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Efficient and Extensible Quasi-Explicit Modular Nonlinear
Multiscale Battery Model: GH-MSMD
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Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-
format battery cells and systems. A modular, efficient battery simulation model—the multiscale multidomain (MSMD) model—was
previously introduced to aid the scale-up of Li-ion material & electrode designs to complete cell and pack designs, capturing
electrochemical interplay with 3-D electronic current pathways and thermal response. This paper enhances the computational
efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition
provides a quasi-explicit linkage between the multiple length-scale domains and thus reduces time-consuming nested iteration when
solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous
work, the present formulation extends to bus bar- and multi-cell module-length scales. Example simulations are provided for several
variants of GH electrode-domain models.
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In cutting-edge industries such as automotive and aviation, com-
puter models are valuable tools for reducing the cost of product de-
velopment, improving manufacturing processes, optimizing designs,
and implementing advanced controls. Although the global electric-
drive-vehicle market is growing rapidly, the lack of a model that can
accurately predict a battery’s behavior is recognized as a threat to
the automotive industry that has been enhancing its dependence on
computer models. In a lithium-ion battery, which is the preeminent
candidate powering electric-drive vehicles, physiochemical processes
take place in intricate geometries over a wide range of time and
length scales. The device response of a battery results from complex
nonlinear interplays among material characteristics, design variables,
and environmental and operational conditions. The multiscale nonlin-
ear nature of battery physics even more critically affects the device
behavior as the size of a battery increases. Without understanding
the interplays among the interdisciplinary physicochemical processes
occurring across varied scales, it is costly to design long-lasting, high-
performing, safe, large batteries.

The U.S. Department of Energy’s Computer Aided Engineering
for Electric Drive Vehicle Battery (CAEBAT) program has supported
development of modeling capabilities to help industries accelerate
mass-market adoption of electric-drive vehicles and their batteries.
In support of the U.S. Department of Energy, National Renewable
Energy Laboratory developed the multiscale multidomain (MSMD)
model, overcoming challenges in modeling the highly nonlinear mul-
tiscale response of battery systems.1,2 The MSMD model introduces
separate model domains at particle, electrode, and cell levels, while
tightly coupling the physics across the scales. The separation of a
model domain and the adoption of local homogeneity assumption
are enabled by the intrinsic nature of typical battery systems where
substantial time- and length-scale segregation occurs. The MSMD
particle-domain models (PDMs) solve collective response of elec-
trically and ionically connected particle-batteries which are collo-
cated in the electrode-domain. The electrode-domain models (EDMs)
solve the collective behavior of particle-domain batteries, considering
polarization through electrolyte and composite matrices. The cell-
domain models (CDMs) of the MSMD solve single- or multi-cell
battery response by resolving the collective behavior of paired plate
electrode-domain batteries, considering polarization caused by non-
uniform temperature and electric potential fields across cell volume.
The MSMD provides a high degree of flexibility and extensibility
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through its modularized hierarchical architecture, enabling integrated
investigation on the impacts of complex interactions among material,
design, and environmental factors on device behavior. To meet the
urgent needs of various engineering applications in the industry, sig-
nificant computation speed improvement of the high fidelity model is
greatly desired. The inevitable nested iteration in the MSMD, ensuring
self-consistency at each hierarchical level, costs the model computa-
tional speed. On the other hand, traditional multiphysics approaches
collapse the scales into a single large differential algebraic equation
system and apply sophisticated matrix treatments. The hierarchical
nature of battery physics renders this collapsed system impractically
large and stiff.

Efforts have been made to reduce computational time for solv-
ing the battery model, since Doyle et al.4–6 presented a macro-
homogeneous electrode model. They greatly simplified the model
complexity by considering a composite electrode to be a homoge-
neous porous medium without regard to details of its mesoscale par-
ticulate geometry. The active material was often assumed to be made
of spherical particles, with diffusion being the mechanism of transport
of the lithium. This assumption has been widely accepted and proven.
One-dimensional diffusion systems have analytical series solutions
for time-varying flux boundary conditions; therefore, previous studies
demonstrated successful simplification of modeling transport in solid
electrode particles. Doyle et al.4 introduced Duhamel’s superposition
to solve the solid phase Li diffusion model. Wang and Srinivasan7

and Subramanian et al.8 used polynomial functions for Li concentra-
tion profiles in particles. Guo and White9 obtained an approximate
solution by evaluating an error term to the truncated analytical se-
ries solution. Hu et al.10 applied the linear time invariant method to
numerically obtain a transfer function. In spite of many successes in
simplified solid-phase diffusion models, their impact on promoting
the computational speed of battery performance prediction has been
limited. A few published research studies have addressed model order
reduction across the entire system of equations presented by Doyle
et al.4 Smith et al.3 developed a reduced order model (ROM) using a
state-space representation of the Doyle’s model. It finds the frequency
domain transfer functions of lithium diffusion dynamics, charge trans-
fer kinetics, and charge balance through a composite electrode pair for
a perturbed applied current. High-frequency responses are truncated
and the model order is further reduced with residue grouping and
cost-function minimization processes. Cai and White11 used proper
orthogonal decomposition to find the basis from the solution sets of
a high-order model for typical operational modes and truncated triv-
ial responses. Lee et al.12 presented a direct-realization algorithm to
identify a discrete time ROM for a given set of electrochemical model
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parameters at a given state of charge and temperature. The ROMs are
useful in various practical applications repeatedly solving a system of
differential equations with invariant parameters. However, as soon as
the ROM basis is acquired in a reduced dimension space, they eas-
ily lose physical interpretations. This makes it difficult to apply the
ROMs to a system in which its characteristics evolve. Therefore, the
applicability of the model to battery-design optimization or device-
degeneration study is restricted.

This paper presents a new approach for fast and accurate solution
of the MSMD battery model. Governing equations for charge conser-
vation are decomposed into fast “G × i” and slow “H” time varying
terms, being partially linearized to provide a quasi-explicit coupling
among the multiple model length scales. Equations are derived at the
particle-, electrode-, cell-, and module-length scales. Simulation re-
sults are presented comparing the full and GH versions of MSMD
EDMs.

In the literature, splitting or decomposition concepts are often
used to reduce the computational burden of multiphysics multiscale
problems.13,14 These methods decompose the model into separate
physical problems or time scales15 that can be solved independently
and then linked. Similar to those methods, the present work decom-
poses the potential field variable φ – which exists at all length scales
of a battery – into slow and fast time scales. Like other works, this
speeds up computation of the current/potential relationship at each
individual length scale. But unlike any work that we have found, the
decomposition also provides an explicit linkage between the separate
length scales, eliminating the need to perform separate iterations at
each length scale in a nested manner.

