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Improving lidar turbulence estimates for wind energy

J F Newman1, A Clifton1, M J Churchfield1 and P Klein2

1 National Renewable Energy Laboratory, Golden, CO, USA
2 School of Meteorology, University of Oklahoma, Norman, OK, USA

E-mail: Jennifer.Newman@nrel.gov

Abstract. Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and
reliable alternative to meteorological towers for wind energy applications. Although lidars can
measure mean wind speeds accurately, these devices measure different values of turbulence
intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error
reduction model was recently developed for commercially available lidars. The TI error model
first applies physics-based corrections to the lidar measurements, then uses machine-learning
techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in
the Southern Plains where vertically profiling lidars were collocated with meteorological towers.
Results indicate that the model works well under stable conditions but cannot fully mitigate
the effects of variance contamination under unstable conditions. To understand how variance
contamination affects lidar TI estimates, a new set of equations was derived in previous work to
characterize the actual variance measured by a lidar. Terms in these equations were quantified
using a lidar simulator and modeled wind field, and the new equations were then implemented
into the TI error model.

1. Introduction
Procedures such as wind resource assessment and turbine site suitability require measurements
of the mean wind speed and turbulence intensity (TI) at the turbine hub height. Traditionally,
these measurements have been collected by cup anemometers on tall meteorological (met) towers.
However, as modern turbine hub heights increase, it becomes more difficult and costly to install
met towers to reach hub height; in response, remote sensing devices (e.g., lidars, or light detection
and ranging devices) have recently emerged as alternatives to met towers. Although lidars have
several advantages over met towers, measurement methods used by lidars are fundamentally
different than those used by a cup or sonic anemometer. Anemometers provide an estimate of
the wind speed at a small volume in space whereas lidars provide an average across a probe
volume; this probe volume varies in length in the along-beam direction depending on the lidar
used and is 20 m long for the WINDCUBE v2 lidar employed in this work. In addition, lidars
only provide an estimate of the line-of-sight velocity and must point the lidar beam toward
different azimuth angles around a scanning circle to derive the full three-dimensional wind field.
This scanning circle, which has a diameter of approximately 100 m for a commercial lidar at
a measurement height of 100 m, introduces a phenomenon known as variance contamination
[1]. Finally, instrument noise from the lidar can increase the variance estimated from the lidar
measurements (for example, see [2]). All three of these factors—volume averaging, variance
contamination, and instrument noise—have negligible effects on the mean wind speed estimated
from the lidar but have profound effects on the lidar-estimated turbulence. Lidars must be
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able to measure turbulence accurately to be viewed as a viable alternative to met towers in the
wind energy industry. Thus, there is clearly a need for more accurate lidar-based turbulence
estimates, particularly for commercial lidars.

In response to this need for more accurate lidar turbulence estimates, an algorithm
was recently developed to reduce error in turbulence measurements from commercial lidars.
The Lidar Turbulence Error Reduction Algorithm (L-TERRA) incorporates physics-based
corrections, such as a spike filter and spectral corrections, in addition to machine-learning
methods to improve lidar turbulence estimates. In this paper, the development and testing
of L-TERRA are discussed and results from two sites in the Southern Plains are shown. A lidar
simulator is used to improve the variance contamination corrections in L-TERRA and future
applications of the lidar simulator in improving lidar turbulence estimates are discussed.

2. Background
2.1. Lidar technology
Lidars emit light waves into the atmosphere, which are then scattered by aerosol particles.
A small portion of the scattered radiation returns to the lidar, and the Doppler shift of the
returned radiation is used to estimate the velocity in the line-of-sight of the lidar. In the case
of a pulsed Doppler lidar, the returned signal time series is split into blocks that correspond to
range gates [3].

L-TERRA was initially developed for the WINDCUBE v2 lidar (Leosphere, Orsay, France),
hereafter referred to as “WC,” a commercially available, pulsed Doppler lidar that is commonly
used in the wind energy industry. The WC uses a Doppler-beam swinging (DBS) [4] technique to
estimate the three-dimensional wind profile, wherein the lidar beam is pointed in the north, east,
south, and west directions and geometrical relations are used to estimate the u, v, and w wind
components. The WINDCUBE v2 model, which was used in this work, includes a vertically
pointing beam position to obtain a direct measurement of the vertical velocity. The WC
accumulates measurements at each scanning location for 1 s, and a full scan takes approximately
4 s. However, the device’s software updates the velocity vector every time the beam moves to a
new location, such that the output data stream of velocity is available at 1 Hz.

