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FAST modularization framework for wind turbine 
simulation: full-system linearization 

J M Jonkman and B J Jonkman 
National Renewable Energy Laboratory, Golden, CO 80401, USA 

E-mail: jason.jonkman@nrel.gov 

Abstract. The wind engineering community relies on multiphysics engineering software to run 
nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although 
most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear 
system equations is often advantageous to understand the system response and exploit well-
established methods and tools for analyzing linear systems. This paper presents the 
development and verification of the new linearization functionality of the open-source 
engineering tool FAST v8 for land-based wind turbines, as well as the concepts and 
mathematical background needed to understand and apply it correctly. 

1.  Introduction 
To support design and analysis—so that wind turbines are innovative, optimized, reliable, and cost-
effective—the wind industry and research communities rely on engineering software (i.e. design tools) 
capable of predicting the coupled dynamic loads and responses of the wind system. FAST, developed 
by the National Renewable Energy Laboratory (NREL) through U.S. Department of Energy support, is 
an open-source multiphysics tool practical to the engineering design of wind turbines [1]. FAST 
models the important physical phenomena and system couplings, including the environmental 
excitation (wind, waves, and current) and full-system dynamic response (rotor, drivetrain, nacelle, 
support structure, and controller) under both normal (for fatigue) and extreme (for ultimate) loading 
conditions. The FAST model enables the analysis of a range of wind turbine configurations, including 
two- or three-blade horizontal-axis rotors, pitch or stall regulation, rigid or teetering hub, upwind or 
downwind rotor, and lattice or tubular towers. The wind turbine can be modeled on land or offshore on 
bottom-fixed or floating substructures. 

Over the past several years, FAST has undergone a major restructuring through the introduction of 
a modularization framework (FAST version 8) that enables coupling of various modules, each 
representing different components or physics domains of the wind system [2]. FAST v8 includes a 
mesh-mapping utility allowing each module to be independently discretized in space and time and a 
mathematically rigorous solution procedure supporting loose coupling of modules with implicit-
coupling relations [3]. For land-based wind turbine simulations, FAST has modules for wind inflow 
(InflowWind); aerodynamics (AeroDyn); control and electrical-drive dynamics (ServoDyn); and 
blade, drivetrain, nacelle, and tower structural dynamics (ElastoDyn). A new structural-dynamics 
module (BeamDyn) enables the modeling of advanced aeroelastically tailored blades, including large 
deflection, anisotropic composite material couplings, and a reference axis that permits blades that are 
not straight. Additional FAST modules (not further discussed in this paper) support offshore 
multimember substructures, hydrodynamics, mooring statics and dynamics, and sea-ice dynamics. 
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The primary use of FAST is to run nonlinear time-domain simulations e.g. for design-standards-
based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of 
the underlying nonlinear system equations is often advantageous to understand the system response 
and exploit well-established methods and tools for analyzing linear systems. For example, linear state-
space models can be transformed to transfer functions, impulse-response functions, or frequency-
response functions. The ability to generate linearized models is important for eigenanalysis (to derive 
structural natural frequencies, damping ratios, and mode shapes), controls design (based on linear 
state-space models), stability analysis, gradients for optimization problems, and support for the 
development of reduced-order models. Even though the FAST modularization framework was 
originally designed with the intent of enabling full-system linearization across all coupled (aero-hydro-
servo-elastic) modules, the linearization functionality had not been implemented prior to now.1 

The focus of the linearization effort to date has been on (1) structuring the FAST v8 source code to 
enable linearization; (2) developing the general approach to linearizing the mesh-mapping within the 
module-to-module input-output coupling relationships, including rotations; (3) linearizing core (but 
not all) features of the InflowWind, AeroDyn, ServoDyn, and ElastoDyn modules and their coupling; 
and (4) verifying this implementation through application to sample cases. Linearization functionality 
for other important features, BeamDyn, and offshore wind turbines will be added in the future. 

This paper presents the development and verification of the new linearization functionality of 
FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed 
to understand and apply it correctly. Without going into details on specific modules or the mesh-
mapping, the overall linearization approach that the FAST modularization framework was designed to 
support is explained in [2] and is consistent with the present implementation. Without replicating most 
of the information, this paper uses the same approach and nomenclature of [2], adding details about 
the linearization to date of specific modules and their coupling, including mesh-mapping. 

2.  Approach and methods 
The linearization of FAST v8 involves (1) finding an operating point (OP), (2) linearizing the 
underlying nonlinear equations of each module about the OP, (3) linearizing the module-to-module 
input-output coupling relationships in the FAST glue code about the OP, and (4) combining all 
linearized matrices into the full-system linear state-space model and exporting those matrices and the 
OP to a file. Each step is highlighted in the subsections below. 

2.1.  Operating-point determination 
OP (or fixed-point) determination is an important first step in the linearization process because a linear 
representation of a nonlinear system is only valid for small deviations (perturbations) from an OP. In 
the current release of FAST v8, an OP can be defined by given initial conditions (time zero) or a given 
time (or times) in the nonlinear time-marching process. Introducing methods to find a static-
equilibrium (constant displacement), steady-state (constant velocity), or periodic steady-state 
(variation in response with rotor-azimuth angle) condition will be considered in the future, including 
an optional trim calculation, whereby a control input (nacelle yaw, generator torque, or blade pitch) is 
varied to achieve a desired rotor speed set point based on a simple proportional feedback control law 
on the rotor-speed error. It is usually important for the OP to be a static-equilibrium condition (for 
parked/idling turbines) or steady-state condition (for operating turbines); otherwise, the OP may have 
an undesirable effect on the linear system matrices. 