Model Description

GH-formulation.—A mathematical model provides a relation be-
tween input and output of a system in context of its states and param-
eters. A battery model defining a voltage-current relation is presented
in Eq. 1,

φ = f (i ; x, p) , [1]

where φ and i are voltage and current of a battery with x and p for its
states and parameters. f is a nonlinear implicit function and is costly
to evaluate. If f can be decomposed into a sum of a fast-varying
function g and a slow-varying function h, then Eq. 1 becomes Eq. 2,

φ = g (i ; x, p) + h (i ; x, p) [2]

where the magnitude of dh
di is substantially smaller than the magnitude

of dg
di by definition. Note that g and h are not uniquely determined.

Assuming the existence of a slow-varying function G such that,

G (i ; x, p) = dg

di
, [3]

Eq. 2 can be written into

φ = G (i ; x, p) i + H (i ; x, p) , [4]

where both dG
di and d H

di are negligible. Since both G and H are slow-
varying functions, Eq. 4 provides a quasi-explicit relation between
φ and i for given values of G and H at a certain instance. Variable
decomposition based on time-scale separation and following partial
linearization converts a nonlinear implicit relation in Eq. 1 into a quasi-
explicit relation in Eq. 4. In the course of constructing the GH-MSMD
quasi-explicit modular nonlinear multiscale model, these procedures
are applied in all hierarchical levels of PDMs, EDMs, and CDMs.
Note that the function G has a unit of resistance and the function H
has a unit of potential. The proper physical interpretations of the quan-
tities G and H can vary depending on the models of choice. While
determination of G requires linearization of the governing equation
– sometimes associated with loss of accuracy – the H term, deter-
mined as H = φ − Gi , can capture the residual nonlinearity of the
problem and no accuracy is lost. This is similar to solving a nonlinear
function using Newton’s method where the partial derivative of the
function with respect the solution variable need not be exact. The

partial derivative simply needs to iteratively advance the solution in
the correct direction. The nonlinear function is reevaluated at each
iteration ensuring the nonlinearity is not lost. More discussions and
specific assumptions applied in GH-MSMD model formulation are
provided below.

Baseline submodels.—The modular architecture of the MSMD fa-
cilitates unrestricted choice of submodels at each hierarchical model
domain. The GH-MSMD inherits the modularity of the MSMD. In
this paper, however, baseline submodels are presented and taken for
GH-formulation to demonstrate a GH-MSMD construction. A PDM
resolves lithium transport in solid electrode particles, interfacial re-
action kinetics, and charge conservation at the interfaces. The dis-
crete diffusion particle model (DDPM) is chosen as a baseline PDM
addressing the impacts of particulate morphology, size distribution,
surface modification, contact resistances, and mixture composition
of active particles. A system of particles is considered electronically
continuous, but ionically discrete. An arbitrary number of quantized
discrete particles can be given as a user input. Thermodynamic, ki-
netic, transport, electrical, and geometrical model parameters of each
discrete particle can be determined independently. An EDM solves
electronic and ionic charge conservation in composite electrodes and
electrolyte, respectively, and species conservation in electrolyte. As-
suming the existence of a local in-plane ensemble average in a finite
volume of cell composite, a one dimensional porous electrode model
(1DPE) is chosen for a baseline EDM. A CDM solves for temperature
and electronic current in current collectors and other passive path-
ways across cell dimensions. An orthotropic cell composite model is
a baseline CDM. A battery cell composite has intricate stratified struc-
tures, and the assembly units of paired electrode layers are stacked
or wound to build prismatic or cylindrical cells. Macroscopic designs
for electrically and thermally configuring cell components greatly af-
fect the physicochemical processes occurring in a battery. Numerical
complexity of a model can be significantly reduced by treating the
cell-composite as a homogeneous orthotropic continuum. For exam-
ple, the single potential-pair continuum (SPPC) model treats the strat-
ified cell composite as a homogeneous continuum with orthotropic
transport properties, and it resolves temperature and a pair of current
collector phase potentials in the volume of the continuum with distinct
in-plane and transverse conductivities for heat diffusion and electrical
current conduction. Table I summarizes the governing equations for
the baseline models presented.

G and H evaluation.—G and H evaluation is a bottom-up proce-
dure starting from the lowest hierarchical model, i.e. a PDM. With the
linearized Eq. T1.1 (Table I), which is valid for many conventional
lithium-ion batteries in moderate cycling conditions where the mag-
nitude of charge transfer current density would not much exceed the
exchange current density, Eq. T1.2 becomes

φpe = (
Rηξ,i + R f ξ,i

)
i ′′
ξ,i + U s

i

= Gξ,i i
′′
ξ,i + Hξ,i , [5]

where

Rηξ,i = RT

F
(
αa,i + αc,i

)
i ′′
o,i

. [6]

While defining the output voltage of a particle-domain battery as,

Vξ = φpe + R f ξ ı̄′′ξ, [7]

substituting Eq. 5 into Eq. T1.5 yields the particle-domain GH-
equation,

Vξ = Gξ ı̄′′ξ + Hξ. [8]

For the DDPM as a PDM, the particle-domain Gξ and Hξ evaluated
in Eq. 8 are,

Gξ =
∑

i aξ,i f p,i∑
i

aξ,i f p,i

(Rηξ,i +R f ξ,i )

+ R f ξ, [9]
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Table I. Summary of baseline submodel governing equations chosen in the present study.

PDM Discrete Diffusion Particle Model (k = 1,2, . . . ,Np)

Transfer kinetics i ′′ξ,k = i ′′
o,k

{
exp

(
αa,k F

RT ηk

)
− exp

(
− αc,k F

RT ηk

)}
[T1.1]

ηk = φpe − i ′′
ξ,k R f,k − U s

k [T1.2]

i ′′
o,k = kio,k (ce)αa,k (cmax

p,k − cs
p,k )αa,k (cs

p,k )αc,k [T1.3]

Species conservation
∂cp,k

∂t = ∇ξ · (Dp,k∇ξcp,k ) [T1.4]

dcp,k
dξ

∣∣∣
ξ=0

= 0

dcp,k
dξ

∣∣∣
ξ=l p,k

= −i ′′
ξ,k

F Dp,k

Kirchhoff’s current law ı̄′′ξ =
∑

k i ′′
ξ,k aξ,k f p,k∑

k aξ,k f p,k
[T1.5]

EDM 1D Porous Electrode Model

Charge conservation ∂
∂x

(
σ

e f f
a

∂φs,a
∂x

)
− j ′′′

x = 0 [T1.6]

∂φs,a
∂x

∣∣∣
x=0

= − i ′′x
σ

e f f
a

∂φs,a
∂x

∣∣∣
x=la

= 0

∂
∂x

(
σ

e f f
c

∂φs,c
∂x

)
− j ′′′

x = 0 [T1.7]

∂φs,c
∂x

∣∣∣
x=la+ls

= 0

∂φs,c
∂x

∣∣∣
x=la+ls+lc

= − i ′′x
σ

e f f
c

σe f f = σεs [T1.8]

