
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Design of the HELICS High-
Performance Transmission-
Distribution-Communication-
Market Co-Simulation Framework
Preprint
Bryan Palmintier and Dheepak Krishnamurthy
National Renewable Energy Laboratory

Philip Top and Steve Smith
Lawrence Livermore National Laboratories

Jeff Daily and Jason Fuller
Pacific Northwest National Laboratories

Presented at the 2017 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems
Pittsburgh, Pennsylvania
April 21, 2017

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Conference Paper
NREL/CP-5D00-67928
September 2017

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Available electronically at SciTech Connect http:/www.osti.gov/scitech

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
OSTI http://www.osti.gov
Phone: 865.576.8401
Fax: 865.576.5728
Email: reports@osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312
NTIS http://www.ntis.gov
Phone: 800.553.6847 or 703.605.6000
Fax: 703.605.6900
Email: orders@ntis.gov

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795.

NREL prints on paper that contains recycled content.

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov

Design of the HELICS High-Performance
Transmission-Distribution-Communication-Market

Co-Simulation Framework
Bryan Palmintier and Dheepak Krishnamurthy

National Renewable Energy Laboratory
Golden, CO

Philip Top and Steve Smith
Lawrence Livermore National Laboratories

Livermore, CA

Jeff Daily
Pacific Northwest National Laboratories

Richland, WA

Abstract—This paper describes the design rationale for the
Hierarchical Engine for Large-scale Infrastructure Co-
Simulation (HELICS), a new open-source, cyber-physical-energy
co-simulation framework for electric power systems. HELICS is
designed to support very-large-scale (100,000+ federates) co-
simulations with off-the-shelf power-system, communication,
market, and end-use tools. Other key features include cross-
platform operating system support, the integration of both event-
driven (e.g., packetized communication) and time-series (e.g.,
power flow) simulations, and the ability to co-iterate among
federates to ensure physical model convergence at each time step.
After describing the requirements, we evaluate existing co-
simulation frameworks, including High-Level Architecture
(HLA) and Functional Mockup Interface (FMI), and we conclude
that none provide the required features. Then we describe the
design for the new, layered HELICS architecture.

Keywords—co-simulation; cyber-physical; power systems
modeling; integrated transmission-distribution simulation;
information and communication technologies

I. INTRODUCTION

Energy systems and their associated information and
communication technology (ICT) systems are becoming
increasingly intertwined. As a result, effectively designing,
analyzing, and implementing modern energy systems
increasingly relies on advanced modeling that simultaneously
captures both the cyber and physical domains in combined
simulations [1].

For the electric power system, the rapid growth in
distributed energy resources (DERs)—such as solar
photovoltaic (PV), storage, electric vehicles, and responsive

demand—makes it increasingly critical to simultaneously
capture both the transmission and distribution systems. The
modernization and expansion of smart-grid ICT infrastructure
introduces further interdependencies that are also necessary to
capture. In addition, increasing interest in bringing market
approaches to the distribution-system level suggests a need to
consider transmission and distribution physical phenomena,
communication infrastructure, and bulk and distributed market
(TDC+M) interactions.

For example, past research has shown that accurately
capturing communication system delays reveals multifold
increases in simulated transmission system voltage recovery
time with some proposed wide-area control architectures that
are not captured by traditional analysis that ignores
communication effects [2]. Similarly, communication system
delays can introduce price spikes in distribution-level
transactive energy markets [3], a phenomena that requires
simultaneously capturing full TDC+M interactions.

Although some customized stand-alone tools (e.g., [4]–[6])
can capture a subset of these cyber-physical phenomena for
reduced-scale systems, fully capturing their interactions has
increasingly relied on co-simulation (e.g., [2], [7]–[10]);
however, as will be discussed in Section III, current co-
simulation approaches face a number challenges, particularly
when fully converging among federates and when scaling to
the size and complexity of realistic electric grids.

This paper describes the design of the Hierarchical Engine
for Large-scale Infrastructure Co-Simulation (HELICS), a new,
layered, high-performance co-simulation framework that builds
on the collective experience of multiple national laboratories
[2], [9], [10] to offer increased scalability and advanced
features for modeling highly integrated cyber-physical-energy
systems. Section II introduces the requirements for this system,
and Section III presents an evaluation of existing co-simulation
frameworks. Section IV presents an in-depth description of the
layered HELICS architecture. Section V concludes and
discusses next steps.

