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Abstract—Accurately modeling stationary battery storage be-
havior is crucial to pursuing cost-effective distributed energy
resource opportunities. In this paper, a lithium-ion battery
model was derived for building-integrated battery use cases. The
proposed battery model aims to balance speed and accuracy
when modeling battery behavior for real-time predictive control
and optimization. To achieve these goals, a mixed modeling
approach incorporates regression fits to experimental data and
an equivalent circuit to model battery behavior.

The proposed battery model is validated through comparison
to manufacturer data. Additionally, a dynamic test case demon-
strates the effects of using regression models to represent cycling
losses and capacity fading. A proof-of-concept optimization test
case with time-of-use pricing is performed to demonstrate how
the battery model could be included in an optimization frame-
work.

Index Terms—Energy Storage, Batteries, Lithium-Ion, Model-
ing, Analytical Models, System Integration, Buildings, Optimiza-
tion.

I. INTRODUCTION

Stationary battery storage systems have the potential to
provide backup power during outages, reduce electricity costs,
and support more integration of sustainable energy sources.
Due to these benefits, home battery technologies have been
gaining more attention from consumers. In addition, station-
ary batteries are being sought to overcome grid-integration
challenges, including difficulties in economic management
by utilities, infrastructure management and grid instabilities.
We expect that batteries will be used in conjunction with
controllable, dynamic building loads to increase the adoption
of renewable energy as well as to manage building energy
costs and grid infrastructure risks.

Due to the high cost of battery storage, it is important
to optimize how batteries are used to maximize return on
investment. We set out to develop a battery model for real-
time simulations which can be applied to predictive control
scenarios. Dynamic control of loads can be used in parallel to

study hybrid load shifting for electricity optimization in time-
of-use pricing, which has the potential to mutually benefit both
utilities and end users.

Although battery models for electric vehicle and large-scale
grid applications are prominent in the literature, the modeling
of stationary storage with a particular application to control
and optimization has not been as widely studied. Use within
an optimization solver motivates a computationally efficient
battery model with appropriate fidelity. This paper describes
an approach for state-of-charge (SOC) and lifetime estimation
of a battery while considering simulation efficiency. Section
II of this paper summarizes literature on battery modeling
applications and approaches. Section III explains the proposed
modeling approach used in this paper, including modeling
assumptions for parameters such as battery internal resistance,
SOC operation range, and capacity fading. In Section IV, the
methodology for validating the battery model against other
models is explained. Section V shows how the specific battery
model presented in this paper was converted to units of power
and energy. In Section VI, an example of how to apply this
stationary battery model to avoid incurring additional electric-
ity costs in an optimization scheme is presented. Finally, in
Section VII, performance comparisons among battery models
are discussed, and potential directions for future work in this
area are given.

II. BACKGROUND

A. Lithium-Ion Batteries

Lithium-ion batteries are commonly used in portable elec-
tronics, but recently they have gained popularity in larger scale
applications such as grid-tied systems and electric vehicles.
When selecting a battery for residential applications, lifetime
and maintenance should be considered. Lithium-ion battery
packs have a higher round-trip efficiency than many other
alternatives, which can lead to a longer lifetime compared to
other battery types such as lead acid [1]. Other benefits of
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lithium-ion batteries include lower volume, weight, tempera-
ture sensitivity, and maintenance.

B. Battery Modeling Applications

1) Grid-Scale: Computational efficiency is a priority for
grid-scale simulations of battery models because of the volume
of loads to simulate. Equation (1) shows a common grid-scale
battery model for calculating the voltage of a battery based on
charge and discharge efficiency [2], [3].

EB(t) = E(0)+
T

∑
t=1

E(t)

E(t) = PB(t)∆t

Emin 6 E(t)6 Emax

(1)

where E(0) represents the initial battery energy, E(t) repre-
sents the battery energy at time t, ∆t represents the time in
between control decisions, T represents the length of time
that the battery is used, and PB(t) represents the instantaneous
power of the battery at time t. Emin and Emax represent the
minimum and maximum stored energy limits, respectively,
based on the SOC operation range for the battery [2], [3].

Although (1) is simple to compute because it is a first-order
linear equation, this representation omits the consideration of
the effects of temperature on internal resistance and capacity
fading. Accurate battery lifetime and SOC prediction were the
motivation behind the battery model described in this paper.

2) Electric Vehicles (EVs): Battery storage plays a signifi-
cant role in the overall efficiency of EVs. Models for EVs have
a greater variability in charging and discharging cycles than
grid-scale battery storage due to the effects of acceleration
and deceleration; therefore, a more detailed model than (1) is
desirable for EVs.