∂
∂x

(
κe f f ∂φe

∂x

)
+ ∂

∂x

(
κ

e f f
D

∂
∂x lnce

)
+ j ′′′

x = 0 [T1.9] ∂φe
∂x

∣∣∣
x=0

= ∂φe
∂x

∣∣∣
x=la+ls+lc

= 0

κe f f = κε
p
e [T1.10]

κ
e f f
D = 2RT κe f f

F (t0+ − 1)
(

1 + dln f±
dlnce

)
[T1.11]

Species conservation ∂(εece)
∂t = ∂

∂x

(
Def f

e
dce
dx

)
+ 1−t0+

F j ′′′
x − i ′′e

F
∂t0+
∂x [T1.12] ∂ce

∂x

∣∣∣
x=0

= ∂ce
∂x

∣∣∣
x=la+ls+lc

= 0

Def f
e = Deε

p
e [T1.13]

CDM Single Pair Potential Continuum Model et, transversal vector

Charge conservation ∇ · (σ̃e f f
− ∇�−) − j ′′′

� = 0 [T1.14] �− = V− at negative terminal
n · (∇�−) = 0 elsewhere

σ
e f f i j
− = (δi j − et

i et
j )ε−σ− [T1.15]

∇ · (σ̃e f f
+ ∇�+) + j ′′′

� = 0 [T1.16] �+ = V+ at posi tive terminal
n · (∇�+) = 0 elsewhere

σ
e f f
+ i j = (δi j − et

i et
j )ε+σ+ [T1.17]

Energy conservation
∂(ρcp T )

∂t = ∇ · (k̃∇T ) + q ′′′
� [T1.18]

ki j = (kt − kp)et
i et

j + kpδi j [T1.19]

and

Hξ =
∑

i
U s

i aξ,i f p,i

(Rηξ,i +R f ξ,i )∑
i

aξ,i f p,i

(Rηξ,i +R f ξ,i )

. [10]

Consequently, electrode-domain Gx and Hx are acquired by re-
formulating EDM equations for given particle-domain Gξ and Hξ.
The volumetric current-source profile in the electrolyte phase of elec-
trode composite, j ′′′

x , is evaluated in the EDM with the PDM current
density,ı̄′′ξ ,

j ′′′
x = ı̄′′ξax . [11]

Integrating Eq. T1.6 and Eq. T1.7 over the intervals [0, la] and
[la +ls , la +ls +lc], respectively, yields the current continuity equations
at the anode, Eq. 12, and at the cathode, Eq. 13,

i ′′
x =

∫ la

0
j ′′′
x dx, [12]

and

i ′′
x = −

∫ la+ls+lc

la+ls

j ′′′
x dx . [13]

Solid-phase charge-conservation equations Eq. T1.6 and Eq. T1.7
are modified with a homogenized source term and provided in Eq. 14
and Eq. 15.

∂

∂x

(
σe f f

a

∂φs,a

∂x

)
−

∫ la
0 j ′′′

x dx

la
= 0 [14]

∂

∂x

(
σe f f

c

∂φs,c

∂x

)
−

∫ la+ls+lc
la+ls

j ′′′
x dx

lc
= 0 [15]

The original model equations simplified the electronic current
transport in the composite electrode matrices by introducing porous
media properties. The modified equations still give the close solutions
of φs,a and φs,c for typical profiles of j ′′′

x in conventional systems.
Note that Eqs. 14 and 15 also satisfy the current continuity shown in
Eqs. 12 and 13. By substituting the solid matrix potential fields φs,a

and φs,c in Eqs. 14 and 15 with their GH-form, such that

φs,a = ψs,ai ′′
x + Vn, Vn = φs,a

∣∣
x=0

[16]

and

φs,c = ψs,ci ′′
x + Vp, Vp = φs,c

∣∣
x=la+ls+lc

, [17]
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ψs,a and ψs,c are solved without depending on i ′′
x or boundary

values Vn and Vp . If the effective conductivities are uniform at each
electrode matrix, then ψs,a and ψs,c are given with analytical solutions:

ψs,a = la

2σ
e f f
a

{(
x

la
− 1

)2

− 1

}
(0 ≤ x ≤ la) [18]

ψs,c = lc

2σ
e f f
c

{
1 −

(
x − la − ls

lc

)2
}

(la + ls ≤ x ≤ la + ls + lc)

[19]
If effective conductivities are non-uniform, then ψs,a and ψs,c are

solved with simple numerical calculations with negligible impact to
computation speed. Similar modification is done for electrolyte-phase
charge-conservation equation Eq. T1.9, as shown in Eq. 20,

∂

∂x

(
κe f f ∂φe

∂x

)
+ ∂

∂x

(
κ

e f f
D

∂

∂x
lnce

)
+

∫ la
0 j ′′′

x dx

la
u (x) u (la − x)

+
∫ la+ls+lc

la+ls
j ′′′
x dx

lc
u (x − la − ls) u (la + ls + lc − x) = 0,

[20]

where u(x) is a unit step function. By substituting φe in Eq. 20 with
its GH-form, such that

φe = ψe1i ′′
x + (φe2 + VeL ) , VeL = φe|x=la+ls+lc , [21]

we solve for ψe1 and φe2. The analytical solution of ψe1 for uniform
conductivities is shown in Eq. 22,

ψe1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
1 −

(
x
la

)2
}

la
2κ

e f f
a

+ ls
κ

e f f
s

+ lc
2κ

e f f
c

(0 ≤ x < la)(
la+ls−x

ls

)
ls

κ
e f f
s

+ lc
2κ

e f f
c

(la ≤ x < la + ls)

(
x−la−ls−lc

lc

)2
lc

2κ
e f f
c

(la + ls ≤ x ≤ la + ls + lc)

[22]

while φe2 is given in a simple form with negligible dln f±/dlnce and
∂t0

+/∂x ,

φe2 = 2RT

F

(
1 − t0

+
)

ln
ce

ceL
, ceL = ce|x=la+ls+lc . [23]

Numerical calculations may be used to relax assumptions applied
in Eqs. 22 and 23. Substituting the particle-domain GH-equation
Eq. 8 into the electrode-domain current continuity equations Eqs.
12 and 13 yields, respectively,

i ′′
x =

∫ la

0
ax

Vξ − Hξ

Gξ

dx , [24]

and

i ′′
x = −

∫ la+ls+lc

la+ls

ax
Vξ − Hξ

Gξ

dx, [25]

where the spatial distribution of Vξ is given with,

Vξ =
{

φs,a − φe (0 ≤ x ≤ la)

φs,c − φe (la + ls ≤ x ≤ la + ls + lc)
. [26]

Subsequent substitution of Eqs. 16, 17, and 21 into Eqs. 24 and 25
yields Eqs. 27 and 28.