This work was supported by the Grid Modernization Laboratory
Consortium and conducted by the National Renewable Energy Laboratory,
Pacific Northwest National Laboratory, and Lawrence Livermore National
Laboratory, which are supported by the U.S. Department of Energy (DOE)
under Contracts No. DOE-AC36-08GO28308; DE-AC05-76RL01830; and
DE-AC52-07NA27344 respectively. The U.S. Government retains and the
publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid up, irrevocable, worldwide license to
publish or reproduce the published form of this work, or allow others to do so,
for U.S. Government purposes.

 and Jason Fuller

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
1

II. ESTABLISHING REQUIREMENTS
As part of the U.S. Department of Energy’s Grid

Modernization Initiative [11], the team first developed a
comprehensive set of grid analysis test cases, including:

• Impact of DER’s on bulk system reliability;
• Load modeling under high penetrations of DERs;
• Wide-area voltage stability support using DERs;
• Voltage and frequency ride-through settings for smart

inverters;
• Real-time co-simulation of electric power systems and

communication networks;
• Communication architecture evaluation for high

penetrations of solar;
• Centralized vs. distributed control paradigms to

prevent voltage stability collapse;
• Wide-area monitoring, protection, and control;
• Impacts of DERs on wholesale market operations;
• Mitigating transmission-distribution interface

congestion through demand-side management;
• Regional coordinated electric vehicle charging; and
• Real-time coordination of large-scale PV and energy

storage.

The HELICs team then evaluated these use cases to
determine the key requirements for the co-simulation
framework:

• Highly scalable: able to support the co-simulation of
2–100,000+ federates, thus supporting the entire range
from small-scale interaction studies to interconnection-
scale use cases;1

• Cross-platform: supporting everything from
Windows/OSX laptops to Linux high-performance
computers to enable both use of commercial tools and
very-large scale analysis;

• Modular: able to easily build-up co-simulations from
a wide variety of tools in a number of arbitrary
scenarios;

• Minimally invasive: able to rapidly integrate diverse,
existing, domain-specific simulation tools, without
requiring extensive interface development and without
expecting roll-back support;

• Open source, but able to interact with commercial
power-systems tools;

• Able to support a wide range of simulation types:
o Discrete-event simulation (e.g., communication)
o Quasi-steady-state time series (e.g., time-varying

power flow)
o Phasor dynamics (e.g., transient stability

analysis); and
• Capable of co-iteration to enable inter-federate

convergence before advancing time, such as to ensure
transmission-distribution power flow convergence.

1 The number 100,000 is the estimated number of federates required to

capture the transmission system, sufficient distribution feeders, multiple
balancing authority area markets, control systems, and communication
interactions for the Western Interconnection.

III. EVALUATING EXISTING CO-SIMULATION FRAMEWORKS
Before embarking on a new design, we evaluated multiple

existing co-simulation frameworks to determine if an off-the-
shelf solution met the requirements and to learn best practices
and existing innovations to incorporate into HELICS.

A. Functional Mockup Interface
Functional Mock-up Interface (FMI) is a tool-independent

standard to support dynamic differential equation-based model
exchange and more general co-simulation [12] The standard
presents a well-designed API for electrical, mechanical, and
software simulation, allowing tools that have FMI capabilities
to integrate, simulate, and analyze the coupling of models. FMI
is ideal for simulating dynamic, detailed system models
because the interface can efficiently describe the detailed the
equations of such models and because many off-the-shelf tools
support such model exchange. The co-simulation interface
provides a standard for coupling multiple full simulation tools
rather than equation-based models.

For co-simulation, FMI uses a master-slave arrangement
with the master being directly analogous to the desired co-
simulation hub. Though there are multiple slave-ready models
and tools for slave generation, the set of masters is somewhat
more limited. The majority of FMI master implementations are
specialized for particular purposes, such as automotive
simulation or whole building modeling, and the available
generic co-simulation masters are typically either designed to
work with functional mock-up units (FMUs) generated by a
specific tool and/or are only available for a single platform, e.g.
Windows. Further, many generic masters would be difficult to
deploy in an HPC environment because they are Java-based.