An OP is defined by given values for the continuous-time states, 
op

x ; discrete-time states, d

op
x ; 

inputs, op
u ; and time, op

t  for each module; equations (1a), (1c), and (1d) from [2] can then be used to 

                                                      
1The linearization functionality of older versions of FAST (v4 through v7) was limited to structural linearization 
only, requiring disabling or assuming a quasi-static treatment of other physics. 
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calculate the OP values of the first time derivative of the continuous-time states, 
op

x ; constraint 

(algebraic) states, 
op

z ; and outputs, 
op

y  for each module. Each of these variables can be perturbed 
(represented by ∆ ) about their respective OP values as given by equation (11) from [2] e.g. for 
module inputs 

op
u u u= + ∆ . One complication in the linearization process is dealing with rotations 

(orientations) in three dimensions (3D), which do not reside in a linear space. As explained in [3], 
module inputs and outputs involving rotations in 3D in the FAST modularization framework are 
expressed as 3 by 3 direction-cosine matrices (DCMs), Λ , and the mapping transfer involves the use 
of a logarithmic map to convert DCMs to three rotational parameters and a matrix exponential to 
convert back to DCMs. In terms of DCMs, a rotational perturbation about the OP orientation can be 
written as 

opΛ Λ ∆Λ= , (1) 

where ∆Λ  is the DCM perturbation. Regardless of the OP DCM that may be based on large rotations, 

opΛ , the rotational-parameter perturbations in the linearization process of the FAST modularization 

framework are taken to be the three small-angle rotations about the global X, Y, and Z axes of the 

inertia frame, 
X

Y

Z

∆θ
∆θ ∆θ

∆θ

 
 =  
 
 


 (order is not important because the angles are small). As shown in [4], 

the DCM resulting from this rotational parameterization is 

( )
( ) ( )

( )
( ) ( )

( )

2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 Z X Y Z X Y X Y Z Y X Y Z X Z X Y ZX X Y Z Y Z

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
X Y Z X Y Z X Y Z X Y Z X Y Z X

1 1 1 11

1 1 1

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆

∆Λ

+ + + + + + − − + + + + + + −+ + + + +

+ + + + + + + + + + + + + +

=
( ) ( )

( ) ( )
( ) ( )

( )

2 2
Y Z

2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2Z X Y Z X Y X Y Z X X Y Z Y Z X Y ZX Y X Y Z Z

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
X Y Z X Y Z X Y Z X Y Z X Y Z

1 1 1 11

1 1 1

θ ∆θ

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆

+

− + + + + + + − + + + + + + −+ + + + +

+ + + + + + + + + + + + +

( ) ( )
( )

( ) ( )
( )

2 2 2
X Y Z

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2Y X Y Z X Z X Y Z X X Y Z Y Z X Y Z X Y Z X Y Z

2 2 2 2 2 2 2 2 2 2 2 2 2 2
X Y Z X Y Z X Y Z X Y Z X Y

1 1 1 1 1

1 1

θ ∆θ ∆θ

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ

∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ ∆θ

+ +

+ + + + + + − − + + + + + + − + + + + +

+ + + + + + + + + + + +( )2 2 2 2
Z X Y Z

Z Y

Z X

Y X

1

1
1

1

∆θ ∆θ ∆θ

∆θ ∆θ
∆θ ∆θ
∆θ ∆θ

 
 
 
 
 
 
 
 
 
 
 
 

+ + + 
 

− 
 ≈ − 
 − 

, 

(2) 

where ≈  denotes linearization.2 A function to return the nonlinear form of the DCM perturbation is 
written as ( )f∆Λ∆Λ ∆θ=


 and its functional inverse is written as ( )1f∆Λ∆θ ∆Λ−=


. The linearized form 

of the DCM perturbation can be written equivalently in terms of the cross-product function, which is a 
function that returns a 3 by 3 skew-symmetric matrix for cross-product calculation via matrix 
multiplication (valid for any vector ∆θ


)—that is 

( )I f∆Λ ∆θ×≈ −


 with ( )
Z Y

Z X

Y X

0
f 0

0

∆θ ∆θ
∆θ ∆θ ∆θ

∆θ ∆θ
×

− 
 = − 
 − 


. (3) 

                                                      
2Although this information is not needed in the linearization process, it is interesting to note for small rotational 

perturbations, that the angle of rotation used within the logarithmic map [3] is 2 2 2
X Y Zθ ∆θ ∆θ ∆θ≈ + +  and the 

logarithmic map itself is λ ∆θ≈ −
 

, where ≈  denotes application of small-angle approximations. 
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The linearized module inputs and outputs of FAST v8 are written in terms of ∆θ


, rather than ∆Λ , 
and the cross-product function, f× , as well as nonlinear functions f∆Λ  and 1f∆Λ

− , appear in many of 
the linearized equations given in subsequent sections. (In subsequent equations, =  is used to denote 
linearization in place of ≈ .) 

2.2.  Module linearization 
As explained in [2], the FAST modularization framework supports a very general (need-not-be-linear) 
state-space formulation, with any combination of continuous-time-state, discrete-time-state, 
constraint- (algebraic-) state, other- (e.g. logical) state, and output equations. However, for a module to 
support linearization, the formulation is limited to a hybrid semiexplicit differential-algebraic equation 
(DAE) of index 1,3 which has the following limitations: (1) the continuous-time state derivatives and 
discrete-time state updates must be written as an explicit function of the states, inputs, and parameters; 
(2) the constraints must be of index 1; and (3) other states are used only for time-integration or when 
acting as parameters in the linearization process. 

To support linearization, a module must also be able to export Jacobian matrices for the state and 
output equations with respect to the states and inputs. The FAST module states, inputs, and outputs 
kept in the linearization process for the features linearized to date are summarized in table 1. The 
FAST module features linearized to date include only continuous-time and constraint states (no 
features with discrete-time states have yet been linearized). 

The linearized form of a general module is given by equations (12) and (13) from [2]; the 
simplified forms for each module linearized to date are given next, along with a description of how 
each module is linearized. 

The InflowWind (IfW) module has no states; linearization is permitted only when steady or 
uniform wind is enabled. The linearized form is given by ( ) ( ) ( )IfW IfW IfWy D uDD = , with the input-

transmission matrix, ( )
( )IfW

IfW

op

YD
u

∂
=
∂

, where the Jacobian of the output equations relative to the 

inputs about the OP is formed analytically. 
The internal nacelle-yaw actuator and generator models of the ServoDyn (SrvD) module have no 

states; linearization is not permitted when the high-speed-shaft brake model, tuned-mass-damper 
(TMD) models, external user-specified controllers, and control logic for start-up and shut-down 
maneuvers are enabled. The linearized form is given by ( ) ( ) ( )SrvD SrvD SrvDy D uDD = , with the input-

transmission matrix, ( )
( )SrvD

SrvD

op

YD
u

∂
=
∂

, where the Jacobian of the output equations relative to the 

inputs about the OP is formed analytically. The input-transmission matrix contains the stiffness and 
damping of the internal nacelle-yaw actuator and generator models. 