Vn − VeL = 1−∫ la
0 ax

ψs,a −ψe1
Gξ

dx∫ la
0

ax
Gξ

dx
i ′′
x +

∫ la
0 ax

φe2+Hξ
Gξ

dx∫ la
0

ax
Gξ

dx

= Gx,ai ′′
x + Hx,a

[27]

Vp − VeL = −1−∫ la +ls +lc
la +ls

ax
ψs,c−ψe1

Gξ
dx∫ la

la +ls
ax
Gξ

dx
i ′′
x +

∫ la +ls +lc
la +ls

ax
φe2+Hξ

Gξ
dx∫ la +ls +lc

la +ls
ax
Gξ

dx

= Gx,ci ′′
x + Hx,c

[28]

The electrode-domain battery working potential Vpn is evaluated
by subtracting Eq. 27 from Eq. 28.

Vpn = Vp − Vn [29]

Considering plate contact resistance, the electrode-domain battery
output voltage is calculated as

Vx = Vpn − R f x i ′′
x

= (
Gx,c − Gx,a − R f x

)
i ′′
x + (

Hx,c − Hx,a

)
. [30]

For the 1-D porous electrode model as EDM, the electrode-domain
GH-equation is,

Vx = Gx ı̄′′x + Hx , [31]

where ı̄′′x = i ′′
x in the 1-D model and the electrode-domain Gx and Hx

evaluated in Eq. 31 are

Gx = −
1 + ∫ la+ls+lc

la+ls
ax

ψs,c−ψe1
Gξ

dx∫ la
la+ls

ax
Gξ

dx
−

1 − ∫ la
0 ax

ψs,a−ψe1
Gξ

dx∫ la
0

ax
Gξ

dx
− R f x ,

[32]
and

Hx =
∫ la+ls+lc

la+ls
ax

φe2+Hξ

Gξ
dx∫ la+ls+lc

la+ls
ax
Gξ

dx
−

∫ la
0 ax

φe2+Hξ

Gξ
dx∫ la

0
ax
Gξ

dx
. [33]

Consequently, cell-domain G� and H� are acquired by reformu-
lating CDM equations for given electrode-domain Gx and Hx . Volu-
metric current profile in the cell-composite volume, j ′′′

� , is evaluated
in the CDM with the EDM plate current density,ı̄′′x :

j ′′′
�

= ı̄′′x a�. [34]

Integrating Eq. T1.14 or Eq. T1.16 over the cell-composite volume
yields the current continuity equations at a battery cell,

I� =
∫
V�

j ′′′
�

dV. [35]

Modified equations of Eqs. T1.14 and T1.16 are given in Eqs.
36 and 37 for charge conservation in negative and positive current
collectors:

∇ ·
(
σ̃

e f f
− ∇�−

)
−

∫
V�

j ′′′
�

dV
V�

= 0 [36]

∇ ·
(
σ̃

e f f
+ ∇�+

)
+

∫
V�

j ′′′
�

dV
V�

= 0. [37]

By substituting the current collector potential field �− and �+ in
Eqs. 36 and 37 with their GH-form, such that

�− = �− I� + V−, V− = �−|at negative terminal [38]

and

�+ = �+ I� + V+, V+ = �+|at posi tive terminal , [39]

We solve for �− and �+ without dependence on the cell current I�

or the boundary values V− and V+. Substituting the electrode-domain
GH-equation Eq. 31 in the cell-domain current-continuity equation
Eq. 35 yields,

I� =
∫
V�

a�

Vx − Hx

Gx
dV, [40]

where the spatial distribution of Vx is given with the relation,

Vx = �+ − �−. [41]

Subsequent substitution of Eqs. 38 and 39 into Eq. 40 yields,

V+− = V+ − V−

= 1−∫
V�

a�
�+−�−

Gx
dV∫

V�

a�
Gx

dV I� +
∫
V�

a�
Hx
Gx

dV∫
V�

a�
Gx

dV
. [42]
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Considering additional contact resistance at the cell terminal, the
cell output voltage is calculated with the relation,

V� = V+− − R f � I�. [43]

For the SPPC model as the CDM, the cell-domain GH equation is
given here,

V� = G� I� + H�, [44]

where the cell-domain G� and H� are

G� =
1 − ∫

V�
a�

�+−�−
Gx

dV∫
V�

a�

Gx
dV − R f �, [45]

and

H� =
∫
V�

a�
Hx
Gx

dV∫
V�

a�

Gx
dV . [46]

Potential and current evaluation.—With the known G and H
values evaluated hierarchically from a bottom-up procedure, poten-
tial and current evaluation occurs in a top-down manner starting
from the highest hierarchical model. A PDM solves the collective
response of particle batteries while resolving the interfacial polar-
ization and the electrode diffusion-limiting polarization. An EDM
solves the electrode-domain battery response, a collective behavior
of particle-domain batteries, considering the polarization through the
electrolyte and the composite electrodes. In a CDM, single- or multi-
cell battery response is solved by resolving the collective behavior of
electrode-domain batteries for the polarization caused by non-uniform
temperature and electric potential fields along current collectors. As
the model scale is extended, more causes of polarization are addition-
ally addressed in the model. Therefore, depending on the cell design
and the operational condition, either a PDM, an EDM or a CDM can
be the model at the highest hierarchy in a MSMD or GH-MSMD
simulation. Since G and H are the slow-varying functions, a gen-
eral GH-equation at the highest hierarchy (Eqs. 8, 31 or 44) provides
a quasi-explicit relation between the battery output voltage and the
current,

Vo = G Io + H [47]

If either Vo or Io is known at a certain instance, the other is given
explicitly using Eq. 47. If the battery output power Po or the load
resistance RL is given, the voltage and the current outputs are evaluated
from simple derivations of Eq. 47 such as

Vo = H +
√

H 2 + 4G Po

2
[48]

or

Io = H

RL − G
. [49]

Using the quasi-explicit relations in Eqs. 47–49, the output po-
tential and the current at the highest hierarchical model (i.e., the
CDM-SPPC in this study) are evaluated from an electrical load in-
put given as Vo, Io, Po, or RL . With known V� and I� from Eq. 44,
Eq. 43 yields V+−. Current-collector potentials at the cell terminals
V+ and V− are determined by setting one of them as a cell-domain
reference; e.g., V− = 0. Consequently, the current-collector potential
fields in a cell volume �+ and �− are found using Eqs. 38 and 39.
Spatial distribution of electrode-domain output potential Vx is eval-
uated over a cell-composite volume using Eq. 41. The distribution
of electrode-domain plate current density ı̄′′x is evaluated over a cell-
domain with the distributions of Gx , Hx , and Vx using Eq. 31. With
the known ı̄′′x , Eq. 27 and Eq. 28 find the electrode-matrix potentials at
the current-collector interfaces, Vp and Vn , by having the electrolyte
potential at the positive current collector interface VeL as a reference
at the electrode-domain; e.g. VeL = 0. Consequently, φs,a , φs,c, and
φe are evaluated using Eqs. 16, 17, and 21. Spatial distribution of
electrode-domain output potential Vξ is evaluated across the electrode

composites using Eq. 26. The distribution of particle-domain current
density ı̄′′ξ is evaluated over an electrode domain with the distributions
of Gξ, Hξ, and Vξ using Eq. 8. With the known ı̄′′ξ , Eq. 7 finds φpe.
Finally, the distribution of the interfacial current density at an individ-
ual discrete particle, i ′′

ξ,i , is evaluated using Eq. 5. Note that through
the top-down potential and current evaluation procedure, a cell ter-
minal current given at an instance uniquely and explicitly determines
the spatial distribution of current in a cell volume and the currents in
the lower domain geometries down to the interfacial currents at each
particle for the known quasi-static G and H values.