Voltage-current equivalent circuit models describe how the
terminal voltage of the battery changes with current. Shep-
herd’s model [4] is a well-known voltage-current model for
constant current discharge, as shown in (2).

Vbatt(t) = E0 −K
Q

Q− it
i(t)−RO ∗ i(t) (2)

where E0 is the constant battery voltage (V ), K is polarization
constant (V/Ah), Q is battery capacity (Ah), Vbatt(t) is terminal
battery voltage (V ) at time t, it is discharged capacity (Ah),
and, i(t) is the dynamic current (A) at time t. These terms will
be explained in more detail later on in the paper.

To derive battery parameters for Shepherd’s model, the
discharge curve from the battery manufacturer can be used
[4]. An idealized discharge curve is shown in Figure 1. The
three points shown on the discharge curve in Figure 1 can be
used to determine the constant parameters K, RO, and E0 in
(1).

Shepherd’s battery model is often modified to expose ex-
ponential battery behavior in more detail [5], [6]. The charge
and discharge equations for the modified Shepherd’s model
are shown in (3) and (4), respectively [5].

Fig. 1. Example of idealized battery discharge curve.

Vbatt(t) = E0 −K
Q

it −0.1Q
(i(t)+ i∗)−RO ∗ i(t)

+Ae−B∗it
(3)

Vbatt(t) = E0 −K
Q

Q− it
(i(t)+ i∗)−RO ∗ i(t)

+Ae−B∗it
(4)

where A represents the amplitude in the exponential zone
(V ), B represents the time constant inverse in the exponential
zone (Ah−1), and i∗ represents the current filtered through
polarization resistance (A). Similar to (1), parameters A and
B can also be determined from the manufacturing discharge
curve.

Grid-scale and EV applications are only two of many ways
to use battery storage. These applications were discussed to
provide examples of general approaches to battery modeling.
As shown in discussing these two applications, the selected
model depends heavily on the given application. In this paper,
we focus on the development of a residential stationary battery
model.

C. Equivalent Circuit Models

A wide range of battery modeling approaches depend on
what details are desired from the model, including experi-
mental, electrochemical, and electric circuit-based models [5].
Equivalent circuit models are simple and can represent steady-
state and dynamic battery behavior [5], [6]. An equivalent
circuit approach is preferable for modeling stationary battery
behavior for predictive control because of its faster simulation
time [7]. With higher order models, the optimization problem
is rendered nonconvex, and it may not be solved in an
efficient manner. This is particularly important for real-time
optimization and control on short timescales.

The Rint equivalent circuit model contains a constant voltage
source in series with a resistor, as shown in Figure 2 [8]. In
Figure 2, i(t) represents the battery’s internal dynamic current
(A), RO represents the battery’s internal ohmic resistance
(ohms), Vbatt represents the terminal output voltage of the
battery, and VOC represents the applied input voltage to the
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Fig. 2. Circuit diagram of Rint equivalent circuit model.

battery. The terminal voltage output for the Rint model is
shown below:

Vbatt(t) =VOC −RO ∗ i(t) (5)

This model does not include the battery SOC directly;
however, the battery SOC can be represented as a function
of the open-circuit voltage [5]. Other equivalent circuits in
the literature model the effects of polarization in the battery
using RC parallel circuits. Although these models may be
more accurate than the Rint model, the differential equations
that represent capacitors require greater simulation times. This
cost outweighed the benefits for our purpose, so we selected
the Rint equivalent circuit.

III. PROPOSED MODELING APPROACH

A. Voltage-Current Equations

Regression fits to manufacturing data and an equivalent
circuit were used to represent the charging and discharging be-
havior of the battery. The proposed voltage-current equations
are a mix between Shepherd’s model in (2) and the modified
versions of Shepherd’s model in (3) and (4). Parameters A
and B in (3) and (4) are derived from the points found in the
exponential zone of the idealized discharge curve shown in
Figure 1. The particular discharge curve used in this paper is
shown in Figure 3.

As shown in Figure 3, batteries can be discharged at
different rates of current. C-rates refer to the rate of constant
current that will cause the battery to discharge in a certain
amount of hours. For example, a 0.2C rate represents the rate
of current required to drain the battery in five hours, and a 1C
rate represents the rate of current required to drain the battery
in one hour.

