Hawaiian Electric Advanced Inverter
Test Plan – Result Summary

Anderson Hoke, Ph.D., P.E.
Austin Nelson, Kumaraguru Prabakar, and Adarsh Nagarajan

Hawaiian Electric Companies Technical Conference
Honolulu, Hawaii
October 14, 2016
NREL/PR-5D00-67267
1. HECO-SolarCity-NREL collaboration (2014-2016, complete)
 • Transient and temporary overvoltage evaluation
 • Anti-islanding with advanced inverters in multi-inverter, multi-point islands
 • Impacts of coordinated volt-var control on power quality and conservation voltage reduction
2. HECO advanced inverter test plan (2016 – Focus of this presentation)
 • Baseline testing
 • Circuit-level PHIL testing
3. DOE GMLC – Hawaii regional partnership, DOE funded (2016-2017 – Next presentation)
 • Focus is on fast grid frequency support from DERs (including, but not limited to, frequency-Watt function)
 • Modeling, simulation, and controls development
 • Hardware testing
 • Field deployment
 • Simulate 3 HECO circuits with volt-var, volt-watt, fixed PF (and combinations), plus legacy inverters
 • Variables: PV penetration, portion of legacy inverters, PV system DC:AC ratio
 • Quantify effects on annual feeder voltage profiles and on PV kWh production loss
 • Extension of advanced inverter test plan

Note: Other work not covered here: PSIP support, work prior to 2015, etc
Advanced Inverter Test Plan Team

• NREL: Andy Hoke, Austin Nelson, Kumar Prabakar, Adarsh Nagarajan, Shaili Nepal, Rasel Mahmud – NREL
• Hawaiian Electric Companies: Earle Ifuku, Marc Asano, Reid Ueda, Jon Shindo, Kandice Kubojiri, Riley Ceria, Justin Goza
• Inverter manufacturer participants:
 o Apparent
 o Enphase Energy
 o SMA
 o SolarEdge
• Smart Inverter Technical Working Group
1. Define test details (test scenarios) – Complete
2. Baseline testing – Complete
 • Evaluate each inverter’s ability to perform selected advanced functions
 • Results used to develop simple model of each inverter
 • Based on draft UL 1741 SA (but will not qualify for or impact UL certification)
 • Volt-Watt, FPF, VRT, FRT, ramp rate, soft start
 • Volt-var added later. (Baseline testing only – no PHIL testing)
3. PHIL testing – Complete
 • Use PHIL to test inverters as if connected to high penetration HECO circuits
 • One/two inverters in hardware, many more simulated in real time
 • Compare tests with/without various advanced functions active
 • Vary advanced function control parameters
4. Result dissemination to stakeholders (ongoing, including today)
5. Final Report to PUC – December 15
6. Follow-up project – Recently started
 • NREL-HECO CRADA: Voltage Regulation Operational Strategies (VROS)
 • Long-term simulation of various PV voltage regulation functions on HECO feeders
Baseline testing: Volt-Watt

- Based on draft UL 1741 SA volt-watt test
- Three volt-watt curves tested

- Snapshot mode ("0") and P_{max} mode ("1") on 2/4 inverters
- Varying time responses
- Varying levels of available PV power (irradiance)
- 33 test series, 495 total points tested
- All inverters capable; responses as expected
Volt-Watt example

Moderate curve

Inverter 2 # 43: Time Const = 50 sec, Curve 1, Power = 100, Mode = 1

RMS Voltage (V)

Power (kVA)

Time (sec)
Baseline testing: Simultaneous volt-var and volt-watt

Only 2 inverters capable; 2 curve combinations; 4 test series, 108 total test points

Can be activated under Rule 14H by mutual agreement, per HECO

Volt-Watt Curve Tested with Volt-Var

Volt-Var Curves Tested with Volt-Watt

Volt-var curves depend on inverter’s maximum VArS. This plot assumes $Q_{max} = 0.5$ pu.

