TDC+M, user defined controls 
and other models. Its layered architecture enables both high-
performance simuations and efficient software development. It 
also makes it possible to run HELICS on a wide range of 
platforms, from Windows/OSX laptops to Linux-based HPCs. 

With the initial open-source release of HELICS (scheduled 
for mid-2017), the key components for each layer will be in 
place, along with links to a core set of simulators enabling a 
number of next steps. Futher development priorities include 
documentation, integrating advanced features, evaluating the 
scalability of the tool, developing interfaces for additional 
simulators, and establishing an active community of 
contributors. This initial version of HELICS will also enable 
novel research and analysis, including evaluating a range of use 
cases and further demonstrating and characterizing the value of 
integrated TDC+M analysis. 
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