Heat evaluation.—Like the G and H variables, heat is also eval-
uated hierarchically from a bottom-up procedure. In particle-domain,
the DDPM calculates the heat flux from the i-th discrete particle in-
terfacial area in Eq. 50.

q ′′
ξ,i = i ′′

ξ,i
2 (

Rηξ,i + R f ξ,i

) + i ′′
ξ,i

(
U s

i − U m
i

) + i ′′
ξ,i T

∂U

∂T

= i ′′
ξ,i

(
φpe − U m

i

) + i ′′
ξ,i T

∂U

∂T
[50]

The surface-average particle-domain heat flux is evaluated using
Eq. 51, and is carried to the EDM, the upper hierarchical model:

q̄ ′′
ξ =

∑
i q ′′

ξ,i aξ,i f p,i

aξ

+ ı̄′′ξ
2 R f ξ. [51]

For the 1D porous-electrode model, the particle physics contribu-
tion to the electrode-domain heat flux is presented based on electrode-
plate area in Eq. 52:

q ′′
x,ξ =

∫ la

0
ax q̄ ′′

ξ dx +
∫ la+ls+lc

la+ls

ax q̄ ′′
ξ dx . [52]

The ohmic portion of the electrode-domain heat flux is evaluated
with Eq. 53. for Eqs. 18, 19, 22, and 23.

q ′′
x,� = ı̄′′x

2
(

la

3σ
e f f
a

+ lc

3σ
e f f
c

+ la

3κ
e f f
a

+ ls

κ
e f f
s

+ lc

3κ
e f f
c

)

+ ı̄′′x
2RT

F

(
1 − t0

+
)

ln
c̄e,a

c̄e,c
[53]

The electrode-domain heat flux is evaluated based on the plate
area using Eq. 54, and it is carried to the CDM, the upper hierarchical
model.

q̄ ′′
x = q ′′

x,ξ + q ′′
x,� + ı̄′′x

2 R f x [54]

The plate heat flux evaluated in EDM is converted to the volumetric
heat source in the cell-composite using Eq. 55.

q ′′′
�,x = a�q̄ ′′

x [55]

Equation 56 evaluates the volumetric joule heat source in the cell
composite accounting for losses for carrying electronic current along
the current collector phases:

q ′′′
�,x = I 2

�

(
σ̃

e f f
− ∇�− · ∇�− + σ̃

e f f
+ ∇�+ · ∇�+

)
. [56]

Note that the terms in the parenthesis in Eq. 56 are invariants in
typical occasions. Finally, the total volumetric heat source for the
source term in Eq. T1.18 is given as a sum of the heat of EDM and
the joule heat at CDM:

q ′′′
� = q ′′′

�,x + q ′′′
�,�. [57]

It is often desired to quantify the heat by the cause of heat genera-
tion in a battery. Selective formulae are presented for heat categoriza-
tion in Table II with the given choice of the sub-models in the present
study.
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Table II. Heat categorization by cause (PDM-DDPM, EDM-1DPE, CDM-SPPC).

q�

∫
V�

q ′′′
� dV + I 2

� R f � Total heat from a cell [T2.1]

qx,� I 2
�

∫
V�

(σ̃e f f
− ∇�− · ∇�− + σ̃

e f f
+ ∇�+ · ∇�+)dV Joule heat for carrying current

in current collectors
[T2.2]

qx,�

∫
V�

a�

{
ı̄′′x

2
(

la
3σ

e f f
a

+ lc
3σ

e f f
c

+ la
3κ

e f f
a

+ ls
κ

e f f
s

+ lc
3κ

e f f
c

)
+ ı̄′′x

2RT
F (1 − t0+)ln c̄e,a

c̄e,c

}
dV Joule heat for carrying current

in composite electrodes and
electrolyte

[T2.3]

qa,η

∫
V�

a�

∫ la
0 ax

∑
i i ′′

ξ,i
2 Rηξ,i aξ,i f p,i

aξ
dxdV Heat for transfer kinetics

polarization at anode
[T2.4]

qa,D
∫
V�

a�

∫ la
0 ax

∑
i i ′′

ξ,i (U s
i −U m

i )aξ,i f p,i

aξ
dxdV Heat for solid phase diffusion

polarization at anode
[T2.5]

qa,r
∫
V�

a�

∫ la
0 ax

∑
i i ′′

ξ,i T ∂U
∂T aξ,i f p,i

aξ
dxdV Reversible heat at anode [T2.6]

qc,η
∫
V�

a�

∫ la+ls+lc
la+ls

ax

∑
i i ′′

ξ,i
2 Rηξ,i aξ,i f p,i

aξ
dxdV Heat for transfer kinetics

polarization at cathode
[T2.7]

qc,D
∫
V�

a�

∫ la+ls+lc
la+ls

ax

∑
i i ′′

ξ,i (U s
i −U m

i )aξ,i f p,i

aξ
dxdV Heat for solid phase diffusion

polarization at cathode
[T2.8]

qc,r
∫
V�

a�

∫ la+ls+lc
la+ls

ax

∑
i i ′′

ξ,i T ∂U
∂T aξ,i f p,i

aξ
dxdV Reversible heat at cathode [T2.9]

GH-MSMD solution algorithm.—The GH-MSMD inherits the
modular architecture of the MSMD, resolving the physicochemi-
cal interactions across the scales. Figure 1 compares the modular
multi-domain structure of the MSMD and the GH-MSMD. The inter-
domain coupling between the adjacent length scale submodels in the
MSMD occurs by exchanging either domain-invariant or domain-
average quantities without passing geometry-related information. This
enables the great modularity and the flexible submodel replacement in
the MSMD. However, to ensure self-consistency at each hierarchical

level while satisfying current continuity across the domains, multi-
ple layers of nested iteration, which cost the model computational
speed, becomes inevitable in the MSMD. In the GH-MSMD, instead
of the output current density the slow-varying functions G and H are
evaluated in a lower hierarchical model and transferred to a higher
hierarchical model. Even though the GH-MSMD results in a very
similar multi-domain modular structure as the MSMD, this difference
brings critical changes in the model solution algorithm eliminating
the need for nested iteration.

Figure 1. Multi-domain modular structure of the (a) MSMD and (b) GH-MSMD.
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Figure 2. Flowchart for implicit time integration in GH-MSMD.

