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Abstract—Many have proposed that responsive load provided 
by distributed energy resources (DERs) and demand response 
(DR) are an option to provide flexibility to the grid and especially 
to distribution feeders. However, because responsive load 
involves a complex interplay between tariffs and DER and DR 
technologies, it is challenging to test and evaluate options without 
negatively impacting customers. This paper describes a 
hardware-in-the-loop (HIL) simulation system that has been 
developed to reduce the cost and impacts of evaluating the effect 
of advanced controllers (e.g., model predictive controllers) and 
technologies (e.g., responsive appliances). The HIL simulation 
system combines large-scale software simulation with a small set 
of representative building equipment hardware. It is used to 
perform HIL simulation of a distribution feeder and the loads on 
it under various tariff structures. In the reported HIL simulation, 
loads include many simulated houses and air conditioners and 
one physical air conditioner. Independent model predictive 
controllers manage operations of all air conditioners under a 
time-of-use tariff. Results from this HIL simulation and a 
discussion of future development work of the system are 
presented. 

Index Terms— Demand response, hardware-in-the-loop (HIL) 
simulation, home energy management system (HEMS), power 
system simulation, smart grids. 

I.  INTRODUCTION  
LEXIBILITY is required to effectively manage 
distribution feeders with high penetrations of distributed 
energy resources (DERs) that provide variable generation 

[1]. Many have proposed responsive loads that can participate 
in demand response (DR) programs and/or can be controlled 
by an energy management system to optimize the customer’s 
comfort and expense as a viable option to provide flexibility to 
the grid [2]–[4]. Responsive loads are expected to have a 
significant impact on the operation of the distribution grid. 
However, while many simulation studies have been performed 
to estimate the impact of high penetration of rooftop 

photovoltaic (PV) systems on distribution systems [5], [6], the 
complex interplay between tariffs and DER and DR 
technologies makes it challenging to test and evaluate 
proposed responsive load implementations [1]. 

This paper describes a hardware-in-the-loop (HIL) 
simulation system designed to evaluate the impact of 
emerging technologies on the electric power system. 
Technologies include DERs such as renewable generation and 
storage; advanced controllers such as model predictive 
controllers; and responsive appliances. HIL simulations have 
been used extensively in related fields, such as in evaluating 
smart inverter operations [7]. HIL simulation allows us to 
evaluate performance of actual hardware systems within the 
context of a specific distribution grid with high penetrations of 
new technologies without impacting customer service—which 
would happen with a pilot field deployment. We can simulate 
events and conditions that would be impossible or 
prohibitively expensive to set up in the field. We can also 
simulate various existing and proposed tariff structures and 
evaluate how financial incentives drive responses. 

In this paper, we report on the use of this system for a HIL 
simulation of a distribution feeder with multiple buildings and 
their loads—including air conditioners whose operations are 
managed by model predictive controllers under a time-of-use 
(TOU) tariff—with the air conditioner for one house 
implemented in hardware. The capability to perform HIL 
simulations with an air-conditioning system and other building 
loads are likely to improve evaluation of the impact of 
building technologies distributed at scale in distribution 
systems. By combining large-scale software simulation with 
hardware evaluation of a small set of representative systems, 
the cost and time investment of an impact study can be 
reduced compared to separate simulation-only studies and 
pilot field deployments. 

Past research using HIL for buildings have typically 
focused on single homes using simplified building thermal 
models. HIL simulation for validating building technologies 
was proposed in [8], where an HIL test bed based around an 
RT-LAB real-time simulator was used to assess the cost and 
thermal comfort performance of an energy management 
system. That analysis used a relatively simple second-order 
thermal model of the building’s thermal properties and a 
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resistive load to emulate the electric heater. A more 
sophisticated building model was used in [9], along with a 
custom configured cluster of personal computers to manage 
the real-time simulation, and a custom-developed power 
electronics converter to interface the real-time simulator and 
the heat-pump hardware under test. 

The system described here advances the state of the art by 
extending the simulation scope to a HIL house interacting with 
a distribution system model that simulates a large number of 
homes. Therefore, one can evaluate the performance of 
hardware and an energy management system within a single 
home, but also, the grid-level impacts and interactions. 

The rest of the paper is organized as follows: section II 
describes the HIL simulation system, section III presents 
results, and section IV draws conclusions and discusses future 
work. 