Proprietary data and preliminary results
Please do not distribute
Volt-var with volt-watt example

Inverter 4 \(^{\text{fAr with V-W Test Case 1}}\)

- Reactive Power (% Nameplate)
- Real Power (% Nameplate)

Proprietary data and preliminary results
Please do not distribute
Baseline testing: Voltage and frequency ride-through

- Based on draft UL 1741 SA ride-through tests
- Tested using Oahu country/profile (as in field)
- VRT: 3 UVR levels, 2 OVR levels (per 14H)
 - UVR2 tested at two adjustable time settings (per 14H)
 - 56 total tests
- FRT: 2 UFR levels, 2 OFR levels (per 14H)
 - UFR1 tested at two adjustable time settings (per 14H)
 - 56 total tests
- Each test repeated at 20% and 100% power levels
- Legacy Enphase (i.e., M-Series) inverters also tested
- All inverters capable of meeting Rule 14H, but slope of ride-through test profile in draft test was too steep for one – product is being updated based on recently-published 1741 SA
Frequency ride-through examples

OFR1: 63 < f < 65 Hz for 20 s
(high end of 14H range of adjustability)

OFR1: 57 < f < 56 Hz for 20 s

Inverter 4

SolarEdge Test # 26:

Inverter 4

SolarEdge Test # 31:

Proprietary data and preliminary results. Please do not distribute
Baseline testing summary

All inverters “passed” all tests, but some tests required interaction with manufacturer:

• Some IMs had not seen draft UL 1741 SA in advance (or had seen an old version), so some test details were a surprise, requiring slight test modifications

• Functions (or combinations of functions) not required in another grid code were not supported in all inverters:
 o Ramp-rate control
 o Simultaneous volt-watt and volt-var

• All IMs expected to be able to pass UL 1741 SA in next 12 months – timing and selection of functions is up to each manufacturer

• Configuring functions manually is time-consuming and error-prone. Engineering and firmware development of pre-configured function profiles (aka “country settings”) will be needed for commercial field deployment.
Recommendations from baseline testing

• Some areas of Rule 14H would benefit from clarification. Work is underway between Hawaiian Electric and NREL to address gaps:
 o Volt-var requirements need to be defined in detail
 – Pay attention to var capability (rectangular vs triangular; vars at max P)
 o Volt-watt requirements need to be defined in detail
 o Clarify how response times are defined
 o Where possible, align with Rule 21 and/or IEEE P1547 (draft, near-final)
 – Some variation in settings from other codes should be okay
 o If simultaneous operation of various voltage regulation functions is required, that should be specified.

• Where function details not yet specified, unclear if manufacturers will make Hawaii-specific functions available in 12 months
 o Recommend continued discussions with stakeholders on the near-term, high-priority voltage regulation functions

Proprietary data and preliminary results
Please do not distribute
Circuit-level Power Hardware-in-the-Loop Testing
PHIL test introduction

• **Goal:** Test inverters as if connected to real HECO circuits
• **Method:** Run real-time dynamic simulation of HECO circuit in parallel with, and interacting dynamically with, hardware inverter test. (Power hardware-in-the-loop, PHIL)
• To capture fast dynamics, real-time feeder simulation solves circuit over 4000 times per second.
• Feeder model detail must be reduced to allow fast computation.
• Feeder reduction overview:
 1. Convert from Synergi to OpenDSS and validate
 2. Select nodes to retain
 3. Reduce feeder (process depicted on next slide)
 4. Validate voltages by simulating at multiple load levels (100%, 75%, 50%)
 5. Translate reduced model from OpenDSS (quasistatic) to SimPowerSystems (electromagnetic transient) and re-validate
 6. Add aggregated PV models
 7. Add selected distribution secondary circuit(s)

Proprietary data and preliminary results
Please do not distribute
Feeder reduction process

Reduction

- Original feeder
- Reduced feeder

Validation

- Independent variables: Line lengths
- Verification: Voltages at retained node
- Up to 50,000 Monte-Carlo simulations

Proprietary data and preliminary results. Please do not distribute.
PHIL test summary

• Two circuits (K3L and M34) adapted from full HECO Synergi models:
 - Synergi → OpenDSS → reduced OpenDSS → SimPowerSystems
 - 8 primary nodes retained, voltages validated
 - 4 aggregated inverter types at each node → 32 modeled inverters:
 | Legacy Enphase | Advanced function capable Enphase |
 | Legacy non-Enphase| Advanced function capable non-Enphase |
 - Inverter capacities based on detailed data on existing PV systems and projections of future inverters provided by HECO
 - Capacity and settings of each type of inverter at each node vary between tests

• Both circuits contain a detailed single-phase secondary model in one location, provided by HECO. Single-phase hardware inverters are connected here. Three-phase hardware inverter (#4) connected to a simple fabricated secondary far from the feeder head.

