Improving Lidar Turbulence Estimates for Wind Energy

Jennifer F. Newman,1 Andrew Clifton,1 Matthew J. Churchfield,1 and Petra Klein2

1National Renewable Energy Laboratory
2University of Oklahoma

The Science of Making TORQUE from Wind
Munich, Germany
October 6, 2016

NREL/PR-5000-67364
Can We Replace Meteorological Towers with Lidars?

Meteorological (Met) Towers
- Costly to build
- Not mobile
- Limited by height
- Measure at a point.

Lidars
- Mobile
- Measurements typically extend to 200 meters (m) above ground level
- Measure in a volume.
Sample Lidar Measurements: Atmospheric Radiation Measurement Site

Data from 60 m AGL at Southern Great Plains ARM site
Example of Lidar Versus Sonic Turbulence Intensity

\[TI = \frac{\sigma_u}{U} \times 100\% \]

Data from Southern Great Plains ARM site
Power curves from FAST simulations of 1.5-MW WindPACT turbine. After Clifton and Wagner (2014).

What Could We Do with Improved Lidar Turbulence Intensity?

- **Research**
 - Study the ABL
 - Characterize inflow
 - Collect wake observations

- **Resource**
 - Replace met towers
 - Classify sites
 - Validate flow models

- **Turbine testing**
 - Test power curves
 - Complete warranty tests
 - Monitor sites

- **Offshore wind**
 - Evaluate design conditions
 - Conduct resource assessments

Photo by Andrew Clifton, NREL 24383
The problem: Lidars measure different values of turbulence intensity (TI) than a cup or sonic anemometer. This makes it difficult to use lidars for resource assessment or turbine site suitability.

Proposed solution:
Improve TI estimates using a combination of physics and machine learning in the Lidar Turbulence Error Reduction Algorithm (L-TERRA).
• Testing data sets: Atmospheric Radiation Measurement (ARM) site in Oklahoma and wind power plant in Southern Plains region of United States

• WINDCUBE v2 vertically profiling lidar deployed at both sites near met towers.

Photo by Sonia Wharton
Which Model Chain Minimizes Turbulence Intensity Mean Absolute Error?
ARM Site: Raw

Raw mean absolute error (MAE): 1.5%
ARM Site: After L-TERRA

Raw MAE: 1.5% L-TERRA MAE: 1.4%

- Stable (N = 1246): \(y = 0.89x \), \(R^2 = 0.88 \)
- Neutral (N = 590): \(y = 0.96x \), \(R^2 = 0.74 \)
- Unstable (N = 1322): \(y = 1.06x \), \(R^2 = 0.78 \)
Wind Power Plant: Raw

Raw MAE: 1.48%

Graph showing the relationship between WindCube TI (%) and Cup TI (%). The graph is divided into four categories:
- Stable (N = 1908): y = 0.92x, R² = 0.89
- Neutral (N = 899): y = 1.10x, R² = 0.86
- Unstable (N = 1885): y = 1.15x, R² = 0.84

The graph indicates a positive correlation between the two variables, with the data points clustering around the linear regression lines for each category.
Wind Power Plant: After L-TERRA

Raw MAE: 1.48% \[\text{L-TERRA MAE: 1.39\%} \]

\[
\text{Stable (N = 1866): } y = 0.89x, \ R^2 = 0.92 \\
\text{Neutral (N = 856): } y = 1.02x, \ R^2 = 0.87 \\
\text{Unstable (N = 1771): } y = 1.11x, \ R^2 = 0.84
\]
Stable: Small turbulent length scales; volume averaging has large contribution.
Which Model Chain Minimizes Mean Absolute Error for Different Stability Classes?

Stable: Small turbulent length scales; volume averaging has large contribution.

Neutral: Small effects from both volume averaging and variance contamination.
Which Model Chain Minimizes Mean Absolute Error for Different Stability Classes?

Stable: Small turbulent length scales; volume averaging has large contribution.

Neutral: Small effects from both volume averaging and variance contamination.

Unstable: Strong turbulence; variance contamination has large contribution.