Figure 2 presents a flowchart for the implicit time integration
at t = ti in the GH-MSMD. From the fact that the G and H are
slow-varying functions, they (or at least their close approximations)
are considered known at any instance. In the beginning of the time
integration at t = ti , the potential and the current distributions in all
domains are explicitly determined for an arbitrarily given electrical
load condition with the G and H values known from the previous
time-step calculation. In the next step, the battery states—such as
temperature and the lithium concentrations in the electrode particles
and in the electrolyte—are updated for a given thermal boundary
condition and the known potential-current fields. Using the updated
battery states, the G and H values are then evaluated explicitly. If the
G and H values are meaningfully changed from the previous values,
we go back to the first step and iterate the procedures until the G and
H values converge. Note that this iteration is not a nested iteration,
and it requires only low-cost computation. The converged G and H
values are usually acquired after a small number of iteration, because
their initial values are already close to the solutions. If the iteration
loop is removed from the flowchart shown in Fig. 2, then the potential
and current evaluation and the battery-state update are always carried
out with the G and H values from the previous time step, which results
in the explicit GH time integration.

Interpretation of G and H.—A general GH-equation shown in
Eq. 4 is written here without the arguments,

φ = Gi + H . [58]

G is a slow-varying battery state implying the sensitivity of ter-
minal voltage shift for change in external current. H indicates an
instantaneous open circuit voltage for deviated equilibriums at local
sites. The sign of G is determined depending on whether i is de-
fined as a discharge current or a charge current in the chosen model.
In the present study, for example, following the previous practices,
the PDM-DDPM defines ı̄′′ξ as a charge current, and the EDM-1DPE
and the CDM-SPPC define ı̄′′x and I� as discharge currents. Conse-
quently Gξ is given with positive values, whereas Gx and G� have
negative values. In Eq. 59, the GH-equation is written for discharge
overpotential,

Ueq − φ = −Gi + (
Ueq − H

)
. [59]

The first term in the right-hand side of the equation, −Gi ,
represents the kinetic and ohmic polarizations. The second term,

(Ueq − H ), indicates the polarization due to the deviation of the local
thermodynamic equilibria from a system equilibrium, i.e., the po-
larization for thermodynamic inhomogeneity in a system. H can be
defined as a terminal potential at an instance when the terminal cur-
rent is interrupted. If a system reaches its equilibrium status, H should
be equal to Ueq . G can be defined as a rate of change in potential for
change of current. If a system is at its equilibrium, G quantifies a short-
pulse resistance. By comparing Eq. 59 with an empirical polarization
relation shown in Eq. 60,

Ueq − φ = Rint i , [60]

Eq. 61 finds an explicit expression quantifying internal resistance
for a non-zero current i :

Rint = −G + Ueq − H

i
. [61]

The empirical model Eq. 60 has been widely used in various en-
gineering applications for its simplicity. However, experimental eval-
uation of Rint in a multi-parameter space requires significant effort,
and it results in a model often having large uncertainty. Equation 61
evinces that the GH-MSMD provides a theoretically derived explicit
equation for the internal resistance Rint , which has been a conven-
tional empirical quantity. Table III presents the full-blown forms of
the cell-domain G and H in Eqs. T3.1 and T3.2 for the given choices
of submodels in PDM, EDM, and CDM from Eqs. 9, 10, 32, 33, 45,
and 46. These full-blown forms of the G and H function equations
do not need to be written in the GH-MSMD, because the choice of
the model and evaluation of G and H are completely independent
at each domain. Therefore, the inter-domain coupling occurs only by
exchanging the evaluated G and H . However, the presentation of the
full-blown Eqs. T3.1 and T3.2 can provide an insight on how material
characteristics, design parameters, and operational and environmental
conditions impact the response of a battery, for example, the inter-
nal resistance using the explicit equation Eq. 61. This implies that
the fully-adaptive, high-fidelity, fast-running, quasi-explicit, modular
GH-MSMD would serve as a tool enabling mechanistic investigations
for performance evolution of batteries. Equation 62 suggests another
interpretation of a G function. If the GH formulation is carried out
in the frequency domain, Ĝ becomes a transfer function of output
potential for a perturbed applied current:

�φ̂

î
= Ĝ . [62]
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Table III. Full-blown cell domain G and H with the given submodel choice; PDM-DDPM, EDM-1DPE, and CDM-SPPC.

[T3.1]

G� =

1−∫
V�

a�
�+−�−

−

1+∫ la +ls +lc
la +ls

ax
ψs,c−ψe1∑

i aξ,i f p,i∑
i

aξ,i f p,i
(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
la +ls

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−

1−∫ la
0 ax

ψs,a −ψe1∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
0

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−R f x

dV

∫
V�

a�

−

1+∫ la +ls +lc
la +ls

ax
ψs,c−ψe1∑

i aξ,i f p,i∑
i

aξ,i f p,i
(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
la +ls

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−

1−∫ la
0 ax

ψs,a −ψe1∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
0

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−R f x

dV − R f �

[T3.2]

H� =

∫
V�

a�

∫ la +ls +lc
la +ls

ax

φe2+
∑

i
Us

i aξ,i f p,i
(Rηξ,i +R f ξ,i )∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la +ls +lc
la +ls

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ

dx
−

∫ la
0 ax

φe2+
∑

i
Us

i aξ,i f p,i
(Rηξ,i +R f ξ,i )∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
0

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

−

1+∫ la +ls +lc
la +ls

ax
ψs,c−ψe1∑

i aξ,i f p,i∑
i

aξ,i f p,i
(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
la +ls

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−

1−∫ la
0 ax

ψs,a −ψe1∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
0

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−R f x

dV

∫
V�

a�

−

1+∫ la +ls +lc
la +ls

ax
ψs,c−ψe1∑

i aξ,i f p,i∑
i

aξ,i f p,i
(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
la +ls

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−

1−∫ la
0 ax

ψs,a −ψe1∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx

∫ la
0

ax∑
i aξ,i f p,i∑

i
aξ,i f p,i

(Rηξ,i +R f ξ,i )

+R f ξ ,

dx
−R f x

dV

Various derivations of battery states are quantified and used for
onboard battery control. It is desired to use physical states for con-
trol parameters that are difficult to find from direct measurements.
Thanks to greatly enhanced computational speed, the GH-MSMD
poses an opportunity to use a physics-based reference model for
sophisticated parameter and state estimation in onboard battery
management systems. The state of power, for example, is deter-
mined in simple practice with the maximum and minimum volt-
age limits. The maximum discharging or charging power can be
evaluated explicitly from the high-fidelity model’s G and H using
Eqs. 63 and 64:

|Po|max
d =

⎧⎨
⎩

Vmin (H−Vmin )
−G (H ≤ 2Vmin)

H2

−4G (H > 2Vmin)
[63]

|Po|max
c = Vmax (Vmax − H )

−G
. [64]

Simulations.—The accuracy and computational speed of GH-
MSMD implementations at EDM level are demonstrated by compar-
ing the GH-EDM simulation results with the original MSMD EDM.
The original MSMD EDM baseline solves the governing equations
T1.1–T1.13 in a traditional segregated solution scheme. Inner itera-
tive loops bringing lower hierarchical domain model to convergence
are nested within the next hierarchical outer iteration loops for higher
length scale domain model, in turn throughout the multiple layers of
the model hierarchy.