We did evaluate the use of a Python-based FMI co-
simulation master, but quickly realized it would not scale to the
desired number of federates or provide the desired high-speed
runtime performance. It also would be difficult to support co-
iteration (multiple iterations for convergence within a single
time step), particularly with existing interfaces. Still, although
FMI did not provide an off-the-shelf solution for the TDC+M
co-simulation needs, it did provide a number of useful design
inspirations including its lightweight interface description, and
the value based data transfer mechanisms are heavily
influenced by the design of the FMI standard. As a result,
HELICS plans to directly support FMUs, thereby providing
access to a range of existing models and controls.

B. High-Level Architecture
High-Level Architecture (HLA) is a U.S. Department of

Defense specification for co-simulation [13]–[15]. HLA targets
distributed simulations with support for multiple programming
languages and platforms. In HLA, the run-time infrastructure
(RTI) provides time synchronization and communication
among the federated simulators. Multiple implementations
exist, including several open-source versions.

A principle concern was the ability of the HLA RTI to scale
to the size of problems of interest (100,000 federates). Previous
research highlighted performance concerns with HLA and
proposed innovative high-performance HLA RTI
implementations, but these do not appear to be production
ready [16], [17]. Of the well-supported open-source HLA

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
2

implementations, previous studies showed that the CERTI
HLA-based Ptolemy framework scaled reasonably well for
thousands of actors [18]. However, the CERTI HLA RTI uses a
centralized process (called the RTIG) to which all federates
connect when registering [19], [20]. The connection to the
RTIG is managed through a separate process (RTIA) that is
launched during federate initialization; each launched federate
thus has two processes: the federate and an RTIA. The
centralized architecture using a single RTIG process raises
concerns about very large scaling.

To evaluate larger-scale simulations, we performed
additional scaling tests on the CERTI HLA RTI directly. We
expanded a simple process/controller example program from
the CERTI HLA RTI distribution to support multiple client
federates interacting with one controller federate. For our
indented problem space, the controller federate approximates a
transmission system, and the client federate approximates a
distribution system. Our extensions supported an arbitrary
number of distribution systems. Data was exchanged at 1 Hz
for 300 seconds resulting in 300 message exchanges per
simulation. Though an extremely limited test, it enabled a
quick evaluation of how well the CERTI RTI RTIG could
launch and run a large number of federates. The study used
Lawrence Livermore National Laboratory’s Cab system, a
standard Linux cluster machine with 1,200 batch nodes each
with 2 Intel 8-core Xeon E5-2670 computer processing units
and 32 GB of memory. Nodes are interconnected with a high-
speed InfiniBand network.

We evaluated “weak” scaling—how performance changes
when computing resources are increased proportionally to
problem size. This scaling is important for many TDC+M
studies of interest because with off-the-shelf tools, the amount
of available memory can drive a need to scale to large numbers
of nodes. For example, past integrated transmission-distribution
simulations have found that typical GridLAB-D distribution
models use approximately 1 GB of memory each [21]. The
available large-scale (1,000 or more nodes) systems at the U.S.
Department of Energy national laboratories have 24–64 GB per
node, with 12–32 cores per node. Using these observations as a
guide, we chose to launch 64 distribution stand-in processes per
node and scale to the number of nodes used; the transmission
and RTGI processes where run on a separate node. Fig. 1
shows the total run time for the simulation with 64–1,024
distribution systems (2–17 compute nodes). The runs do not
scale well; ideally, the time should be constant. At larger
scales, we observed failures to launch because federates
attempted to contact the single RTGI process. Extrapolating the
curve shows that running 100,000 federates would be
infeasible.

In addition to scalability, we were interested in portability
across platforms. To evaluate portability beyond X86 cluster
supercomputers, we attempted to build CERTI HLA on an
IBM BlueGene architecture, but had to abandon the effort
because of the number of dependencies required by CERTI
HLA RTI and the cross-compiling environment on the IBM
BlueGene machine. We also found a compilation bug in the
implementation for big endian architectures indicating that
CERTI is not routinely compiled/tested on PowerPC machines.
Portability to architectures other than X86 clusters is interesting

because several of the new exascale architectures are not based
on X86.

Despite these shortcomings, HLA has many powerful
design features that we are adopting in HELICS.. The HLA’s
community’s extensive work on time synchronization [22] is
heavily influencing the time-advancement strategies in
HELICS, and. we are employing the conservative time-
synchronization approach adopted by HLA. The use of a
callback-based API is also being leveraged to help avoid
polling and busy loops.