The ElastoDyn (ED) module has continuous-time states, there are no restrictions to linearization, 
and the linearized form of the equations of motion and output equations is given by 

( ) ( ) ( ) ( ) ( )ED ED ED ED EDx A x B uDDD  = +  and (4a) 

( ) ( ) ( ) ( ) ( )ED ED ED ED EDy C x D uDDD  = + . (4b) 

                                                      
3Indeed, linearization is not possible or desirable for all models, but only those limited to this restricted form. 
Most models are simplifications of this most general form, e.g., for a module without discrete-time and 
constraint states, the continuous-time state equations form ordinary differential equations. 
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Table 1. Module states, inputs, and outputs kept in the FAST linearization process to date. 

Module States Inputs Outputs 

InflowWind 
(IfW) 

• None • Positions where the undisturbed 
(inflow) wind will be output 

• Disturbances of horizontal wind 
speed, power-law shear exponent, 
and wind-propagation direction 

• Undisturbed (inflow) wind velocity at input 
positions 

• User-selected wind-inflow outputs 

ServoDyn 
(SrvD) 

• None • Nacelle-yaw angle and rate 
• Generator speed 

• Blade-pitch-angle command (independent) 
• Nacelle-yaw moment 
• Generator torque and electrical power 
• User-selected control and electrical-drive outputs 

ElastoDyn 
(ED) 

• Structural 
degrees-of-
freedom 
(DOFs) and 
their first 
time 
derivatives 
(continuous 
states) 

• Applied point forces and moments 
distributed along the blades and 
tower 

• Applied point forces and moments 
lumped on the hub, nacelle, and 
platform 

• Blade-pitch-angle command (both 
independent and rotor-collective) 

• Nacelle-yaw moment 
• Generator torque 

• Translational displacements, orientations, 
translational and rotational velocities, and 
translational and rotation accelerations of points 
along the blades and tower 

• Translational displacements, orientations, 
translational and rotational velocities, and 
translational and rotation accelerations of the blade-
root, nacelle, and platform reference points 

• Translational displacement, orientation, and 
rotational velocity of the hub reference point 

• Nacelle-yaw angle and rate 
• Generator speed 
• User-selected structural outputs (motions and/or 

loads) 

AeroDyn 
(AD) 

• Inflow 
angle at 
each blade 
analysis 
node/airfoil 
(constraint 
states) 

• Translational displacements, 
orientations, and translational 
velocities of analysis nodes along 
the blades and tower 

• Orientation of the blade-root 
reference point 

• Translational displacement, 
orientation, and rotational velocity 
of the hub reference point 

• Undisturbed (inflow) wind 
velocities at analysis nodes along 
the blades and tower 

• Aerodynamic applied line (per-unit length) forces 
and moments distributed along the blades and tower 

• User-selected aerodynamic outputs 

The continuous-state matrix, input matrix, continuous-state output matrix, and the input-
transmission matrix are the Jacobians of the state and output equations relative the states and inputs 
about the OP, computed numerically via a central-difference perturbation technique: 

( )
( ) ( ) ( ) ( )ED
ED

op op op op op opED

op

X x x,u ,t X x x,u ,tXA
x 2 x

DD

D

+ − −∂
= =
∂

, (5a) 

( )
( ) ( ) ( ) ( )ED
ED

op op op op op opED

op

X x ,u u,t X x ,u u,tXB
u 2 u

DD

D

+ − −∂
= =
∂

, (5b) 
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( )
( ) ( ) ( ) ( )ED
ED

op op op op op opED

op

Y x x,u ,t Y x x,u ,tYC
x 2 x

DD

D

+ − −∂
= =
∂

, and (5c) 

( )
( ) ( ) ( ) ( )ED
ED

op op op op op opED

op

Y x ,u u,t Y x ,u u,tYD
u 2 u

DD

D

+ − −∂
= =
∂

, (5d) 

where ( )EDX  are the continuous-state functions and ( )EDY  are the output functions of ElastoDyn. For 
outputs that are rotations in 3D, i.e., Y Λ=  and y∆ ∆θ=


, it is implied that the right-hand side (RHS) 

of equation (5c) is rewritten as 
( ) ( )

( )EDT
1

op op op op op opf x x,u ,t x x,u ,t

2 x

DΛ Λ D Λ D

D

−   − +      and the 

RHS of equation (5d) is rewritten as 
( ) ( )

( )EDT
1

op op op op op opf x ,u u,t x ,u u,t

2 u

DΛ Λ D Λ D

D

−   − +     , 

respectively, where T  denotes a matrix transpose. The default perturbation sizes are hard-coded within 
ElastoDyn (but can be customized by recompiling) and are 2˚ for rotational states and inputs; fractions 
of the blade length and tower length for the blade-, tower-, and translational platform-displacement 
states; fractions of a nominal thrust proportional to blade-length squared for the force inputs; and 
fractions of a nominal torque proportional to blade-length cubed for the moment inputs. The 
continuous-state matrix, ( )EDA  from equation (5a), contains the mass, stiffness, and damping of the 
structural system. 