Two GH-EDM implementations are presented and verified. The
first, denoted as GH-EDM1, solves the baseline submodel governing
equations as presented in the previous section; the DDPM for PDM

and the 1DPE for EDM. The second, denoted as GH-EDM2, employs
the LPD model for EDM replacing the 1DPE with further simplifying
assumptions as described in Appendix A. Lumping the particle dy-
namics while resolving the variation of ohmic polarizations through
the electrolyte and the composite electrodes is an effective simpli-
fication under dynamic battery operating conditions experienced in
applications such as electric vehicles.

Table IV summarizes the EDM parameters used in this study rep-
resenting a hypothetical 16.5-Ah battery. Additional parameters for
thermal simulation are heat transfer surface area 0.2 m2, convection
coefficient 10 Wm−2K−1, and thermal mass 200 J K−1. Figure 3 com-
pares the original MSMD EDM baseline and the GH-EDMs under
constant current discharge simulation at 25◦C. The voltage difference
between the original EDM and GH-EDM1 is negligible—generally
less than 2 mV—until the end of discharge where kinetic and trans-
port limitations cause a voltage drop off at slightly different capacities
as the battery becomes depleted. The GH-EDM2 also retains similar
∼2 mV accuracy at C-rates of 5C and below. Figure 4 shows battery
internal lithium concentrations in the solid and electrolyte phase for
the 5C discharge simulation. Solid and electrolyte phase concentra-
tions are both well-matched between the baseline and GH-EDM1. The
GH-EDM2 model shows minor differences in electrolyte concentra-
tion and potential distributions compared to the higher-order models,
owing to the lumped treatment of solid state concentrations across the
electrode. These differences contribute to a difference in heat genera-
tion rate in Figure 3 and thus, slight temperature and end-of-discharge
differences for the GH-EDM2 model at the high rate. Current den-
sity is not directly calculated in GH-EDM2 and thereby not shown in
Figure 4d.

Figure 5 shows constant-current discharge results at 0◦C with better
than 5-mV voltage prediction accuracy. At the 5C rate, the GH-EDM2
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Table IV. Summary of model parameters in the submodel choices.

Particle Domain Parameter Value/Model

LixC6 Liy(NCA)O2

Maximum Li capacity, cmax
p [mol m−3] 2.87 × 104 4.90 × 104

Characteristic diffusion length, .l p [m] 4.5 × 10−6∗ 5.0 × 10−7∗
Stoichiometry at 0% SOC, θ0% 0.0712 0.98
Stoichiometry at 100% SOC, θ100% 0.63 0.41
Reference exchange current density at
100% SOC, i ′′o,re f [A m−2] 36.0 4.0

- activation energy, Eio
act [J mol−1] 3.0 × 104 3.0 × 104

Charge-transfer coefficients, αa, αc 0.5, 0.5 0.5, 0.5
Film resistance, R f ξ [� m2] 0.015∗ 0.017∗
Solid diffusion coefficient, Dp [m2 s−1] 9.0 × 10−15∗ 3 × 10−15

- activation energy, E
Dp
act [J mol−1] 4.0 × 103 3.0 × 104

Negative electrode, Ua [V]∗
Ua(θ) = 8.002296379 + 5.064722977(θ + 0.005) − 12.5780859(θ + 0.005)1/2

−8.632208755 × 10−4 (θ + 0.005)−1 + 2.176468281 × 10−5(θ + 0.005)1.5

−0.4601573522 exp[15(0.055 − θ)] − 0.5536351675
exp[−2.432630003(θ − 0.915)]

Positive electrode, Uc [V]
Uc(θ) = 1.638θ10 − 2.222θ9 + 15.056θ8 − 23.488θ7 + 81.246θ6

−344.566θ5 + 621.3475θ4 − 554.774θ3 + 264.427θ2 − 66.3691θ

+11.8058 − 0.61386 exp(5.8201θ136.4)

Electrode Domain Negative electrode Positive electrode
Parameter composite Separator composite
Thickness, la, ls , lc [m] 70.0 × 10−6 25 × 10−6 50.0 × 10−6

Volume fraction inert, εf 0.01∗ 0.6 0.19
Volume fraction electrolyte, εe 0.40 0.4 0.40
Volume fraction active material, εs 0.59∗ 0.41
Specific active surface area, ax [m2 m−3] (3.010 × 106) (0.750 × 106)
Solid electronic conductivity, σa,, σc [S m−1] 10.0∗ 10
Bruggeman tortuosity exponent, p 1.5 1.5 1.5
Electrolyte concentration, ce [mol m−3] 1.2 × 103

Electrolyte Li+ diffusion coefficient, De [m2 s−1]
De =5.84×10−7 exp[−2870/T ](ce/1000)2 − 33.9 × 10−7 exp[−2920/T ](ce/1000)

+129 × 10−7 exp[−3200/T ]

Electrolyte ionic conductivity, κ [S m−1]
κ = 3.45 exp[−798/T ](c/1000)3 − 48.5 exp[−1080/T ](c/1000)2

+ 244 exp[−1440/T ](c/1000)

Li+ transference number, to+
t0+ = −0.000267 exp[883/T ](ce/1000)2 + 0.00309 exp[653/T ](ce/1000)

+ 0.517 exp[−49.6/T ]
Thermodynamic factor, ∂ ln f±/∂ ln ce 0
Electrode plate area, m2 1

∗All parameters are from Ref. 1 except where noted by asterisk.

Figure 3. Constant current discharge at 25◦C and 1C, 2C, 5C, 10C rates.
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Figure 4. (a) Electrolyte salt concentration, (b) electrolyte phase potential, (c) solid surface concentration, and (d) volumetric current density during 5C discharge
at 25◦C.

model diverges somewhat in heat generation rate and temperature,
leading to the voltage difference.

Figure 6 shows simulation results for an electric vehicle drive cycle
at 25◦C. The voltage difference between the EDM baseline and GH-
EDM1 models is on the order of 3 mV. The GH-EDM2 model agrees
within 1 mV of the baseline model. At 0◦C (Fig. 7), the GH-EDM1

model agreement is on the order of 8 mV whereas the GH-EDM2
model agreement is within 1 mV of the baseline model.

Table V compares the computation time for the three models. All
simulations were run on an Apple MacBook Pro laptop computer, with
uniform time steps of 1 second to facilitate comparison. Timing results
differ slightly with different time-marching schemes. The GH-EDM1

Figure 5. Constant current discharge at 0◦C and 1C, 2C, 5C rates.
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Figure 6. Electric vehicle drive cycle at 25◦C.

Figure 7. Electric vehicle drive cycle at 0◦C.

model is 120–230x faster than the electrode-domain full model. The
GH-EDM2 model using the LPD assumption is 800–7000x faster than
the full model.