C. Framework for Network Co-Simulation
The Framework for Network Co-simulation (FNCS) [10] is

a lightweight co-simulation platform implemented in C++ with
interfaces for C, Java, MATLAB, and Python. The FNCS API
features an intentionally small set of functions for data
exchange and time synchronization. Although FNCS is not an
implementation of HLA, it borrows the ideas from a publish-
and-subscribe interface and requests time advances. All data
exchanges and time requests are made to a centralized broker
application running as a separate process. Inter-process
communication uses the flexible ZeroMQ library [23].

Fig. 1. “Weak” scaling study on 2-17 compute nodes with 64 federates per
client node shows poor scalability because time is nearly proportional to the
number of distribution systems rather than remaining nearly constant.

FNCS has been tested as part of a domain simulation [24]
as well as stress-tested for this work. The domain test consisted
of a transactive control layered over integrated transmission
and distribution systems. The case studies involved 200
distribution systems modeled by one instance of GridLAB-D
[6] each. Although the case studies were relatively small, the
scaling study in [24] showed that FNCS also scales well for a
few thousand federates. For this paper, we further explored
FNCS support for tens of thousands of simple federates, but the
performance was too slow. Further, these simple federates did
not perform any real simulation and subscribed to two data
streams each, so we expect that a real domain simulation of this
size would perform even worse.

In addition to scalability concerns, FNCS is missing some
key capabilities needed for our complete set of use cases,
notably FNCS does not support co-iteration within a time step
to guarantee convergence among federates. The streamlined
interface presented by FNCS, though useful for rapid
prototyping, also uses character strings for all communication,

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
3

presenting a large overhead and conversion performance
challenges. Given the scalability issues, as well as its limited
interface and capabilities, we opted not to use FNCS as the
basis for HELICS.

IV. FRAMEWORK DESIGN
Based on this evaluation, the team determined that existing

co-simulation frameworks do not meet all of the identified
requirements, so we embarked on the design of HELICS.

A. A Layered Approach
To optimize performance; speed development; and enable

clean, modular maintainability, HELICS utilizes a layered
architecture (Fig. 2). Clear Application Programming Interfaces
(APIs) between each layer, enable development of the
individual layers to occur in parallel, with each layer free to
make internal changes and optimize performance without
impacting the other layers. The rest of this section describes
these layers in more detail from the bottom up.

Fig. 2. The layered co-simulation architecture showing key subcomponents
in each layer.

B. Platform
Careful thought is required at this lowest level to ensure

that HELICS can work across operating systems—including
Windows, Linux, and Macs—and across computational scales,
from small laptops to large high-performance computer (HPC)
clusters. To support a wide variety of platforms, two distinct
communication interfaces are supported. On HPC systems with
a low latency interconnect, the commonly used Message
Passing Interface (MPI) is supported for inter-federate
communication; on other systems where MPI is not available
or necessary, ZeroMQ will be used. The choice will be made
when the core and associated communication API is
instantiated.

The core and API-related software are also being written in
cross-platform C++, using C++14 features. A C-based interface
will be available as a shared library for applications that either
cannot use C++ or access a sufficient compiler. The build
system itself uses CMake, and it is tested regularly on multiple
platforms. The structure of the platform itself is designed to
integrate easily with existing packages and build on experience
with previous generations of co-simulation tools.

C. Core Layer
The core layer represents the minimum set of features

necessary for a co-simulation, including time management and
data exchange for combined discrete event (e.g.
communication) and time series (e.g. power system)
simulations. These features directly influence the run-time
mechanics and cannot be abstracted to a higher level. The core
layer represents an abstract interface that will be implemented
by both a ZeroMQ- and MPI-based backend, giving maximum
performance for desktops, small clusters, and the high-
performance networks of supercomputers.

The core layer contains constructs to model value based and
message based interactions from defined end points. In addition
to end-point registration and explicit pairwise communication
among end points, an end-point filter can be attached to
orchestrate special operations, such as communication latency
or complex message interactions. By exposing the semantics of
end-point communication, our core layer is ready to explicitly
model network communication within the application layer.