The AeroDyn (AD) module has constraint (algebraic) states based on quasi-steady blade-
element/momentum (BEM) theory or a frozen-wake assumption, whereby the axial and tangential 
induced velocities, xV a−  and yV a' , are fixed during the linearization process. Linearization is 
permitted only when unsteady airfoil aerodynamics, including dynamic stall, is disabled. The 
linearized form is given by ( ) ( ) ( )AD AD ADy D uDD = , with the input-transmission matrix containing the 
aerodynamic stiffness and damping given by 

( )
( )AD1

AD

op

Y Y Z zD
u z Z u

− ∂ ∂ ∂ ∂ = −  ∂ ∂ ∂ ∂   
, (6) 

where the Jacobians of the state and output equations relative the states and inputs about the OP are 
computed numerically via a central-difference perturbation technique: 

( ) ( ) ( ) ( )AD
AD

op op op op op op

op

Z z z,u ,t Z z z,u ,tZ
z 2 z

DD

D

+ − −∂
=

∂
 with 

( )AD

op

Z 0
z

∂
≠

∂
, (7a) 
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( ) ( ) ( ) ( )AD
AD

op op op op op op

op

Y z z,u ,t Y z z,u ,tY
z 2 z

DD

D

+ − −∂
=

∂
, (7b) 

( ) ( ) ( ) ( )AD
AD

op op op op op op

op

Z z ,u u,t Z z ,u u,tZ
u 2 u

DD

D

+ − −∂
=

∂
, and (7c) 

( ) ( ) ( ) ( )AD
AD

op op op op op op

op

Y z ,u u,t Y z ,u u,tY
u 2 u

DD

D

+ − −∂
=

∂
, (7d) 

where ( )ADZ  are the constraint-state residual functions and ( )ADY  are the output functions of AeroDyn. 
For inputs that are rotations in 3D, i.e., u Λ=  and u∆ ∆θ=


, it is implied that ( ) ( )AD AD

opu uD+ , 

( ) ( )AD AD
opu uD− , and ( )AD2 uD  in equations (7c) and (7d) are rewritten as ( ) ( )( )AD AD

op fDΛDD θ


, 

( ) ( )( )AD AD
op fDΛDD θ−


, and ( )AD2Dθ


, respectively. As shown in equation (6), the constraint-state 

(algebraic) equations are eliminated from the linearized system because, once linearized, the 
constraint-state equations can be easily solved for the perturbations of constraint states and essentially 
eliminated as separate variables. Because each annulus/analysis node of the BEM solution is solved 

independently, the Jacobian 
( )AD

op

Z
z

∂
∂

 is a diagonal matrix. It is easily shown that its determinant from 

equation (7a) is nonzero, which means that the matrix inverse, 
( ) 1AD

op

Z
z

−
 ∂
 
∂  

 from equation (6), exists, 

is bounded in the neighborhood around the OP, and is easy to calculate (because it is also a diagonal 
matrix). The default perturbation sizes are hard-coded within AeroDyn (but can be customized by 
recompiling) and are 2˚ for rotational states and inputs and fractions of the blade length and tower 
length for the blade- and tower-displacement inputs. However, because of undefined regions and 
jump-discontinuities in the BEM solution space, AeroDyn does not permit perturbations in the 
linearization process that would cause the BEM solution region to change. When this happens 
(because the OP is too close to a boundary of the given solution region), the perturbation that would 
have caused the BEM solution region to change is neglected, and the numerical differentiation is 
limited to a one-sided perturbation. 

2.3.  Module-to-module input-output coupling relationships linearization 
Most module inputs and outputs in FAST reside on spatial boundaries, which in the modularization 
framework are defined in terms of a mesh that consists of (1) nodes and point or line elements (nodal 
connectivity); (2) nodal reference locations (position and orientation); and (3) one or more nodal 
fields, expressing the value of the input or output on the spatial boundary e.g. motion (displacements, 
orientations, velocities, accelerations), loads (forces, moments), and/or scalar quantities. The module-
to-module input-output coupling relationships in the FAST glue code are algebraic, and include spatial 
mesh-to-mesh mapping involving two steps as detailed in [3]: (1) a mapping search where nearest-
neighbor nodes/elements are found between source and destination meshes and (2) a mapping transfer 



8 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

where nodal field quantities are transferred to the destination mesh from the mapped nodes of the 
source mesh. Although the mapping search is unaffected by linearization (because it depends only on 
system parameters), the linearization of the mapping transfer and other algebraic input-output coupling 
relationships in the FAST modularization framework is formed analytically about the OP. The 
appendix provides details on the linearization of the mesh-mapping transfer following the approach 
and nomenclature of [3]. 

The linearized input-output transformation functions, U , are given be equation (15) from [2], 
repeated here for convenience: 

op op

U U0 u y
u y

∆ ∆∂ ∂
= +
∂ ∂

 with 
op

U 0
u

∂
≠

∂ 
. (8) 

As is evident from table 1, the InflowWind, ServoDyn, ElastoDyn, and AeroDyn modules were 
developed so that for the most part—other than mapping between independent spatial 
discretizations—the input of one module equals the output of another. It follows that with 

( )

( )

( )

( )

IfW

SrvD

ED

AD

U

U
U

U

U

 
 
  =  
 
 
  

, 

( )

( )

( )

( )

IfW

SrvD

ED

AD

u

u
u

u

u

D

D
D

D

D

 
 
  =  
 
 
  

, and 

( )

( )

( )

( )

IfW

SrvD

ED

AD

y

y
y

y

y

D

D
D

D

D

 
 
  =  
 
 
  

, the Jacobian matrices evaluated at the OP 

from equation (8) for these four modules are given by 

( )

( )

( )

( )

( )

( )

IfW

AD

ED

op AD

AD

AD
op

UI 0 0
u

0 I 0 0
U

Uu 0 0 I
u
U0 0 0
u

 ∂
 

∂ 
 
 ∂

=  ∂∂  
∂ 

 ∂ 
 ∂ 








 and 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

SrvD

ED

ED ED ED

op SrvD ED AD

AD AD

IfW ED
op

0 0 0 0

U0 0 0
y

U
U U U0y
y y y

U U0 0
y y

 
 

∂ 
 ∂ ∂  = ∂ ∂ ∂
 ∂
 ∂ ∂ ∂
 
∂ ∂ 
 ∂ ∂ 

, (9) 

where I  and 0  are appropriately sized identity and zero matrices and the sub-Jacobian matrices are 
composed of I s, 0 s, and the linearized matrices from the mapping transfers given in the appendix. 
Due to their large size, the sub-Jacobian matrices are not shown here, but are described qualitatively 
instead: 

• The first equation of (8) for InflowWind inputs, ( )IfW0 U= , expresses that the position 
perturbations where the undisturbed (inflow) wind will be output as input to InflowWind are 
derived from the translational-displacement perturbations of analysis nodes along the blades 
and tower as input to AeroDyn. 