II.  HARDWARE-IN-THE-LOOP SIMULATION SYSTEM  

A.  Overview 
A high-level block diagram of the HIL simulation system is 

shown in Figure 1. It consists of a large energy system 
simulation running on NREL’s high-performance computer 
(HPC), Peregrine, which is interfaced to the hardware under 
test—a home air conditioner—through an internet-connected 
thermostat and lab data acquisition system. 

 
Figure 1. High-level block diagram of HIL simulation system 

The Integrated Energy System Model (IESM) provides a 
co-simulation framework that integrates simulation of a 
distribution feeder, buildings (including thermal performance 
and building appliances), DERs (including PV and battery 
systems), and controllers such as a home energy management 
system (HEMS) [10], [11]. It is designed to run in an HPC 
system to allow the parallel execution of hundreds of instances 
of complex controllers—for example, HEMS algorithms based 
on a model predictive control (MPC) approach [12]. Smaller-
scale simulations can be run on a single computer. 

The co-simulation coordinator is implemented using the 
Discrete Event Systems (DEVS) formalism [13], which is 
built on the concept of abstract time. The co-simulation 
coordinator manages the timing of the execution of all the 
components with varying time steps and the exchange of data 
between them. It therefore interfaces with the distribution 

feeder simulation, building simulations of the simulated 
houses, the model predictive controllers, and the building 
simulation and physical air-conditioning system of the HIL 
house. 

The HIL simulation system described here was developed 
as part of a research effort to investigate the impact of a high 
penetration of MPC-based HEMS on a distribution feeder, 
with an initial focus on control of air-conditioning systems 
under TOU tariffs [10], [14]. Air conditioning was chosen 
because it is one of the dominant residential load classes [15]. 
As part of our simulation-only studies [10], [14], we built a 
model of a distribution feeder with multiple residential 
buildings. The thermostat in each house can either be 
controlled by a predetermined setpoint profile that reflects the 
occupants’ desired temperature profile, or by a setpoint 
received from the model predictive controller (MPC) for that 
specific house. For this paper, each house received 
temperature setpoints from its own model predictive 
controller.  

The building simulations estimate the indoor temperatures 
and provide those values to the model predictive controllers as 
inputs for their next optimization. For one of the houses, 
referred to as the HIL house, the simulated air conditioner and 
thermostat were replaced with hardware and interfaced with 
the IESM simulation on the HPC through a network message 
bus.  

For the HIL house, which has hardware and software 
components, the model predictive controller provides a 
setpoint through a cloud service application programming 
interface (API) to a real thermostat that controls the hardware 
air conditioner. The measured indoor temperature and air 
conditioner power consumption are returned to the model 
predictive controller and building simulation for the next 
iteration within a simulation scenario.  

Each component is described in more detail in the 
following sections.  

B.  Distribution Feeder and Building Simulation  
In its current implementation, GridLAB-D is used to 

simulate the electric power distribution feeder and the 
residential buildings. GridLAB-D is an open-source, agent-
based, quasi-steady-state time-series (QSTS) power system 
simulation tool developed by the Pacific Northwest National 
Laboratory [16]. The house objects in GridLAB-D include 
explicit thermal models of the air-conditioning system, 
comprising a thermal model of the house, air conditioner 
(A/C), and thermostat; other building loads are modeled as an 
aggregated load using a ZIP load model [17]. 

The distribution system case-study used for the simulation 
is the IEEE 13-node feeder [18], populated with 20 identical 
houses, connected in groups of five through a single-phase 
center-tapped transformer (CTTF) at four nodes, shown in 
Figure 2.  

Each house has its own desired cooling setpoint profile that 
includes a setup at night and at mid-day in accordance with 
Environmental Protection Agency guidelines [19].  
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Figure 2. Diagram of IEEE 13-node feeder populated with 20 houses 

C.  Air-Conditioning System 
The single air-conditioning system’s hardware 

implementation involved a separate form of HIL, shown in 
Figure 3, to ensure that the air conditioner operated 
realistically without being in a physical house. An EnergyPlus 
[20] building model was run with one-minute time steps for a 
house that mirrors the single home specifications in GridLAB-
D. The EnergyPlus model calculated changes to the indoor 
temperature as the air conditioner turned on and off using the 
building’s modeled characteristics and internal loads and, the 
weather data used the GridLAB-D model.  