To calculate parameters for the voltage-current relationships
in this model, three points from Figure 3 were selected based
on the shape of the idealized curve shown in Figure 1. The
three pairs of voltage and capacity values for the 1C rate are
shown below:

(Q f ull ,Vf ull) = (31Ah,4.18V )

(Qexp,Vexp) = (22.5Ah,3.515V )

(Qnom,Vnom) = (29.2Ah,3.35V )

Fig. 3. Discharge curve for stationary battery at various C-rates.

The exponential zone of the discharge curve shown in
Figure 3 is linear compared to the idealized curve shown in
Figure 1. In this case, Vexp was estimated as the voltage at
approximately 15% of the full capacity of the battery.

Next, the following battery parameter values were calculated
based on these three pairs of points from the discharge curve:

1) Exponential Voltage Amplitude Constant (A, in units
of V ): The amplitude of the exponential region, or A, is
calculated with (6) [6].

2) Time Constant Inverse (B, in units of Ah−1): The charge
at the end of the exponential zone of the battery’s discharge
curve, or B, is calculated using (7) [6]. The scalar value of
2.3 in (7) was used to improve the fit to the particular battery
data shown in Figure 3.

3) Polarization Constant (K, in units of V/Ah): The polar-
ization constant, K, is calculated using Vf ull and the end of
the nominal zone of the discharge curve, as shown in (8) [6].
Similar to (7), the scalar value of 0.065 in (8) was used to
improve the fit to the battery discussed in this paper.

4) Internal Resistance (R, in units of Ω): The internal
resistance of the battery at steady-state current is represented
by R, as shown in (9) [6], where ν represents the efficiency of
the battery, and i represents the nominal current used to test
the steady-state discharge of the battery.

5) Battery Constant Voltage (E0, in units of V ): The battery
constant voltage represents the value when the battery is
close to completely discharged and no current is flowing. The
relationship used to calculate E0 is shown in (10) [6].

The resulting voltage-current equation for steady-state dis-
charge representation of the battery is shown in (11) [6],
where i represents a constant current input at a given C-
rate. The dynamic charging and discharging relationships of
the battery model are shown in (12) and (13), respectively
[5]. The term i∗, which represents the filtered current through
polarization resistance in (3) and (4), was replaced with i(t)
because polarization resistance effects were not considered for
the proposed model.
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A =Vf ull −Vexp (6)

B =
2.3

Qexp
(7)

K = 0.065∗ [Vf ull −Vnom+

A(e−B∗Qnom −1)]∗
Q f ull −Qnom

Qnom

(8)

R =Vnom(
1−ν

0.2∗Qnom
) (9)

E0 =Vf ull +K +R∗ i−A (10)

Vbatt(t) = E0 −K
Q

it −0.1Q
+Ae−B∗it −RO ∗ i (11)

Vbatt(t) =E0−K
Q

it −0.1Q
(it+ i(t))+Ae−B∗it −RO∗ i(t) (12)

Vbatt(t) = E0 −K
Q

Q− it
(it + i(t))+Ae−B∗it −RO ∗ i(t) (13)

B. Assumptions for Model Parameters

1) Internal Resistance: In the proposed battery model, the
internal resistance of the battery was assumed to be a function
of both the temperature and SOC. With data provided by
the manufacturer of the lithium-ion battery, a multiple linear
regression relationship was determined to represent RO. To
prevent over-fitting the data, a first-order regression fit was
selected, as shown below:

RO = c1 ∗T + c2 ∗ it + c3 (14)

where c1, c2, and c3 are constants determined by multiple
linear regression, T represents temperature, and it is the
battery’s discharged capacity (Ah).

2) Capacity Fading: Similar to how the internal resistance
of the battery was modeled, a multiple linear regression
relationship was formed for Q, the battery capacity, as a
function of the temperature and the total number of cycles
of the battery. The regression model was kept as a first-order
linear equation to prevent over-fitting the data and to optimize
the simulation time of the overall model.

3) State-of-Charge Range: Due to the degradation effects
of the battery, such as polarization and capacity fading, the
battery was limited to operating within the linear region of its
nominal discharge curve, as shown in Figure 3. The discharge
curve’s linear region was estimated to be between 20% and
85% of the full capacity of each battery cell, based on Figure
1; therefore, the model was limited to charge and discharge
between 20% and 85% SOC.

4) Temperature Range: In this paper, temperature refers to
the ambient temperature inside the cabinet for the stationary
battery. The temperature range for battery operation can typ-
ically be found in the battery’s datasheet. The range used in
this paper was between -10◦C and 45◦C. Operating outside
of the range tested and provided by the manufacturer can
significantly degrade the capacity of the battery over time.