• Secondary impedances not modeled elsewhere.

Proprietary data and preliminary results
Please do not distribute
Reduced-order distribution feeder model (one of two)

Reduced-order feeder primary

MV:LV transformer

Primary nodes with:
- Aggregated load
- Four aggregated PV inverter models

Selected secondary circuit (detailed model)

Secondary nodes (e.g. houses)

Simulated PV inverter

Hardware inverter PCC

Feeder head

Proprietary data and preliminary results. Please do not distribute.
Real-time model for PHIL

- Real-time HECO feeder model contains two PCCs for hardware inverters
- Hardware inverters are connected to AC supply driven by simulated PCC voltage
- Many more inverters simulated with various controls in distribution feeder model

Real-time simulation (OPAL-RT)

Slave subsystem: Inverter controls & data processing

Simulated inverter controls

HECO feeder model

Controllable voltage source

$\text{Master subsystem: Distribution system}$

$\text{Slave subsystem: Bulk power system}$

Oahu frequency dynamic model

$\text{Slave subsystem: Inverter controls & data processing}$

Data and control signals

Trip signal and event parameters

Console subsystem

Physical hardware

PV / DC supply
Inverter hardware
AC power amplifier
PV / DC supply
Inverter hardware
AC power amplifier

Proprietary data and preliminary results
Please do not distribute
PHIL test scenario overview

- Each PHIL test focuses on a single event lasting few minutes in time
- Summary of test scenario matrix developed by NREL and HECO, vetted by SITWG:
 - 180 volt-watt tests (details on next slide)
 - 24 VRT tests:
 - Distant event (simulated) reduces voltage at inverter terminals, then recovers within required ride-through time. Voltage event designed to cover multiple VRT levels
 - 24 FRT tests:
 - Bulk system conditions cause temporary frequency event. Frequency recovers within required ride-through time. Event designed to cover multiple FRT levels
 - 18 ramp-rate tests:
 - PV output low due to low irradiance. Irradiance rises (200 W/m² → 1000 W/m²)
 - 18 soft-start tests:
 - Inverter comes online following voltage event and ramps to full power

Proprietary data and preliminary results
Please do not distribute
Volt-watt PHIL test scenarios

- General scenario: POI voltage near top of ANSI Range A (1.05 pu). PV output low due to low irradiance. Irradiance rises (e.g. 200 W/m² → 1000 W/m² in 40 seconds).
 - Record voltages and powers at inverter POI and other key locations on circuit.
 - Load set low (MDL), feeder head voltage set high, and legacy PV added to secondary to produce interesting test cases
- Volt-watt test variables
 - 3 volt-watt curves, plus baseline with volt-watt off
 - 2 volt-watt styles: snapshot, P_{max}
 - 3 fixed PF settings (0.98, 0.95, 0.90), plus baseline with unity PF
 - 2 retrofit proportions for legacy inverters: (25%, 50%), plus baseline with no retrofit
 - Present and future (2021) PV penetration cases
 - All “future” inverters assumed to be capable of V-W and non-unity PF
- Inverter 1 and Inverter 4 tested independently
- Inverters 2 and 3 tested simultaneously (neighboring locations on same secondary)
- Different subset of variable combinations tested for each inverter to maximize the number of variables covered within time available

Proprietary data and preliminary results
Please do not distribute
Simulated inverters – volt-watt test scenarios

Total PV inverter ratings

• M34 circuit:

<table>
<thead>
<tr>
<th>Year</th>
<th>Portion of PV inverters retrofitted</th>
<th>Legacy PV (MW)</th>
<th>Advanced PV (MW)</th>
<th>Total PV (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>None</td>
<td>3.9</td>
<td>0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>2.9</td>
<td>1.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1.9</td>
<td>1.9</td>
<td>3.9</td>
</tr>
<tr>
<td>2019</td>
<td>None</td>
<td>3.9</td>
<td>11.2</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>2.9</td>
<td>12.1</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1.9</td>
<td>13.1</td>
<td>15.1</td>
</tr>
</tbody>
</table>

• K3L circuit:

<table>
<thead>
<tr>
<th>Year</th>
<th>Portion of PV inverters retrofitted</th>
<th>Legacy PV (MW)</th>
<th>Advanced PV (MW)</th>
<th>Total PV (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>None</td>
<td>3.0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>2.3</td>
<td>0.8</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>2019</td>
<td>None</td>
<td>3.0</td>
<td>1.8</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>2.3</td>
<td>2.5</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>1.5</td>
<td>3.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Volt-watt PHIL test example

Inverter 1, volt-watt disabled, unity PF, year 2021, no retrofit

Proprietary data and preliminary results. Please do not distribute
Volt-watt PHIL test example

- Inverter 1, moderate volt-watt, 0.95 PF, year 2021, no retrofit

Proprietary data and preliminary results. Please do not distribute
Summary of Inverter 1 volt-watt tests, K3L circuit

All Inverter 1 tests:
- Year 2021
- No retrofitting (but all post-2015 PV assumed capable of V-W and Fixed PF)
Summary of Inverter 1 volt-watt tests, K3L circuit

• In this case, both V-W and FPF have significant impacts on voltage
Summary of Inverter 1 volt-watt tests, M34 circuit

Final hardware inverter PCC voltage:

PCC voltage change from beginning of test till end:

Effect on hardware PV power output:

- In this case, Fixed PF impacts voltage strongly; V-W has comparatively little impact
- Reason: much more future PV on this circuit (11 MW on M34 vs 1.8 MW on K3L)
Volt-watt test example, Inverter 2&3, M34 circuit

Year 2016, no retrofit, no V-W, unity PF, (baseline test)

Proprietary data and preliminary results. Please do not distribute
Volt-watt test example, Inverter 2&3, M34 circuit

Year 2019, no retrofit, moderate V-W (Pmax mode), 0.95 PF

Proprietary data and preliminary results. Please do not distribute
Summary of Inverter 2&3 volt-watt tests, M34 circuit

Final PCC Voltages, Inverter 3 V-W Tests, M34

 Voltage (p.u.)

- PF = 1.00, Curve = OFF
- PF = 0.95, Curve = OFF
- PF = 0.90, Curve = OFF
- PF = 1.00, Curve = MODERATE
- PF = 0.95, Curve = MODERATE
- PF = 0.90, Curve = MODERATE
- PF = 1.00, Curve = MILD
- PF = 0.95, Curve = MILD
- PF = 0.90, Curve = MILD

PV Ratings

- Ratings 1 = 2016, NO RETROFIT
- Ratings 2 = 2016, 25% RETROFIT
- Ratings 3 = 2016, 50% RETROFIT
- Ratings 4 = 2021, NO RETROFIT
- Ratings 5 = 2021, 25% RETROFIT
- Ratings 6 = 2021, 50% RETROFIT

2016

Fixed PF has the dominant impact for this circuit.

Proprietary data and preliminary results. Please do not distribute.
Summary of Inverter 2&3 volt-watt tests, K3L circuit

For K3L, both V-W and fixed PF have significant impact, but...