 
Figure 3. Air-conditioning system 

A SEER 21, two-stage, 2-ton air conditioner was used. The 
outdoor unit was located inside an environmental chamber 
whose temperature was controlled to match the outdoor 
temperature in the weather file. The air-handler portion of the 
air conditioner was installed in a duct loop with heaters to 
ensure that the return air temperature matched that predicted 
by the EnergyPlus simulation. The air flow supplied by the air 
handler along with return and supply air temperature 
measurements were used to calculate air conditioner cooling 
capacity, which was used by the EnergyPlus simulation 
instead of that of a simulated air conditioner.  

A Nest thermostat, located in a small environmental 
chamber, controlled the air conditioner. The air temperature 
inside the small environmental chamber was controlled to 
match the indoor temperature from the EnergyPlus simulation. 

The thermostat’s setpoint was determined by the house’s 
model predictive controller and communicated to the Nest 
thermostat via the Nest cloud [21]. A data acquisition system 
collected the measured indoor temperature from the small 
environmental chamber and measured air conditioner power 
consumption, and that information is communicated to the 
IESM co-simulation running on the HPC.   

D.  Model Predictive Controllers  
The model predictive controllers that determine the optimal 

temperature setpoints are based on HEMS algorithms 
previously developed by our team [12]. The HEMS algorithms 
implement a stochastic, multi-objective optimization model 
within a MPC framework, which determines the optimal 
operational schedules of residential appliances 
including heating, ventilation and air-conditioning systems, 
electric water heaters, refrigerators, residential batteries, 
electric vehicles, standalone micro combined heat and power 
generators, dishwashers, washer dryers, and pool pumps. 

The algorithms take into account consumer preferences, 
electricity price, weather forecasts, and forecasted power 
generation from rooftop PV systems. The optimization is 
solved using a mixed-integer linear programming (MILP) 
approach. For this HIL simulation, only the cooling setpoints 
were optimized and the objective function was set to 
minimize the weighted sum of occupant discomfort and 
energy cost. The desired cooling setpoint is provided as an 
input to the model predictive controllers, along with a 
minimum and maximum allowable setpoint to keep the house 
comfortable as the controllers vary the setpoint. 

The model predictive controllers are implemented in the 
General Algebraic Modeling System (GAMS), which calls on 
a Gurobi solver. The model predictive controllers run every 15 
minutes, so an optimized setpoint for each house is updated 
every 15 minutes. 

The model predictive controller uses a thermal model of the 
house to estimate the impacts of air-conditioning system 
operations. Specifically, the thermal model predicts the 
house’s indoor air temperature and the air-conditioning 
system’s electrical power consumption. Based on prior work 
[22], [23], a first-order difference equation is used as the 
thermal model: 

  (1) 

where Tout is the outside air temperature, Troom is the indoor air 
temperature, and Pa/c is the air conditioner’s electrical power 
consumption. The coefficients for the model were determined 
by performing a linear regression on training data from a 2-
week portion of simulated data generated by GridLAB-D for 
the fully simulated houses. A similar approach was used to 
extract the parameters for the HIL house from data generated 
with EnergyPlus [20] using the same house model as in the 
air-conditioning system.  

To assess its accuracy, the model was used to predict room 
temperature and power consumption of the air conditioner 
over twenty successive 24-hour intervals starting from the end 
of the training data period. The root-mean-square-error 
(RMSE) between the predicted values and the simulated 
values were computed every 15 minutes, over each 24-hour 
interval (i.e., 96 increments per interval). The mean air 
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conditioner power consumption RMSE was ±0.20 kW and the 
mean indoor air temperature RMSE was 1.1°F. These 
precisions substantiate the use of the first-order model.  

E.  Co-Simulation Coordinator 
The IESM employs a distributed real-time discrete event 

modeling and simulation paradigm. To adhere to Systems 
Theory and ensure the direct connectivity between various 
components, we employ DEVS formalism [13], as described 
in more detail in [11]. Per the simulation protocol, in each 
iteration: 1) The DEVS coordinator requests the time of the 
next event (tn) from each of the components; 2) The DEVS 
coordinator determines a future time that all the components 
should advance to (tadv) by selecting the minimum time of the 
next event, and broadcasts it to all the components; 3) Each of 
the components then advances to tadv, updates their internal 
clocks (through the DEVS model wrappers described in [11]) 
and executes any code or input events; and 4) Each component 
shares output messages. The structural relationships between 
the components of the system, including the physical 
components of the experimental setup—the HPC, air 
conditioner, and thermostat—are illustrated through a UML 
component architecture diagram available in [11]. 