The core layer features semantics similar to other co-
simulation standards. After initializing the core layer, federates
are registered to the federation. Multiple federates can be
registered within the same process, taking advantage of modern
multithreading constructs. Time management is a key
capability, allowing federates to operate with differing
timescales as well as co-iterate at any time step to achieve
convergence. Time management is coordinated via 2 global
synchronization calls to enter initialization and execution
states, and a timeRequest function to indicate to the core that
the federate is ready to proceed to the next time step or that it
requires further co-iteration exchange The core coordinates
among the different federates to determine which federates can
proceed in an ordered manner. Application Layer

The application layer is the primary low-level interface
among application federates interacting with the co-simulation
framework and the core API. Although the core API
communication layer was designed to be simple and generic,
the application layer API is intended to make it easier for
generic applications of different types to interact in a flexible
fashion. The API defines three types of federates with different
types of interaction supported by the core.

1) Value Federates: Value federates interact through a
publish-and-subscribe mechanism: outputs are published, and
inputs are subscribed. The actual nature of the values is
arbitrary and includes explicit support for both generic data
blocks and many common types, such as floating-point
numbers, integers, strings, complex numbers, and arrays.
These types can be checked for matching types and will
support unit conversion. The federate API also provides
functions to query if a value is updated, obtain the value, and
note the time of the update. Classes are also available that
encapsulate the interactions of a single subscription or
publication. The structure and definitions for a value federate
are intended to match the features of an FMU for co-
simulation, and an FMI-specific application will be made
available to directly support co-simulation FMUs. Value
federates also support iterative loops or superdense time steps
in the FMU nomenclature.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
4

2) Message Federates: While the value federate is targeted
at applications and components interacting at a direct physical
level, the message federate is intended to interact with
federates simulating an ICT exchange. Unlike value
publication in a value federate, which has no specific
destination; a message has a specific source, destination, and
time sent. These messages could represent communication
packets, events, or anything else that two federates mutually
understand. A message federate defines end points that are the
sources and destinations for the message-based federate
interaction. An end point may also subscribe to a value-based
publication.

3) Message Filter Federates: The third type of federate
arose from a requirement to support communication
simulations at various levels without forcing the other message
federates to be aware of them. This concept requires the ability
of a federate to insert itself into the interaction paths. The
message filter federate builds on a message federate to add
additional ability to modify or manipulate a message itself or
its timing. Message filters can be defined for sources and/or
destinations. For example, consider modeling the interaction
of an automatic generation control (AGC) system with a
generator. In the simple model, control signals are sent as
messages from the AGC controller directly to the generator. A
more complex co-simulation requires that the full
communication path between the generator and controller be
modeled. With the message filter API, filters can be inserted to
translate the orginal message to a specific communication
packet format, to send the packet through a full
communication network simulation, and to decode the packet
back to the raw signal the generator model itself understands,
all without changing anything in the generator or controller
federates. The message structure itself is such that it keeps a
record of the original source and destination end points as well
as the most recent intermediate end point. This structure
allows for things such as message delays, random loss,
message translation, or full-stack communication simulation to
be included in a co-simulation without requiring existing
federates to be aware of the individual filter manipulations.

4) Programming Interfaces: A number of programming
options will be available to allow user flexibility to fit with a
variety of existing simulators. The primary interface is
developed in C++, and a C++ API will be available making
use of C++14 standards. A C shared library will be available
to support applications requiring a simpler, C-style interface
and for alternate compiler support. In addition, MATLAB and
Python API’s will also be available. The API package will
also include a number of supporting classes that can directly
translate numerical values or other objects in C++ to published
values or messages and that otherwise attempt to make low-
level interactions with the co-simulation framework as easy as
possible.

5) Interaction with Existing Co-simulation Standards:
Although the underlying core will not interact directly with
existing co-simulation standards such as FMI and HLA, the
application layer will expose interfaces for these standards.
Since, the designs and experience with those standards had a
significant influence on the structure and design of HELICS,
many functions and features from these standards map directly

to concepts and functions in the core and application layers.
Many FMUs for co-simulations functions will map to the
concepts in the value federate; and through the FMU-specific
application, the co-simulation framework will be able to act as
an FMU master, seamlessly supporting the interaction of FMU
co-simulation objects with other tools not based on FMU. The
full HLA architecture is much richer, but we also intend to
introduce HLA-oriented support for corresponding features.