Table V. Computation time for electrode domain full and GH
models.

Simulation case Computation time (sec)

Discharge Temperature EDM
profile (◦C) baseline GH-EDM1 GH-EDM2

1C 25 360.13 3.03 0.44
1C 0 816.21 3.50 0.47

Drive cycle 25 1205.92 7.06 0.83
Drive cycle 0 8786.45 45.00 1.27

Conclusions

A new quasi-explicit nonlinear multiscale battery model, GH-
MSMD, is presented to greatly enhance the computational speed from
the previously developed MSMD1 model. The MSMD baseline sub-
model governing equations for 3-D multiphysics simulation of Li-ion
battery are reformulated using time scale separation. The decompo-
sition of field variables provides a quasi-explicit linkage between the
multiple length scales and eliminates time-consuming nested iteration
when solving the MSMD model equations across multiple domains.
In addition to particle-, electrode- and cell-length scales, the present
formulation is extended to include bus bar and multi-cell module do-
mains (Appendix B). Simulations demonstrate that the GH-MSMD
method retains good accuracy while achieving a substantial reduction
in computation time. With model computation significantly faster
than real time, the GH-MSMD model opens an opportunity to use a
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high fidelity physics model for design optimization, system parameter
identification, and real-time control.
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Appendix A: Lumped Particle-Domain (LPD) Model:
Reduced-Order EDM

A PDM captures local thermodynamic deviations caused by particulate inhomogene-
ity in kinetic, transportive, electrical, geometrical characteristics of electrode material.
An EDM captures additional complexity of thermodynamic deviation for mesoscale in-
homogeneity caused by electronic and ionic charge transport and mass transport across
electrode composite matrices and an electrolyte pore network. The LPD model reduces the
order of the 1DPE model by simplifying quantification of polarization for thermodynamic
inhomogeneity in a system. The LPD solves the identical EDM equations presented in
Table I. By assuming negligible ∂Gξ/∂x and ∂ Hξ/∂x , the integral Eqs. 32 and 33 become
the simple algebraic equations,

Gx = − Gξ,c

ax lc
− Gξ,a

ax la
− la

3σ
e f f
a

− lc

3σ
e f f
c

− la

3κ
e f f
a

− ls

κ
e f f
s

− lc

3κ
e f f
c

− R f x , [A1]

and

Hx = Hξ,c − Hξ,a + 2RT

F

(
t0
+ − 1

)
ln

c̄e,a

c̄e,c
. [A2]

This assumption serves well especially for modeling a fairly designed cell used in
alternating dynamic-load applications such as electric vehicles, as demonstrated in a
previous section. The current continuity Eqs. 12 and 13 become

ı̄′′x = ax la ı̄′′ξ,a = −ax lc ı̄′′ξ,c, [A3]

providing the relation between the electrode-domain plate current density and the particle-
domain interfacial current density. Vξ and φpe are subsequently evaluated using Eq. 8 and
Eq. 7. Note that with an assumption for negligible |∇Gx | and |∇Hx | in the cell domain,
a similar computational order reduction method can be applied to a CDM, the Lumped
Electrode-Domain (LED) model.

Appendix B: GH-MSMD Extension to a Multi-Cell Battery
Model

Figure B1 suggests a governing equation and its boundary conditions for solving an
electrical potential field �b in a three-dimensional passive conductor carrying current Ib

through the faces Ab1 and Ab2. For a decomposition of �b given in Eq. B1,

�b = Ib�b + Vb2, [B1]

a field �b is acquired independent of Ib . The solution of �b is then used to evaluate scalar
fields �b and q ′′′

b and a vector field i ′′
b without a need for repeatedly solving the Laplace

equation for arbitrary transient Ib in a conductor geometry. By defining Rb as

Rb =
∫
Vb

σb∇�b · ∇�bdV, [B2]

the total heat generation from a given passive conductor is quantified as,

qb = I 2
b Rb . [B3]

The divergence theorem yields the equality between the surface average of �b at the
face Ab1 and Rb ,

�̄b1 =
∫
Ab1

�bdA
Ab1

= Rb . [B4]

Consequently the conductor potential drop between the facesAb1 andAb2 is evaluated
as

V̄b1 − Vb2 = Ib Rb . [B5]

With R values evaluated using Eqs. B2 or B4 for passive conductors and given G�

and H� values of individual cells in a multi-cell module, a circuit representation of a nPmS
battery module is presented in Fig. B2. The module GH-equation for this configuration is
given as

VM = G M IM + HM , [B6]

where

G M =
m∑

i=1

1∑n
j=1

1
G�(i, j)−R�(i, j)

−
m−1∑
j=1

Rb,i [B7]

and

HM =
m∑

i=1

∑n
j=1

H�(i, j)
G�(i, j)−R�(i, j)∑n

j=1
1

G�(i, j)−R�(i, j)

. [B8]

Once VM and IM are evaluated using Eqs. 47–49, the output potential at the i-th
parallel bank in the module is evaluated as

VM,i = 1∑n
j=1

1
G�(i, j)−R�(i, j)

IM +
∑n

j=1
H�(i, j)

G�(i, j)−R�(i, j)∑n
j=1

1
G�(i, j)−R�(i, j)

. [B9]

Subsequently the individual cell current is identified with

I�(i, j) = VM,i − H�(i, j)

G�(i, j) − R�(i, j)
. [B10]

Figure B1. 3-D current carrying conductor.
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Figure B2. Multi-cell module with cells in nPmS arrangement.

List of Symbols

Variables
a Volume-specific interfacial area, m2 m−3

c Concentration, mol m−3

D Diffusivity, m2 s−1

et Unit transverse direction vector
f p Particle volume fraction
f± Activity coefficient
F Faraday constant, 96485 A s mol−1

g Fast-varying function
G Fast-varying function, impedance term
h Slow-varying function
H Slow-varying function, quasi-static term
I Current, A
i Interfacial current density, A m−2

j Volumetric current density, A m−3

l Thickness, m
n Unit normal vector
p Bruggeman tortuosity exponent
p Parameter array
R Universal gas constant, 8.314 J mol−1

Ri Resistance, � m2

t Time, s
t0
+ Transference number

T Temperature, K
V Voltage, V
x EDM spatial dimension, m
x State array

Greek

α Transfer coefficient
δ Kronecker delta
ε Volume fraction
κ Ionic conductivity, S m−1

η Overpotential, V
θ Stoichiometry
φ Potential, V
σ Electronic conductivity, S m−1

Subscripts

a Negative electrode/Anode/Anodic
c Positive electrode/Cathode/Cathodic
e Electrolyte phase
f Film
k Particle index
M Module domain
o Reference value
p Particle
s Solid-phase/separator region
x Electrode domain
� Cell domain
ξ Particle domain
− Negative foil/terminal/bus bar
+ Positive foil/terminal/bus bar

Superscripts

e f f Effective property
m Mean quantity
s Surface quantity
′′ Interfacial quantity
′′′ Volumetric quantity
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