• The second equation of (8) for ServoDyn inputs, ( )SrvD0 U= , expresses that the nacelle-yaw-
angle and -rate and generator-speed perturbations as input to ServoDyn are derived from the 
equivalent outputs from ElastoDyn. 

• The third equation of (8) for ElastoDyn inputs, ( )ED0 U= , expresses that the applied point 
force and moment perturbations distributed along the blades and tower as input to ElastoDyn 
are derived from the aerodynamic applied line (per-unit length) force and moment 
perturbations distributed along the blades and tower as output from AeroDyn. This linearized 
load-mapping transfer also depends on the translational-displacement perturbations of analysis 
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nodes along the blades and tower as input to AeroDyn and output from ElastoDyn. 
Additionally, the blade-pitch-angle-commands, nacelle-yaw-moment, and generator-torque 
perturbations as input to ElastoDyn are derived from the equivalent outputs from ServoDyn. 

• The fourth equation of (8) for AeroDyn inputs, ( )AD0 U= , expresses that the translational-
displacement, orientation, translational-velocity, and rotational-velocity perturbations of 
analysis nodes along the blades and tower, blade-root reference point, and hub reference point 
as input to AeroDyn are derived from the equivalent outputs from ElastoDyn. Additionally, 
the undisturbed (inflow) wind-velocity perturbations at analysis nodes along the blades and 
tower as input to AeroDyn are derived from the equivalent outputs from InflowWind. 

The Jacobian 
op

U
u

∂
∂ 

 has ones along its entire diagonal and it is easily shown that its determinant 

from equation (8) is nonzero. 

2.4.  Final matrix assembly 
Once all individual modules and input-output relationships are linearized about the OP, the linearized 
model of the complete coupled system can be assembled. Linearization of the full-system model 
produces a linear state-space model representation of the complete nonlinear system about the OP, 
including the influence of system state and input perturbations on the system response and outputs. 
The general linearized form of the complete coupled system is given by equations (18) and (19) from 
[2]. With ( )EDx xDD = , the simplified form for the FAST v8 features linearized to date (without 
discrete-time states and with ElastoDyn as the only module with continuous-time states) is 

x A x B u∆ ∆ ∆ += +  and (10a) 

y C x D uDDD   += + , (10b) 

where u∆ +  are the additional input perturbations (explained further in [2]) and where 

( ) ( )
( )

1ED ED
EDop

op

0
0UA A 0 0 B 0 G

y C
0

−

 
 

∂     = −     ∂
 
  

, (11a) 

( ) 1ED
op

op

UB 0 0 B 0 G
u

− ∂   =    ∂ 
, (11b) 

( )

( )

( )

( )

( )

( )

IfW

SrvD 1

ED EDopED
op

AD

D 0 0 00 0
0 00 D 0 0 UC G

yC C0 0 D 0
0 00 0 0 D

−

          ∂    = −       ∂             

, and (11c) 
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( )

( )

( )

( )

IfW

SrvD 1

opED
op

AD

D 0 0 0

0 D 0 0 UD G
u0 0 D 0

0 0 0 D

−

 
 
  ∂ =     ∂ 
 
  


, (11d) 

where 
opG —explained more in [2] for the general case—for the FAST v8 linearization to date is 

( )

( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )

IfW

AD

SrvD
ED

ED

op ED ED ED ED
SrvD ED AD

SrvD ED AD AD

AD AD AD
IfW ED

IfW ED AD
op

UI 0 0
u

U0 I D 0
y

G
U U U U0 D I D D
y y u y

U U UD 0 D
y y u

 ∂
 

∂ 
 ∂ 
 ∂
 =
 ∂ ∂ ∂ ∂

+ + 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ 
 ∂ ∂ ∂ 







 with 
opG 0≠ . 

(12) 

The matrix opG  has ones along its entire diagonal and it is easily shown that its determinant from 

equation (12) is nonzero, which means that the matrix inverse, 
1

opG
−

 
   from equation (11), exists and 

is bounded in the neighborhood around the OP. 
The input-transmission matrices impact all matrices of the linearized coupled system, highlighting 

the important role played by direct feedthrough of input to output in the coupled system response. For 
example, while the continuous-state matrix of ElastoDyn, ( )EDA , contains stiffness and damping only 
directly associated with the structural model, the full-system continuous state matrix, A , contains 
stiffness and damping associated with coupled aeroelastics. 

When the linearized full-system matrices A , B , C , and D  are exported to a file by FAST, the 
additional input perturbations, u∆ + , can be chosen by the user to be (1) the inputs of all modules, (2) 
none of the module inputs (removing B  and D  from the file), or (3) a standard subset of these inputs, 
which include the standard wind turbine control inputs of nacelle-yaw moment, generator torque, and 
blade-pitch-angle commands (both independent and rotor-collective) and the standard wind-inflow 
disturbances of horizontal wind speed, power-law shear exponent, and wind-propagation direction. 
Likewise, the output perturbations, y∆ , can be chosen by the user to be (1) the outputs of all modules, 
(2) none of the module outputs (removing C  and D  from the file), or (3) only the subset of output 
variables selected by the user through the FAST module input file(s). Regardless of what the user 
selects to be exported to a file, all of the module inputs and outputs are used to form the linearized 
full-system matrices in equation (11), but only a subset of these matrices are exported based on the 
user selection. 

3.  Results 
The results of two sample cases are presented to highlight the functionality and verification of the new 
linearization capability of FAST v8 for land-based wind turbines, in this case the NREL 5-MW 
baseline wind turbine [5]. The first case involves the calculation of the Campbell diagram for the 
turbine spinning in a vacuum whereby the full-system natural frequencies are calculated as a function 
of rotor speed in the absence of aerodynamic loading. The second case involves the calculation of the 
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aerodynamic derivatives of power and thrust with respect to rotor-collective blade-pitch angle and 
wind speed. In both cases, the results from FAST v8 have been verified by comparing to those derived 
from the older linearization functionality of FAST v6. Consistency between the results from the new 
and old implementations was achieved, so, only those of FAST v8 are presented. 