1. **Start:** Raw WC Data
 - **Pre-Processing:** U, α, T
 - Interpolated time series
 - **Spike Filter**
 - Noise Removal?
 - **Lenschow 1**
 - **Lenschow 2**
 - **Lenschow 3**

2. **Wind Speed?**
 - **Volume Averaging?**
 - Spectral Fit 1
 - Variance Contamination?
 - **Taylor 1**
 - **Spectral Fit 2**
 - **Machine Learning?**
 - Random Forest
 - MARS

3. **Volume Averaging?**
 - Azimuthal Structure Function
 - Variance Contamination?
 - Longitudinal Structure Function
 - Six-Beam Technique

Terminus: Start/End
Output
Decision
ARM Site: Raw

Raw MAE: 1.5%

Stable (N = 1261): $y = 0.90x$. $R^2 = 0.87$
Neutral (N = 627): $y = 1.05x$. $R^2 = 0.89$
Unstable (N = 1480): $y = 1.14x$. $R^2 = 0.81$
ARM Site: After L-TERRA—Stability

- Raw MAE: 1.5%
- L-TERRA MAE: 1.4%
- L-TERRA-S MAE: 1.25%

Graph showing scatter plots for Stable (N = 1246), Neutral (N = 590), and Unstable (N = 1321) conditions, with linear equations and R² values for each category.
Wind Power Plant: Raw

Raw MAE: 1.48%
Wind Power Plant: After L-TERRA—Stability

Raw MAE: 1.48% L-TERRA MAE: 1.39% L-TERRA-S MAE: 1.19%

- Stable (N = 1864): $y = 1.00x$. $R^2 = 0.91$
- Neutral (N = 856): $y = 1.02x$. $R^2 = 0.87$
- Unstable (N = 1771): $y = 1.05x$. $R^2 = 0.83$
Sensitivity of Turbulence Intensity Error to Lidar-Measured Parameters

Scanning Circle

Turbulent Motion

Line-of-Sight Velocity

Probe Volume

Emitted Signal

Returned Signal

Lidar
Conducting Sensitivity Analysis

- New IEC 61400-12-1 standards, Annex L: Classification of remote sensing devices

- Sensitivity analysis: Bin input data, and calculate regression line for binned data vs. TI % difference

- **Sensitivity**: Product of slope of regression line and standard deviation of input variable
Sensitivity to Shear

Raw: $y = -102.16x + 19.77. R^2 = 0.96$

L-TERRA-S: $y = -24.23x + 5.96. R^2 = 0.42$
Sensitivity to Turbulence Intensity

Raw: \[y = 2.47x - 20.33. \quad R^2 = 0.86 \]

L-TERRA-S: \[y = 0.56x - 4.25. \quad R^2 = 0.31 \]
Sensitivity to Mean Wind Speed

- Raw: $y = -1.44x + 18.28$. $R^2 = 0.44$
- L–TERRA–S: $y = -1.42x + 15.54$. $R^2 = 0.82$
Sensitivity to Signal-to-Noise Ratio

\[
\text{Raw: } y = -2.54x - 27.28. \quad R^2 = 0.82
\]

\[
\text{L-TERRA-S: } y = -2.32x - 26.22. \quad R^2 = 0.74
\]
Variables with Highest Sensitivity

- Int. time (vert.)
- SNR
- Int. time (horiz.)
- U
- Corrected TI
- p
- Original TI
- Int. length (horiz.)
- Stationarity
- Int. length (vert.)
- Roll
- Internal temperature
- u variance
- WS dispersion
- Maximum w
- Vert. WS dispersion
- w variance
- Spectral broadening
- Pitch

Sensitivity (%)
Option 1 to Reduce Turbulence Intensity Error: Machine Learning

• Use most sensitive variables as input parameters for a machine-learning model.

• Train model with wind power plant data, and test on ARM site data.
ARM Site: After L-TERRA-S

L-TERRA-S MAE: 1.25%
ARM Site: After L-TERRA-S + Machine Learning

L-TERRA-S MAE: 1.25% L-TERRA-S + ML MAE: 1.29%

Bias due to differing sensitivities between the two sites
Option 2: Examining Error Sources with Virtual Lidar

- Use large-eddy simulation data from NREL’s Simulator for On/Offshore Wind Farm Applications (SOWFA).
- Sample with virtual lidar.

For more information, see https://nwtc.nrel.gov/SOWFA.
Final Thoughts

• L-TERRA reduces lidar TI error under most conditions.

• Current work focuses on understanding all the physics that affect lidar TI error.

• Results highlight the importance of developing dynamic TI corrections that depend on current flow conditions.

Image from Andrew Clifton, NREL
Let’s talk!

Jennifer.Newman@nrel.gov
+1 303-275-4998

Photo by Sonia Wharton

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.