Before attempting the actual HIL integration, a software-
only simulation was executed in virtual time on the HPC [11]. 
Then the HIL simulation system was implemented by 
developing APIs to interface with hardware components, e.g., 
the Nest thermostat; developing a network messaging platform 
using ZeroMQ to exchange messages between the HPC, the 
air-conditioning system, and the Nest cloud; and developing 
read-write policies (e.g., polling frequencies, pushing data 
from hardware into databases) for various components as they 
exchange messages in real time. 

As described in section II.D, the IESM simulation is run on 
the HPC, and one house’s modeled air conditioner and 
thermostat are replaced with a physical air conditioner and 
thermostat. A data acquisition system collects data from the 
air-conditioning system at 5 Hz. An asynchronous message 
bus (implemented using ZeroMQ’s publish-subscribe 
formalism) is used to exchange data between the hardware 
system and the simulation system through the co-simulation 
coordinator. The message bus subscribes to data from the data 
acquisition system at 5 Hz and publishes to the simulation 
system at 1 Hz. An in-memory database in the HPC also 
subscribes to the published data at 1 Hz for post-simulation 
analysis and verification. 

The measured air conditioner power data are averaged over 
1-minute intervals and are used instead of the simulated air 
conditioner power, thereby integrating the physical air 
conditioner with the simulated house. A new setpoint is then 
calculated by the model predictive controller and relayed 
through the Nest cloud service to the Nest thermostat.  

III.  HARDWARE-IN-THE-LOOP SIMULATION RESULTS 
Several HIL simulations lasting from several hours to 

several days were performed and results are presented here.  

A.  Simulation Parameters  
For the simulation case study presented here, we used 

outdoor air temperature and solar irradiation for a typical 
meteorological year for Charlotte, North Carolina [24]. These 

data are used by both the GridLAB-D and EnergyPlus 
building simulations. For the HIL house, we selected a desired 
cooling setpoint profile with a daytime temperature of 74°F 
that is set at 6:45 a.m. It is set up by 3°F to 77°F at 8:15 a.m., 
returning to 74°F at 5:45 p.m. It is set up by 6°F to 80°F at 10 
p.m., where it remains through the night to 6:45 a.m.  
Simulated houses have similar setpoint profiles but they vary 
in desired temperatures and time when modes are shifted.  

We used the weekday retail residential TOU electricity 
tariff available in North Carolina in 2015. The electricity price 
varies over the day with an off-peak rate of $0.06936/kWh, a 
shoulder rate before the peak of $0.11961/kWh, a peak rate of 
$0.2368/kWh, and a shoulder rate after the peak of 
$0.1523/kWh. The peak hours are from 1:00 p.m. to 6:00 p.m. 
and shoulder rates are in effect during the two hours before 
and after the peak hours [25]. Vertical shaded areas in Figure 
4 indicate peak and shoulder pricing time periods. 

B.  Simulation Results 
The compiled results from two separate experiments are 

shown in Figure 4 for a simulation time period from 9:00 a.m. 
on July 15 through 9:00 a.m. on July 19—thus, a total of 4 
days. The vertical line at midnight between July 16 and 17 
indicates the end of the data from the first simulation and the 
start of the data from the second simulation. More detailed 
results for July 17 are also shown. 

We can see that the measured indoor temperature drops 
below the desired cooling setpoint to the minimum allowable 
setpoint prior to an increase in price (from off-peak to 
shoulder pricing and from shoulder to peak pricing) because 
the air-conditioning unit turns on. After the price increase 
takes effect, the indoor air temperature increases because the 
air conditioner turns off. The indoor air temperature also 
increases prior to a price reduction (from peak to shoulder 
pricing and from shoulder to off-peak pricing), and drops after 
the price reduction. 

 

 
Figure 4. HIL simulation result with the different lines described in the 

legend. Vertical shaded areas represent shoulder and peak pricing. 