6) Interface Flexibility and Local Routing: The internal
design of HELICS allows for intermediaries between different
layers. An application can opt to include references to the core
HELICS libraries directly ; or it can connect through an
application API layer, which could include an independently
executing application wrapped around the core API. This
flexibility in the framework is designed to improve the scaling
of the application as a whole, and provide sufficient flexibility
to adapt to different types of co-simulation.

D. Simulators Layer
Although the co-simulation environment will support any

federate that meets the minimum requirements, it is envisioned
that many TDC+M applications will rely heavily on a common
style of simulators. As a result, HELICS defines two classes of
simulator interfaces:

1. General purpose, including HLA and FMI co-simulation
interface support for arbitrary user-provided federates such
as custom controllers; and

2. Optimized interfaces for common TDC+M application
types:
• Transmission simulator (e.g., GridDyn, PSS/E),
• Distribution simulator (e.g., GridLAB-D, OpenDSS,

CYMEDIST),
• Communication simulator (e.g., simple delays, ns-3),

and
• Market simulator (e.g., Flexible Energy Scheduling

Tool for Integrating Variable Generation, or FESTIV
[25]).

To facilitate these common use cases, the simulator layer
provides two key extensions: standardized data exchange
patterns (variable naming, types, timing/synchronization, etc.)
for these simulators in common configurations, and a higher-
level API for certain common TDC+M co-simulation
operations (e.g., three-phase to positive-sequence voltage
send/receive).

E. User Interface Layer
Often with integrated co-simulations, particularly at

medium to large scales, the simulation itself proves to be the
easy part, with considerable more effort required to assemble
all of the required input data, organize and run the co-
simulation, and parse the results [21]. The HELICS user
interface layer attempts to streamline these processes by
providing tools and standardized approaches to:

• Manage and convert input data;
• Structure folders;
• Generate scenarios and populate required data;
• Automate simulation runs;

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
5

• Display simulation status and progress; and
• Collect, visualize, and compare results.

The user interface layer builds on similar past efforts
among the team including [9], [26].

V. CONCLUSIONS AND NEXT STEPS
Next-generation analysis of modern electric power systems

increasingly requires capturing TDC+M interactions; however,
despite past research successes, no known existing
environment is fully capable of such analysis, particularly at a
very large scale and across multiple-platforms.

As described above, the new HELICS framework will
allow for unprecedented ability to simulate modern power
systems. Through co-simulation, it will enable leveraging
existing off-the-shelf tools for TDC+M, user defined controls
and other models. Its layered architecture enables both high-
performance simuations and efficient software development. It
also makes it possible to run HELICS on a wide range of
platforms, from Windows/OSX laptops to Linux-based HPCs.

With the initial open-source release of HELICS (scheduled
for mid-2017), the key components for each layer will be in
place, along with links to a core set of simulators enabling a
number of next steps. Futher development priorities include
documentation, integrating advanced features, evaluating the
scalability of the tool, developing interfaces for additional
simulators, and establishing an active community of
contributors. This initial version of HELICS will also enable
novel research and analysis, including evaluating a range of use
cases and further demonstrating and characterizing the value of
integrated TDC+M analysis.

REFERENCES
[1] P. Palensky, E. Widl, and A. Elsheikh, “Simulating Cyber-Physical

Energy Systems: Challenges, Tools and Methods,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 44, no. 3, pp. 318–326, Mar. 2014.

[2] B. M. Kelley, P. Top, S. G. Smith, C. S. Woodward, and L. Min, “A
federated simulation toolkit for electric power grid and communication
network co-simulation,” in 2015 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES), 2015, pp. 1–6.

[3] J. C. Fuller, S. Ciraci, J. A. Daily, A. R. Fisher, and M. Hauer,
“Communication simulations for power system applications,” in 2013
Workshop on Modeling and Simulation of Cyber-Physical Energy
Systems (MSCPES), 2013, pp. 1–6.

[4] P. Evans and New Power Technologies, “Verification of Energynet®
Methodology,” California Energy Commission, PIER Energy Systems
Integration Program CEC‐500‐2010‐021, 2010.

[5] G. Heydt, K. Hedman, and S. Oren, “The Development and Application
of a Distribution Class LMP Index,” PSERC, Tempe, AZ, PSERC
Publication 13–38, Jul. 2013.