3.1.  Campbell diagram 
To compute the full-system natural frequencies of the NREL 5-MW baseline turbine as a function of 
rotor speed in the absence of aerodynamic loading, the ElastoDyn and ServoDyn modules are enabled 
and the InflowWind and AeroDyn modules are disabled. All pertinent structural DOFs are enabled in 
the ElastoDyn module—including blade-bending, drivetrain-torsion, generator-rotation, nacelle-yaw, 
and tower-bending DOFs—and gravitational loading and structural (but no aerodynamic) damping is 
included. The ServoDyn module provides nacelle-yaw actuator stiffness and damping. A separate 
linearization analysis is run at each rotor speed from 0 to 14 rpm, in steps of 2 rpm. The rotor-
collective blade-pitch angles were fixed at 0˚. For each rotor speed, a periodic steady-state condition is 
found by marching the nonlinear solution in time long enough for start-up transients to die out (the 
start-up transients exist because gravity and rotor-rotation have an influence on the structural 
displacements, which are assumed undisplaced at time zero, and die out as a result of structural 
damping). After a periodic steady-state condition is reached, one more rotor (360˚) revolution is 
simulated, and an OP is set and the linearized full-system state matrix ( A ) is computed for each 
azimuth angle of the rotor in 36 steps of 10˚. The multiblade coordinate (MBC) postprocessor [6] is 
used to read-in the periodic state matrices, apply the MBC transformation to the rotating states to 
transform them to states in the fixed frame, azimuth-average the MBC-transformed state matrices, 
compute the eigensolution of the resulting azimuth-averaged matrix, and extract the natural 
(undamped) frequencies from this eigensolution. The results are presented in figure 1. 

 
Figure 1. Campbell diagram of the NREL 5-MW baseline wind turbine spinning in a vacuum. 

In figure 1, the grayed-out areas denote rotor speeds outside the operational range of the NREL 5-
MW baseline wind turbine and the solid black lines denote the frequencies associated with once-per-
revolution (1P), three-per-revolution (3P), etc. for 6P, 9P, and 12P, frequencies in which aerodynamic 
excitation and rotation-induced forcing is expected. The natural frequencies are identified by their 
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primary mode, but as these are full-system modes, most modes include coupling of all DOFs. As 
expected, the tower fore-aft- (FA-) bending and side-to-side- (SS-) bending and free-free drivetrain 
torsion modes have natural frequencies that are quite independent of rotor speed.  However, the blade 
flapwise- (flap-) and edgewise- (edge-) bending are strongly dependent on rotor speed for both the 
first- (1st-) and second (2nd-) modes. The term “collective” in figure 1 is used to indicate all blades of 
the rotor bending in phase, whereas “progressive” and “regressive” are used to indicate modes where 
the blades bend asymmetrically and the center of mass of the rotor whirls in the same and opposite 
direction as the rotor rotation, respectively. The zero-frequency rigid-body mode of the generator is 
not shown in figure 1, as well as the nacelle-yaw mode and the additional first blade edgewise-bending 
mode, which have frequencies above 3 Hz. The soft-stiff design of the tower is clearly visible, i.e., the 
first tower-bending natural frequencies fall within 1P and 3P in the operational range of rotor speeds. 
Also, in the operational range of rotor speeds, potential resonances exist that may benefit from active 
control for the first blade flapwise-bending at 3P and 6P, for the first blade edgewise-bending at 6P 
and 9P, and for the second blade flapwise-bending and drivetrain-torsion at 9P and 12P. These are 
insights into the physical response of the turbine that would be very difficult to attain without 
linearization capability. 

3.2.  Aerodynamic derivatives 
To compute the aerodynamic derivatives of the NREL 5-MW baseline turbine, the ElastoDyn, 
InflowWind, and AeroDyn modules are enabled, and the ServoDyn module is disabled. While the 
ElastoDyn module is enabled (to specify the turbine geometry, rotor speed, and rotor-collective blade-
pitch angle), all structural DOFs are disabled to make the turbine rigid and (for simplification) to 
eliminate the aeroelastic influence on the aerodynamic derivatives. Steady uniform wind without shear 
is set in the InflowWind module. In the AeroDyn module, BEM theory with the Pitt and Peters 
skewed-wake correction model is enabled, but tower influence and unsteady airfoil aerodynamics are 
disabled, and separate analyses are run with both frozen wake and with the induction recalculated 
during the linearization process using BEM theory (equilibrium wake). A separate linearization 
analysis is run at each wind speed in Region 3 (above-rated) operation from rated (11.4 m/s) to cut-out 
(25 m/s) wind speeds, in steps of 1 m/s (11.4, 12, 13,…, 25 m/s). The rotor speed was fixed at the 
rated value of 12.1 rpm and the rotor-collective blade-pitch angle at each wind speed was set to the 
appropriate value needed to achieve rated aerodynamic power (slightly above 5 MW)—from 0˚ at 11.4 
m/s to 23.47˚ at 25 m/s—as documented in [5]. For each wind speed/blade-pitch angle, one rotor (360 
˚) revolution is simulated, and an OP is set and the linearized full-system input-transmission matrix (
D ) is computed for each azimuth angle of the rotor in 36 steps of 10˚. As the turbine is modeled 
rigidly and the only states in the FAST v8 model are of the constraint type, there are no start-up 
transients and the periodic steady-state solution is calculated immediately (periodicity is driven by the 
small amount of shaft tilt (5˚) of the NREL 5-MW baseline turbine and corresponding skewed-wake). 
Of all the derivatives available in the input-transmission matrix, only the aerodynamic derivatives of 
power (P) and thrust (T) with respect to rotor-collective blade-pitch angle (θ) and wind speed (V) are 
postprocessed. The MBC postprocessor [6] is used to read-in and azimuth-average the periodic input-
transmission matrices and the results are presented in figure 2 (no MBC transform is applied because 
power, thrust, rotor-collective blade-pitch angle, and wind speed are not expressed in the rotating 
frame). 