<table>
<thead>
<tr>
<th>PV Ratings</th>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (p.u.)</td>
<td>1.065 1.07 1.075 1.08 1.085</td>
</tr>
</tbody>
</table>

Ratings 1 = 2016, NO RETROFIT
Ratings 2 = 2016, 25% RETROFIT
Ratings 3 = 2016, 50% RETROFIT
Ratings 4 = 2021, NO RETROFIT
Ratings 5 = 2021, 25% RETROFIT
Ratings 6 = 2021, 50% RETROFIT

Proprietary data and preliminary results.
Please do not distribute
Summary of Inverter 2&3 volt-watt tests, K3L circuit – Voltage change

Voltage change from beginning till end of test:

Fixed PF has dominant impact on *voltage change*.
Voltage ride-through PHIL test example (Inverter 1)

- Event tests all LVRT levels
- Hardware inverter stays online. Modeled legacy inverters trip

Proprietary data and preliminary results
Please do not distribute
Voltage ride-through disabled

- Same event
- All inverters trip

Proprietary data and preliminary results
Please do not distribute
Conclusions: Volt-watt and fixed PF

• All inverters were capable of simultaneous V-W and fixed PF
• PHIL tests showed V-W has significant impact on voltage in some cases, but fixed PF tended to have a larger impact.
 ○ However, non-unity PF may increase system losses, and requires vars to be sourced by utility (even if voltages are not high).
• A moderate V-W curve had substantial impact on voltage, especially when combined with 0.95 PF.
• The impact of both V-W and fixed PF is highly dependent on the proportion of total inverters participating.
• High feeder head voltages were typically needed to produce high secondary voltages. => Adjusting LTC controls may help

The fine print:
• Volt-watt tests were intentionally designed to create high voltages. Actual feeder voltages will vary.
• These tests focused on one specific secondary per feeder. Results at other locations will vary. (See VROS CRADA)
Next steps

• Advanced inverter test plan:
 o NREL deliver final report to HECO
 o HECO deliver to PUC by Dec 15

• Voltage regulation operational strategies (VROS) study
 o Design simulation scenarios and collect data
 o Conduct simulations to select combinations of volt-watt, volt-var, and fixed PF
 o Quantify impacts of selected combinations on annual PV kWh production and feeder voltage profiles
 o Complete in Spring 2017

• DOE GMLC work
 o Simulation and testing of frequency-watt (both presently available function and possible future advancements)
 o Complete in Fall 2017
Thank you!

Questions welcome
Extra Slides
Baseline testing: Volt-var

- Based on UL 1741 SA volt-var test
- Three curves tested, plus inductive and capacitive offsets:

 Volt-Var Curves

 Volt-var curves depend on inverter’s maximum VArS. This plot assumes $Q_{max} = 0.5\ pu$.

- Tested at various power levels
- Varying time responses tested
- 29 test series, 950 total points tested

Proprietary data and preliminary results
Please do not distribute
Volt-var example

Inverter 3 Test # 74:

- Moderate curve
- 1-second response time
- Full power

Inverter 3 -VAr Test Case 1

Proprietary data and preliminary results
Please do not distribute
Voltage ride-through examples

OVR1: 110% < V < 120% for 1 s

UVR1: 70% < V < 88% for 20 s
Baseline testing: Soft-start and ramp rate control

- Based on UL 1741 SA tests
- **Soft-start tested at three rates:**
 - Fastest available
 - 0.33% per second
 - Slower ramp rate (typically slowest available)
- **Ramp rate control (normal operation) tested at three rates:**
 - Fastest available
 - 0.33% per second
 - Slower ramp rate (typically slowest available)
- **Legacy Enphase inverters also tested (default values only)**
- **Ramp rate control was a new function for some inverters**
Soft-start example

Soft-start ramp-rate: 0.33% per second:

Proprietary data and preliminary results
Please do not distribute
Baseline testing: Fixed power factor

- Based on UL 1741 SA tests
- Not in original test plan – added to allow for PHIL testing of volt-watt with fixed PF.
- Tested 0.9 and 0.95 PF
- 0.95 PF tested using Oahu profile
- Tested at 100%, 60% and 20% power
- Power factor accuracy typically only guaranteed down to 20% of rated real power. Tested at 10% power as well to characterize behavior.
 - Commanded power factors still maintained at 10% power, but accuracy slightly reduced (e.g. 0.94 instead of 0.95)
Fixed power factor example

Inverter 3 Power Factor Test # 72:

Apparent Power
Real Power
Reactive Power

Power Factor

Proprietary data and preliminary results
Please do not distribute