[6] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An Agent-
Based Simulation Framework for Smart Grids,” J. Appl. Math., vol.
2014, pp. 1–12, 2014.

[7] P. Palensky, E. Widl, M. Stifter, and A. Elsheikh, “Modeling Intelligent
Energy Systems: Co-Simulation Platform for Validating Flexible-
Demand EV Charging Management,” IEEE Trans. Smart Grid, vol. 4,
no. 4, pp. 1939–1947, Dec. 2013.

[8] K. Anderson, J. Du, A. Narayan, and A. El Gamal, “GridSpice: A
distributed simulation platform for the smart grid,” in 2013 Workshop
on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013, pp. 1–5.

[9] B. Palmintier et al., “IGMS: An Integrated ISO-to-Appliance Scale Grid
Modeling System,” IEEE Trans. Smart Grid, no. Special Issue on High

Performance Computing (HPC) Applications for a More Resilient and
Efficient Power Grid, 2016.

[10] S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, and K. Agarwal,
“FNCS: A Framework for Power System and Communication Networks
Co-simulation,” in Proceedings of the Symposium on Theory of
Modeling & Simulation - DEVS Integrative, San Diego, CA, USA,
2014, p. 36:1–36:8.

[11] U.S. Department of Energy, “Grid Modernization Lab Consortium.”
[Online]. Available: https://gridmod.labworks.org/. [Accessed: 09-Feb-
2017].

[12] T. Blockwitz et al., “Functional Mockup Interface 2.0: The Standard for
Tool independent Exchange of Simulation Models,” 2012, pp. 173–184.

[13] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Framework and Rules. IEEE Standard 1516, 2010.

[14] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Federate Interface Specification. IEEE Standard
1516.1, 2010.

[15] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)-- Object Model Template (OMT) Specification.
IEEE Standard 1516.2, 2010.

[16] R. Fujimoto, T. McLean, K. Perumalla, and I. Tacic, “Design of High
Performance RTI Software,” in Proceedings of the Fourth IEEE
International Workshop on Distributed Simulation and Real-Time
Applications, Washington, DC, USA, 2000, p. 89-.

[17] H. Liang, Y. Yao, X. Mu, and L. Wang, “Design and Implementation of
MPI-Based Communication Mechanism in HPC-RTI,” in Recent
Advances in Computer Science and Information Engineering: Volume 3,
Z. Qian, L. Cao, W. Su, T. Wang, and H. Yang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, p. 121—126.

[18] A. V. Brito and A. V. Negreiros, “Allowing Large-Scale Systems
Evaluation with Ptolemy through Distributed Simulation,” in 2013 III
Brazilian Symposium on Computing Systems Engineering, 2013, pp.
53–58.

[19] E. Noulard, J.-Y. Rousselot, and P. Siron, “CERTI, an open source RTI,
why and how,” in Spring Simulation Interoperability Workshop, 2009,
pp. 23–27.

[20] “CERTI - Summary,” 2017. [Online]. Available:
https://savannah.nongnu.org/projects/certi..

[21] B. Palmintier, E. Hale, B.-M. Hodge, K. Baker, and T. Hansen,
“Experiences integrating transmission and distribution simulations for
DERs with the Integrated Grid Modeling System (IGMS),” in
Proceedings of the 19th Power Systems Computation Conference
(PSCC’16), Genoa, Italy, 2016.

[22] R. M. Fujimoto, “Time management in the high level architecture,”
Simulation, vol. 71, no. 6, pp. 388–400, 1998.

[23] M. Sustrik, “ZeroMQ: The Design of Messaging Middleware,”
ZeroMQ: The Design of Messaging Middleware. [Online]. Available:
http://www.drdobbs.com/architecture-and-design/zeromq-the-design-of-
messaging-middlewar/240165684#.

[24] J. Hansen, T. Edgar, and J. Daily, “Evaluating Transactive Controls of
Integrated Transmission and Distribution Systems Using the Framework
for Network Co-Simulation,” presented at the American Control
Conference, Seattle, WA, 2017.

[25] E. Ela and M. O’Malley, “Studying the Variability and Uncertainty
Impacts of Variable Generation at Multiple Timescales,” IEEE Trans.
Power Syst., vol. 27, no. 3, pp. 1324–1333, Aug. 2012.

[26] “Arion.” [Online]. Available: https://github.com/pnnl/arion.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications
6