To summarize these considerations for model parameters,
Figure 4 shows a flow diagram of the order of operations
to determine the dynamic behavior of the battery. At each
iteration in the dynamic battery model simulation, capacity
fading and internal resistance effects were updated with the
regression models, as previously discussed.

Fig. 4. Flow diagram explaining how to calculate the proposed battery model
output, Vbatt .

The battery output voltage was updated at each time step
using (12) and (13). The SOC was estimated with (15) and
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(16), as shown below:

SOC(t) = SOC(t −1)+
i(t) ·∆t

Q
, if Q is in Ah (15)

SOC(t) = SOC(t −1)+
P(t) ·∆t

Q
, if Q is in Wh (16)

where ∆t indicates the amount of time between timesteps t−1
and t. The battery behavior is continually updated until the
remaining capacity is no longer usable, or when Q ≤ Qmin,
where Qmin represents the minimum allowable battery capac-
ity. In the proposed model, Qmin was set to the capacity at
20% SOC on the discharge curve shown in Figure 3.

IV. MODEL VALIDATION

A. Steady-State Behavior

To validate the battery model accuracy against the manu-
facturer’s discharge curve, a steady-state current was used as
an input. The discharge curve for the battery used in steady-
state validation is shown in Figure 3. The simulation results of
the steady-state validation were superimposed on the original
manufacturing data, as shown in Figure 5.

In Figure 5, the shaded region represents the operational
SOC range of the battery model. Thus, the accuracy of the
fit between the simulated curve and manufacturing curve is
most crucial within the allowable SOC range for the battery,
which was selected to be between 20% (6.2 Ah) and 85%
(26.35 Ah). As shown in Figure 5, the error between curves
within the chosen allowable SOC range for the battery is
negligible. Upon verifying the fit between the experimental
battery manufacturing data and the simulated discharge curve,
the steady-state simulation parameters are used to predict the
dynamic behavior of the battery.

Fig. 5. Steady-state discharge curve output plotted against the manufacturer’s
data at a rate of 1C as an example.

B. Dynamic Behavior

To evaluate the model discussed in this paper, dynamic
battery behavior was validated with different manufacturing
data but the same battery type. Temperature effects were not
considered in this test case, but could be included using the
regression model procedure described in Section III. To test

the proposed battery model with a dynamic test case, results
for a 2.3 V , 3.3 Ah lithium-ion EV battery model were used for
comparison, as described in [5]. Obtained from the battery’s
discharge curve, this battery had the following steady-state
parameters [5]: E0 = 3.366 V , K = 0.0076 V/Ah, A = 0.26422
V , B = 26.5487 Ah−1, and R = 0.01 Ω. Using these parameters,
the dynamic test case from [5] was also simulated with the
model proposed in this paper for comparison, as shown in
Figure 6.
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Fig. 6. Dynamic test case for a 2.3 V , 3.3 Ah lithium-ion battery.

The test case shown in Figure 6 was simulated to represent
battery operation over the span of 200 minutes. For this test
case, because the current input in Figure 6 causes a self-
sustaining cycling of the battery, the Vbatt output shows a
repeating pattern without any degradation effects to the output
during this period of time. The regression model for the
internal resistance of the battery contributed the most to the
error between the original model and the proposed model
shown in Figure 6.

V. EXPRESSING STATIONARY BATTERY MODEL IN THE
POWER AND ENERGY DOMAIN

In the field of electrochemistry, it is conventional to model
batteries in terms of current and voltage. However, in modeling
a stationary battery for demand-side management scenarios
in power and energy systems, it is more useful to express
the battery model in terms of power and energy. The type of
experimental data that is provided about a given battery can
vary depending on the battery manufacturer. In the example
described in this paper, the battery manufacturer published
both C-rate and CP-rate steady-state discharge curves for
the same battery. Similar to C-rate terminology previously
explained in Section III, CP-rates refer to the rate of constant
power that will cause the battery to discharge in a certain
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amount of hours. To compare between existing battery models,
the C-rate curve was used to first develop the model described
in this paper.