The derivative of aerodynamic power with respect to rotor-collective blade-pitch angle with frozen 
wake, presented in the upper-left graph of figure 2, is consistent with what is reported in [5]. This 
derivative is important for computing the gains of the rotor-collective blade-pitch speed controller and 
varies considerably (but linearly) over Region 3, which necessitates gain scheduling based on the 
blade-pitch angle. The derivative with equilibrium wake (not reported in [5]) shows a similar trend to 
that of frozen wake, but (inaccurately) shows a loss of control authority—whereby the derivative is 
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near zero—at rated conditions. As such, the use of frozen wake in the linearization process is 
recommended.4 

The other aerodynamic derivatives presented in figure 2 again provide insights into the physical 
response of the turbine that would be very difficult to attain without linearization capability. In 
particular, the aerodynamic derivative of thrust with respect to wind speed presented in the lower-right 
graph is useful for understanding the influence of aerodynamics on the damping of tower fore-aft 
motion. The aerodynamic derivative of thrust with respect to rotor-collective blade-pitch angle 
presented in the lower-left graph is important for computing the gains of an active rotor-collective 
blade-pitch tower-damping controller. The frozen-wake results presented in figure 2 for these two 
derivatives are consistent with the results in [7]. 

  

  

Figure 2. Aerodynamic derivatives of the NREL 5-MW baseline wind turbine in Region 3. 

4.  Conclusions 
Linearization of the underlying nonlinear wind-system equations is often advantageous to understand 
the system response and exploit well-established methods and tools for analyzing linear systems. The 
development and verification of the new linearization functionality of the open-source engineering 
tool FAST v8 for land-based wind turbines has been presented, as well as the concepts and 
                                                      
4Linearization with frozen wake was not a standard feature of older versions of FAST (v4 through v7), but a 
customized version was adapted with this capability [5]. 
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mathematical background needed to understand and apply it correctly. Details have been presented on 
(1) finding an OP, (2) linearizing the underlying nonlinear equations of each module about the OP, (3) 
linearizing the module-to-module input-output coupling relationships about the OP, and (4) combining 
all linearized matrices into the full-system linear state-space model. The presented results highlight the 
functionality and verification of the new linearization capability. It is envisioned that the new 
linearization functionality of FAST v8 and other recent enhancements will transform FAST into a 
powerful, robust, and flexible tool used throughout the wind engineering community for improving 
wind turbine physical understanding and for developing advanced wind technology. 

Beyond the developments implemented here, potential future FAST v8 linearization enhancements 
include (1) introducing routines to find a static equilibrium, steady-state, or periodic steady-state 
condition for improved OP determination; (2) enabling the linearization of the TMD models and 
external user-specified controllers within ServoDyn for improved controls development and analysis; 
(3) implementing a form of unsteady airfoil aerodynamics, including dynamic stall, within AeroDyn 
amendable to linearization e.g. from [8] and including that model within the linearization of AeroDyn 
for advanced aerodynamic and stability analysis; (4) linearizing BeamDyn for analysis of advanced 
aeroelastically tailored blades; (5) linearizing the offshore functionality of FAST for analysis of 
offshore wind systems; and (6) linearizing new features as the FAST models are further developed in 
the future. 
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Appendix 
The theoretical formulation of the mesh-to-mesh mapping algorithms for Point_to_Point, 
Line2_to_Line2, Point_to_Line2, and Line2_to_Point meshes is explained in the appendix of [3]. 
Without replicating most of the information, this appendix describes the linearized form of the mesh-
mapping transfer equations using the same approach and nomenclature of [3]. 

Point_to_Point mapping transfer 
The linearized mapping transfer of translational displacement perturbation is given by 

( )
S

D S D
Sop

u
u I f p p

D
D

Dθ
×

   = −      


  

 , (A.1) 

where I  is the 3 by 3 identity matrix and D DR D
op op

p p u= +
    and S SR S

op op
p p u= +
    are the absolute 

displaced positions of a node of the destination mesh and the mapped node of the source mesh at the 
OP, respectively. The second term on the RHS of equation (A.1) represents the translation 
displacement of a node of the destination mesh due to rigid-body rotation of the mapped node of the 
source mesh from its OP orientation and is zero if the rotation of the mapped node of the source mesh 
is not perturbed or if the absolute displaced positions of the node of the destination mesh and mapped 
node of the source mesh at the OP are coincident, whereby D S

op op
p p=
  . 
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The linearized mapping transfer of displaced rotation perturbation is given by 

[ ]D SIDθ Dθ=
 

, (A.2) 

where it is clear that the node of the destination mesh will rotate the same amount as the mapped node 
of the source mesh (as a rigid body). 

The linearized mapping transfer of translational and rotation velocity perturbations is given by 

( ) ( ) ( )

D

S
D S S S D

Sop

S
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u
v f f I f p p

v

D

D
D ω ω

D

Dω

× × ×
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


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



 and (A.3) 

[ ]D SIDω Dω=
  . (A.4) 

The first, second, and fourth terms combined on the RHS of equation (A.3) represent the 
translation-velocity perturbation of a node of the destination mesh due to the displaced offset between 
the node of the destination mesh and mapped node of the source mesh and the rotational-velocity 
perturbation of the mapped node of the source mesh.5 The node of the destination mesh will rotate the 
same as the mapped node of the source mesh (as a rigid body). 

The linearized mapping transfer of translational- and rotation-acceleration perturbations is given by 

( ) { }{ } { } ( ) { }{ } { } { }( ) { }{ } { } ( )
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and 

(A.5) 

[ ]D SIDαDα =
 

. (A.6) 

The first part of the first two terms and the fifth term combined on the RHS of equation (A.5) 
represent the tangential-acceleration perturbation of a node of the destination mesh due to the 
displaced offset between the node of the destination mesh and mapped node of the source mesh and 
the rotational-acceleration perturbation of the mapped node of the source mesh. The remaining parts of 
the first two terms and the third term combined on the RHS of equation (A.5) represent the centripetal-
acceleration perturbation of a node of the destination mesh due to the displaced offset between the 
node of the destination mesh and mapped node of the source mesh and the rotational-velocity 
perturbation of the mapped node of the source mesh. The node of the destination mesh will rotate the 
same as the mapped node of the source mesh (as a rigid body). 

