NREL is involved in several algal biofuels projects with national and international partners funded through the U.S. Department of Energy’s (DOE’s) Bioenergy Technologies Office (BETO) and NREL’s Laboratory Directed Research and Development (LDRD) program. These projects are addressing the challenges that accompany the algal biofuels production process.

Microalgae—photosynthetic microorganisms capable of converting atmospheric CO₂ to biomass containing oil and other valuable components—offer great promise to contribute a significant portion to our renewable fuels and meet the mandate to dramatically reduce our dependence on the world’s dwindling fossil energy resources.

Despite its huge potential, the technology of using microalgae as biomass feedstocks for advanced biofuels faces major challenges from both technical and economic barriers. These include developing suitable algal strains and cultivation parameters, developing processes to harvest the biomass and convert it to fuels and products, and rendering the entire process economical.

NREL’s current algal biofuels program builds on the expertise and knowledge acquired from the research into microalgal biofuels done by the Aquatic Species Program, which was established in 1978 under funding from DOE.

NREL Algal Biofuels Projects and Partnerships

NREL is engaged in several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process.

NREL is investigating alternative conversion pathways to obtain the most value from all components in algal biomass. A novel fractionation process allows for recovery of separate lipid, carbohydrate, and protein streams. Specific tasks include investigating catalytic upgrading of the lipid stream, biochemical conversion of the carbohydrates to biofuels and bioproducts, and exploration of novel coproducts from proteins. NREL is also testing the physical and chemical properties of the novel fuels and fuel intermediates with respect to compatibility with existing fuel infrastructure. In this way, we will develop a conversion process that optimizes yields and reduces production costs.

Novel Microalgal Production and Downstream Processing Technologies for Alternative Biofuels Applications

NREL is investigating alternative conversion pathways to obtain the most value from all components in algal biomass. A novel fractionation process allows for recovery of separate lipid, carbohydrate, and protein streams. Specific tasks include investigating catalytic upgrading of the lipid stream, biochemical conversion of the carbohydrates to biofuels and bioproducts, and exploration of novel coproducts from proteins. NREL is also testing the physical and chemical properties of the novel fuels and fuel intermediates with respect to compatibility with existing fuel infrastructure. In this way, we will develop a conversion process that optimizes yields and reduces production costs.
Algae Testbed Public Private Partnership (ATP³)

To accelerate the commercialization of technologies based on algal biofuels, NREL is part of a team led by Arizona State University to fill data gaps for algal cultivation and processing and to provide access for technology developers to its five testbed sites. NREL leads the Integration and Analysis directorate, which includes oversight of experimental design, data management, techno-economic analysis, and analytical method harmonization.

Direct Conversion of CO₂ to Ethylene Using Cyanobacteria

NREL is developing cyanobacterial strains that photosynthetically convert CO₂ to ethylene, a versatile chemical and fuel intermediate. This BETO-supported research has generated new insights into the regulation of photosynthesis and carbon metabolism in the model cyanobacterium *Synechocystis* 6803. The progress has shown that the cyanobacterium can be genetically engineered to continuously convert CO₂ to ethylene, and that the process can be supported by seawater. As a gas, ethylene leaves the culture by itself, which stimulates photosynthesis such that the culture fixes more CO₂ than the wild type strain. This work has received recognition including an R&D 100 Award and Editor’s Choice Award.

Techno-Economic Assessment of Algal Biofuels Processes

NREL supports DOE’s efforts to establish cost targets and track progress toward meeting these targets through techno-economic modeling and analysis of biofuel production pathways. These models are leveraged to quantify R&D efforts from an economic standpoint and to provide peer-reviewed documentation of projected algal biofuel production costs. Over recent years, the NREL algae techno-economic assessment (TEA) team has published several high-impact design reports documenting process and cost projections for algal biomass production (“farming”) as well as conversion to fuels and products via NREL’s Combined Algal Processing pathway. Additionally, the team supports TEA evaluation of the cultivation data made available by ATP³, and works in close partnership with collaborators at other national laboratories and universities to harmonize algae models across economic, sustainability, and resource analyses.
The Algal Biotechnology Partnership Identifies Robust, Halotolerant Algal Biocatalysts with Exemplary Deployment Characteristics.

Realizing the promise of sustainable and affordable algal biofuels will require genetic optimization and deployment of high-productivity algal strains with robust deployment characteristics. NREL, in collaboration with Los Alamos National Laboratory, Colorado School of Mines, and ATP, has identified and characterized a series of halotolerant algae strains with promising characteristics for summer and winter cultivation, including robust growth rates and carbon flux to fuel precursors, in saline media. We have initiated efforts to develop facile genetic toolkits for top-candidate strains, with the goal of public strain dissemination and data deposition to encourage widespread adoption and development of strains.

Investigation of Cell Signaling Mechanisms Governing Lipid Accumulation

Scientists in NREL’s Applied Biology section are investigating cell cycle and cell signaling mechanisms governing nutrient deprivation-induced lipid accumulation. This work is funded through NREL’s LDRD program, with the goal of identifying and engineering gene targets for rapid induction of microalgal lipid accumulation in the absence of exogenous triggers. This approach has the potential to dramatically decrease costs associated with current algal cultivation strategies.

Valorization of Algal Biomass by Isolating, Purifying Substrates for Synthesis of Coproducts to Reduce Fuel Selling Price

NREL researchers have focused on the identification and isolation of coproducts that are compatible with an integrated algae biorefinery process to reduce the modeled fuel selling price toward $3/gallon gasoline equivalent. More than 30 natively produced products were identified in algae and selected based on the compatibility with a lipid extraction pathway at scale. NREL has demonstrated the successful isolation of isoprenoid alcohols as coproducts from an algae fuels process and synthesized novel surfactants, which can add to the overall revenue of the pathway and reduce the cost of fuels.

Controlled Cultivation for Carbon Uptake and Composition Modeling

NREL has a state-of-the-art photobioreactor system that allows for simulated cultivation of algae under mimicked outdoor conditions while monitoring CO₂ assimilation, nutrient uptake rates, and full biochemical composition of the resulting biomass.

Molecular Foundations of Algal Biofuel Production: Proteomics and Transcriptomics of Algal Oil Production

NREL is combining a proteomics and transcriptomics approach to fully characterize the molecular foundation of algal biofuels production with external environmental conditions in oil accumulating microalgae. The combined ‘-omics’ approach will lead to a better understanding of the changes that occur during transition to high-lipid growth conditions. These technologies provide NREL with information that can be used to identify genes and pathways involved in biofuel production and to guide strain improvement strategies.
Degradation of Chlorella vulgaris and Other Microalgae for Biofuels

Contacts

Philip Pienkos, Principal Group Manager, Bioprocess R&D
National Bioenergy Center
Philip.Pienkos@nrel.gov
www.nrel.gov/bioenergy/algal-biofuels.html