To represent this model in the power and energy domain,
voltage and current values derived from Figure 3 were used to
convert the proposed model to units of Wh for the particular
battery discussed in this paper. Figure 7 shows a CP-rate
plot for the battery, where lines with a negative slope denote
the discharge curves and lines with a positive slope denote
the charging curves. As shown in Figure 7, voltage values
obtained from the y-axis of the C-rate plot in Figure 3
with approximations of energy values as the x-axis were
superimposed on top of the original CP-rate curve. To calculate
energy (Wh) points from the original capacity (Ah) data, the
Newton-Raphson estimation method was used, as shown in
(17) below:

f (t) = f (t −1)+ x(t)∗ [y(t)− y(t −1)] (17)

where f(t) represents energy in Wh, x(t) represents voltage,
and y(t) represents capacity in Ah. Approximations for CP-
rate curves were plotted against the manufacturer’s original
CP-rate data, as shown in Figure 7.

Fig. 7. Validation curve for converting original data from units of Ah to
Wh. The lines are the original battery manufacturer’s CP-rate curves, and the
points are approximations to each curve based on the approach described in
Section V of this paper.

Although the approximations shown in Figure 7 show a
margin of error between the actual manufacturing curves,
this is likely due to how these approximations assume linear
losses between each different discharge rate. For this particular
battery, the CP-rate curve approximations shown in Figure 7
validate that the C-rate discharge curve in Figure 3 can be
transformed from units of Ah to Wh to generally represent
the battery’s behavior in the power and energy domain, which
is useful for many applications in power and energy systems
optimization and control.

We further note that greater error appears to be incurred at
higher discharge rates, supporting the above finding that this

error derives from the representation of internal resistance. At
higher currents, i2R losses have a greater effect on the model
output. For our use case, the inverter discharging rate was
limited to a maximum of 0.5CP, so we have determined the
error to be acceptable.

VI. OPTIMIZATION TEST CASE

To demonstrate an example of where the aforementioned
battery model in the power and energy domain would fit into
an optimization scheme, a simple test case was performed. In
the test case, the objective was to minimize the cost of elec-
tricity drawn from the grid while maintaining power balance
between demand and generation in a residential building. It is
assumed that both load and solar irradiance predictions were
perfectly known (i.e., forecasting errors are not included here).
The optimization was performed every thirty minutes, with
the optimization variables being power charged or discharged
from the battery and power drawn from the grid. As an
example, a time-of-use (TOU) electricity price, which is twice
as expensive between the hours of 1:00 PM and 2:30 PM,
incentivizes the optimization to precharge the battery before
the price increase and utilize energy from the battery during
the peak price, as seen in Figure 8. The convention taken in
the figure is to include power ”consumption” by the home as
a positive value, thus the charging of the battery in Figure 8
is plotted as positive.

12 AM 6 AM 12 PM 6 PM 12 AM
-6

-4

-2

0

2

4

6

8

k
W

Increased Price
Solar
Power from Grid
Load
Power from Battery

Fig. 8. Total power consumption and generation over the course of a day
with 30-minute control periods.

In this case, the homeowner saved 14% on their electricity
bill due to avoiding drawing power from the grid during the
time when the electricity price doubled. Figure 9 shows the
battery state of charge (with an initial, minimum state of
charge set to 25%) over the course of a day resulting from the
charging/discharging pattern determined by the optimization
scheme.

In contrast to Figure 8, battery charging is denoted with
a negative value to be consistent with the convention in
energy storage modeling. In this simple test case, the battery
is utilized to avoid incurring higher costs during the TOU
pricing period by looking forward and anticipating the increase
in price. However, as discussed previously, the optimization
of battery controls has a wide range of applications in the
field of predictive control, from load-shifting, to supplying the
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Fig. 9. Battery model behavior during the optimization scenario.

load during demand response events, to balancing renewable
fluctuations.

VII. CONCLUSIONS

This paper demonstrates how to model SOC effects on
internal resistance and capacity fading using multiple linear
regression models that are appropriate for optimization and
predictive control. Section IV validates this process by com-
paring it to the dynamic results for an EV model from the
literature. By demonstrating a small percentage error between
the original and new battery model voltage outputs, it is shown
that dynamically modeling internal resistance and capacity
fading with regression models did not cause over-fitting of the
data. A small test case demonstrating how the use of battery
storage could avoid drawing power from the grid during peak
pricing times was performed.

To further validate the battery model proposed in this paper,
future steps involve experimentally measuring the output of a
battery and comparing it to the predicted output of the dynamic
simulation. Temperature effects were not considered in the
dynamic simulations shown in Section IV of this paper, but
in future work, the impact of temperature dependencies on
internal resistance and capacity fading should be studied. In
addition to comparing the modeling prediction to experimen-
tal measurements, the model should be tested with a more
complex optimization scenario to demonstrate its fidelity and
robustness.
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