The linearized mapping transfer of scalar quantity perturbation is given by 

[ ]D SS I SDD = . (A.7) 

The linearized mapping transfer of concentrated (lumped) force and moment perturbations is given 
by 

                                                      
5Rearrangement of equation (A.1) reveals that ( )D S S D S

op
u u f p pDDD  θ×− = −

    , so the terms involving 

translational displacements of the nodes of the destination and source meshes in equation (A.3) and other 
mapping-transfer equations could alternatively be written in terms of rotations of the source mesh. 
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[ ]D SF I FDD =∑
 

 and (A.8) 

( ) ( ) ( )
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

. (A.9) 

The first three terms combined on the RHS of equation (A.9) represent the additional moment 
perturbation of the mapped node of the destination mesh due to the displaced offset (moment arm) 
between the node of the source mesh and mapped node of the destination mesh and the concentrated 
force of the node of the source mesh. The summations in equations (A.8) and (A.9) denote the 
superposition of loads when a destination element has more than one mapped source element. 

Line_to_Line mapping transfer 
The linearized mapping transfer of all motion and scalar quantity perturbations, via interpolation based 
on the projected location in the source Line2 element, is given by 

( ) ( ) ( ) ( )S S
1 21 l l⋅ = ⋅ − + ⋅ , (A.10) 

where the ( )⋅  on the left-hand side (LHS) of equation (A.10) is a placeholder for DuD , DDθ


, DvD , 
DDω


, DaD , DDα


, or DSD  from the LHS of equations (A.1) through (A.7), respectively, and ( )⋅  on 
the RHS of equation (A.10) is a placeholder for the corresponding RHS of equations (A.1) through 
(A.7), with subscripts 1 and 2, respectively, denoting the first and second nodes of the mapped Line2 
element of the source mesh. Sl  used in equation (A.10) was solved via equation (36) from the 
Line2_to_Line2 mapping search for motion and scalar quantities (see Section C.1 of the appendix of 
[3]). The motion and scalar quantity perturbations are not interpolated if the projection lies on a node, 
whereby Sl 0=  or Sl 1= . 

For load quantities, the fields of the new nodes of the augmented source mesh are first populated 
via interpolation of the fields from the original nodes of the source mesh. That is, equation (A.10) 
(where ( )⋅  is a placeholder) is used to calculate Su∆ , Sf∆


, and Sm∆   at the new nodes of the 

augmented source mesh, where Sl  was solved via equation (37) from the Line2_to_Line2 mapping 
search for load quantities (see Section C.2 of the appendix of [3]). 

The linearized lumping of distributed force and moment perturbations to concentrated point force 
and moment perturbations at the two nodes of each Line2 element of the augmented source mesh is 
given by 
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, 
(A.14) 

where the first, second, fourth, and fifth terms combined on the RHS of equations (A.13) and (A.14) 
represent the additional lumped moment perturbation of a node of the source mesh due to the 
distributed force perturbation. The summations in equations (A.11) through (A.14) denote the 
superposition of loads when a given node of the source mesh is connected to multiple elements. 

The linearized mapping transfer of lumped load quantity perturbations via splitting based on the 
projected location in the mapped destination Line2 element is given by 

( ) ( )( )D
1 1 l⋅ = ⋅ −∑  and (A.15) 

( ) ( ) D
2 l⋅ = ⋅∑ , (A.16) 

where ( )⋅  on the LHS of equations (A.15) and (A.16) is a placeholder for DFD


 and DMD


 from the 
LHS of equations (A.8) and (A.9), respectively, and ( )⋅  on the RHS of equations (A.15) and (A.16) is 
a placeholder for the corresponding RHS of equations (A.8) and (A.9) (but without the summations), 
with subscripts 1 and 2, respectively, denoting the first and second nodes of the mapped Line2 element 
of the destination mesh. Dl  used in equations (A.15) and (A.16) was solved via equation (39) from 
the Line2_to_Line2 mapping search for load quantities (see Section C.2 of the appendix of [3]). The 
load quantity perturbations are not split if the projection lies on a node, whereby Dl 0=  or Dl 1= . 
The summations in equations (A.15) and (A.16) denote the superposition of loads when a destination 
element has more than one mapped source element. 

To linearly transform the lumped nodes of the destination mesh to distributed load perturbations, 
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(A.20) 

are solved inversely. 

Point_to_Line2 and Line2_to_Point mapping transfer 
In the linearized Point_to_Line2 mapping transfer for motion and scalar quantity perturbations, for 
each destination-mesh Line2-element node, motion and scalar quantity perturbations are transferred 
from its mapped source Point-element node in a manner identical to the linearized Point_to_Point 
motion-mapping transfer. 

In the linearized Line2_to_Point mapping transfer for motion and scalar quantity perturbations, for 
each destination-mesh Point-element node, motion and scalar quantity perturbations are interpolated 
(based on projection) and are transferred from its mapped source Line2 element in a manner identical 
to the linearized Line2_to_Line2 motion-mapping transfer. 

In the linearized Point_to_Line2 mapping transfer for load quantity perturbations, for each source-
mesh Point-element node, the point load perturbation is split based on its projected location in the 
mapped destination Line2 element, and is transferred as two point loads at the destination Line2-
element nodes and transformed to distributed load perturbations in a manner identical to the linearized 
Line2_to_Line2 load-mapping transfer (but without augmentation and lumping of the source mesh). 

In the linearized Line2_to_Point mapping transfer for load quantity perturbations, the fields of the 
new nodes of the augmented source mesh are first populated via interpolation of the fields from the 
original nodes of the source mesh. That is, equation (A.10) (where ( )⋅  is a placeholder) is used to 

calculate Su∆ , Sf∆


, and Sm∆   at the new nodes of the augmented source mesh, where Sl  was 
solved via equation (36) from the Line2_to_Point mapping search for load quantities (see Section D.2 
of the appendix of [3]). For each Line2 element of the augmented source mesh, distributed load 
perturbations are lumped as point load perturbations in a manner identical to lumping in the linearized 
Line2_to_Line2 load mapping. The lumped nodal load perturbations from each Line2-element node of 
the augmented source mesh are transferred to its mapped destination Point-element node in a manner 
identical to the linearized Point_to_Point load mapping. 
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