This behavior is a result of the MPC-based optimization 
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performed by the HEMS. It anticipates the price increase and 
precools the house—to the extent allowed by the constraints 
placed on the thermostat set points—prior to the price 
increase. As a result, the air conditioner power consumption 
increased at the end of the lower-price periods and decreased 
at the start of the higher-price periods, and this leads to lower 
energy cost while maintaining customer comfort. Similarly, 
the HEMS allows the indoor air temperature to rise—to the 
extent allowed—prior to the price reduction and this decreases 
air conditioner power consumption at the end of the higher-
price periods. Then the air conditioner is turned on at the start 
of the lower-price period to drive the indoor air temperature 
closer to the desired cooling setpoint. The behaviors of the 
simulated houses were similar. 

The control of the air conditioner depends on the weights 
assigned to the HEMS objective components. A higher weight 
for discomfort would cause a smaller deviation in indoor air 
temperature from the desired temperature profile during peak 
price periods, but the cost savings would be lower.  

IV.  CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a hardware-in-the-loop (HIL) 
simulation system designed to evaluate the impact of 
emerging technologies on the electric power system—with a 
focus on responsive load because the complex interplay 
between tariffs and demand response technologies makes it 
challenging to test and evaluate proposed responsive load 
implementations. We presented results from an experimental 
setup that connects a real air conditioner and thermostat to the 
Integrated Energy System Model (IESM) co-simulation 
framework running on the high-performance computer at the 
National Renewable Energy Laboratory. This work represents 
the initial steps toward full smart home HIL capability that 
will include responsive and conventional appliances, 
distributed energy resources, and a home energy management 
system. 

The experimental results presented show that all the 
components of the HIL simulation system work together 
seamlessly and the overall system behavior is as expected. 
Next steps are to add more appliances and to connect the 
appliances (including the air conditioner) to a controllable 
power source, which regulates their input voltage to that of the 
point of common coupling, where the house is connected in 
the simulated distribution system. We will also extend the 
IESM co-simulation platform to allow control of additional 
simulated and hardware appliances from the model predictive 
controllers. 

ACKNOWLEDGMENT 
The authors gratefully acknowledge the contributions of 

Matt Eash and Kris Munch for setting up the hardware 
message bus between the laboratory and the HPC, and Paulo 
Tabares-Velasco, Jason Woods and Jon Winkler for their work 
on the implementation of the air conditioning system. 

REFERENCES 
[1] S. Nolan and M. O’Malley, “Challenges and barriers to demand response 
deployment and evaluation,” Appl. Energy, no. 152, pp. 1–10, Jul. 2015. 
[2] J. Eto, N. J. Lewis, D. Watson, S. Kiliccote, and Y. Makarov, “Demand 
response as a system reliability resource,” Lawrence Berkeley National 
Laboratory, LBNL-6081E, Dec. 2012. 

[3] M. P. Lee, O. Aslam, B. Foster, D. Kathan, and C. Young, “2014 
Assessment of Demand Response and Advanced Metering Staff Report,” 
Federal Energy Regulatory Commission, Dec. 2014. 
[4] A. Chardon, O. Almen, P. E. Lewis, J. Stromback, and B. Chateau, 
“Demand Response: a decisive breakthrough for Europe,” Capgemini, 2008. 
[5] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-State Analysis 
of Maximum Photovoltaic Penetration Levels on Typical Distribution 
Feeders,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 350–357, Apr. 2013. 
[6] B. Mather and R. Neal, “Integrating high penetrations of PV into Southern 
California: Year 2 project update,” in 2012 38th IEEE Photovoltaic 
Specialists Conference (PVSC), 2012, pp. 000737–000741. 
[7] R. Brundlinger et al., “Lab Tests: Verifying That Smart Grid Power 
Converters Are Truly Smart,” IEEE Power Energy Mag., vol. 13, no. 2, pp. 
30–42, Mar. 2015. 
[8] R. Missaoui, G. Warkozek, S. Ploix, S. Bacha, and V. Debusschere, 
“Hardware-in-the-loop validation of energy managed home thermal zone,” in 
2012 IEEE International Conference on Industrial Technology (ICIT), 2012, 
pp. 421–425. 
[9] C. Molitor et al., “Multiphysics Test Bed for Renewable Energy Systems 
in Smart Homes,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1235–1248, 
Mar. 2013. 
[10] M. Ruth, A. Pratt, M. Lunacek, S. Mittal, W. Jones, and H. Wu, 
“Effects of House Energy Management Systems on Distribution Utilities and 
Feeders Under Various Market Structures,” presented at the 23rd International 
Conference on Electricity Distribution (CIRED), Lyons, France, 2015. 
[11] S. Mittal, M. Ruth, A. Pratt, M. Lunacek, D. Krishnamurthy, and W. 
Jones, “A System-of-Systems Approach for Integration Energy Modeling and 
Simulation,” presented at the Summer Computer Simulation Conference, 
Chicago, IL, 2015. 
[12] H. Wu, A. Pratt, and S. Chakraborty, “Stochastic optimal scheduling of 
residential appliances with renewable energy sources,” in 2015 IEEE Power 
Energy Society General Meeting, 2015, pp. 1–5. 
[13] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and 
Simulation: Integrating discrete event and complex dynamical systems, 2nd 
ed. Academic Press, 2000. 
[14] A. Pratt, D. Krishnamurthy, M. Ruth, M. Lunacek, and P. Vaynshenk, 
“Transactive Home Energy Management and Distribution Grid Impact,” IEEE 
Electrification Magazine, Dec-2016. 
[15] “Residential Energy Consumption Survey (RECS) - Energy Information 
Administration.” [Online]. Available: 
http://www.eia.gov/consumption/residential/. [Accessed: 12-Oct-2015]. 
[16] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based 
simulation framework for smart grids,” J. Appl. Math., 2014. 
[17] K. P. Schneider, J. C. Fuller, and D. P. Chassin, “Multi-State Load 
Models for Distribution System Analysis,” IEEE Trans. Power Syst., vol. 26, 
no. 4, pp. 2425–2433, Nov. 2011. 
[18] “Distribution Test Feeders - Distribution Test Feeder Working Group - 
IEEE PES Distribution System Analysis Subcommittee.” [Online]. Available: 
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html. [Accessed: 17-Oct-
2015]. 
[19] “DRAFT 1 VERSION 2.0 ENERGY STAR Program Requirements for 
Programmable Thermostats.” . 
[20] “EnergyPlus | EnergyPlus.” [Online]. Available: https://energyplus.net/. 
[Accessed: 17-Oct-2015]. 
[21] “Home - Nest.” [Online]. Available: https://home.nest.com/. [Accessed: 
26-Oct-2015]. 
[22] L. Jia, Z. Yu, M. C. Murphy-Hoye, A. Pratt, E. G. Piccioli, and L. 
Tong, “Multi-scale stochastic optimization for Home Energy Management,” 
in 2011 4th IEEE International Workshop on Computational Advances in 
Multi-Sensor Adaptive Processing (CAMSAP), 2011, pp. 113–116. 
[23] A. Pratt, B. Banerjee, and T. Nemarundwe, “Proof-of-concept home 
energy management system autonomously controlling space heating,” in 2013 
IEEE Power and Energy Society General Meeting (PES), 2013, pp. 1–5. 
[24] “National Solar Radiation Data Base: TMY2 Files.” [Online]. 
Available: http://rredc.nrel.gov/solar/old_data/nsrdb/1961-
1990/tmy2/State.html. [Accessed: 10-Oct-2015]. 
[25] “Rate Comparison- - North Carolina Residential-Duke Energy.” 
[Online]. Available: http://www.duke-energy.com/tou-dep-
residential/rate_comparison.asp. [Accessed: 10-Oct-2015]. 
                                                           
i The author's affiliation with The MITRE Corporation is provided for 
identification purposes only, and is not intended to convey or imply MITRE's 
concurrence with, or support for, the positions, opinions or viewpoints 
expressed by the author. Approved for Public Release; Distribution Unlimited.  
 


	I.   Introduction
	II.   Hardware-in-the-Loop Simulation System
	A.   Overview
	B.   Distribution Feeder and Building Simulation
	C.   Air-Conditioning System
	D.   Model Predictive Controllers
	E.   Co-Simulation Coordinator

	III.   Hardware-in-the-Loop Simulation Results
	A.   Simulation Parameters
	B.   Simulation Results

	IV.   Conclusions and Future Work
	Acknowledgment
	References