2.2. Sources of lidar turbulence error
Three primary factors impact the accuracy of lidar turbulence estimates: instrument noise,
volume averaging, and variance contamination. The first two factors are inherent to remote
sensing technology and impact any type of lidar regardless of the scanning technique used.
Instrument noise results from factors such as the limited amount of scatterers in the lidar probe
volume (for example, see [2]) and spontaneous laser emissions [5]. Volume averaging occurs
because the lidar must receive backscattered radiation from a volume of air, rather than a point,
to obtain a sufficient amount of data for estimation of the radial wind speed. For the WC lidar
used in this work, the sample volume is 20 m in length and negligibly small in the cross-beam
direction [6]. Thus, the lidar-measured wind speed at a height of 100 m is actually a weighted
average of all the aerosol particle velocities between 90 and 110 m. The probe volume acts as
a low-pass filter, as high-frequency motion that occurs on spatial scales smaller than the probe
volume of the lidar cannot be resolved.

The third factor, variance contamination, is caused by the scanning strategy used by the lidar.
When velocity data from different parts of the lidar scanning circle are combined to estimate the
raw wind speed components, it is assumed that the instantaneous wind field is uniform across
the scanning circle. However, this assumption is not true in turbulent flow, and changes in the
wind field across the lidar scanning circle introduce additional variance components into the
calculation of the u, v, and w variance (for example, see [1] and [7]).
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Various methods have been proposed for reducing error in lidar turbulence estimates,
including fitting a turbulence model (for example, see [1]), using a new six-beam scanning
technique [8], and employing multiple scanning lidars (for example, see [9]). Although these
techniques improved lidar turbulence estimates in a research context, they require the use of
sonic anemometer data and/or expensive scanning lidars, which are not often available outside
a research setting. Thus, this work focuses on improving turbulence estimates from vertically
profiling lidars that are commonly used in the wind energy industry. Even though these lidars
are not as powerful or versatile as scanning lidars, vertically profiling lidars provide a wealth of
valuable information that can be used to improve turbulence estimates.

3. Approach and methods
3.1. L-TERRA
A simplified flowchart depicting the use of L-TERRA to improve lidar turbulence estimates
is shown in Figure 1. The physics-based corrections are comprised of different methods for
mitigating errors from instrument noise, volume averaging, and variance contamination. The
initial estimate of the corrected TI from the physics-based corrections is then used as an input
to a machine-learning model, in addition to other lidar-measured parameters. Methods used in
L-TERRA are summarized briefly here and discussed in more detail in [10].

3.1.1. Instrument noise To reduce instrument noise, a basic spike filter was evaluated in L-
TERRA, in addition to autocovariance and spectral methods discussed by [2].

3.1.2. Volume averaging Structure functions and spectral extrapolation were evaluated in L-
TERRA as potential methods to reduce the effects of volume averaging. Values of the structure
function at different separation distances can be calculated from lidar data. A modeled form
of the structure function that depends on mean wind speed and variance can then be used to
estimate turbulence parameters that are unaffected by volume averaging (for example, see [11]).
Another method is to fit a model to the lidar velocity spectrum and extrapolate the modeled
spectrum out to higher frequencies (for example, see [12]).

3.1.3. Variance contamination The six-beam technique [8] was adapted for use by the five
WC lidar beams, as described in [7], to reduce variance contamination. In addition, Taylor’s
frozen turbulence hypothesis was used to estimate the change in vertical velocity across the lidar
scanning circle and remove the effect of this change on the horizontal variance components [13].

3.1.4. Machine learning The trained machine-learning model in L-TERRA relates lidar-
measured parameters, such as the shear exponent and signal-to-noise ratio (SNR), to the
difference between the initially corrected lidar TI and the met tower TI to produce the final
estimate of the corrected lidar TI. Machine-learning methods evaluated in L-TERRA were
random forests, multivariate-adaptive regression splines, and support vector regression.

In [10], all possible combinations of the different error mitigation methods in L-TERRA were
evaluated to determine the optimal model chain for each field measurement site. Corrected TI
estimates shown in this work are results from these optimal configurations of L-TERRA.

3.2. Lidar simulator
When a lidar is deployed near a met tower, errors in mean wind speed and TI in comparison
to the tower instruments can be easily quantified. However, it is not as straightforward to
determine why these errors actually occur, as the true flow field measured by the lidar is largely
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Figure 1. Flowchart depicting the basic structure for correcting TI with L-TERRA.

unknown. With a lidar simulator, a prescribed wind field can be sampled by the simulated
lidar and compared to the point measurements from different parts of the scanning circle. In
this work, the virtual lidar tool implemented in the National Renewable Energy Laboratory’s
(NREL’s) Simulator fOr Wind Farm Applications (SOWFA) [14] was used to simulate lidar
measurement techniques.

SOWFA is an atmospheric large-eddy simulation tool that can model the full atmospheric
boundary layer. The virtual lidar tool samples the flow field along specified lines representing
lidar beams at a given frequency. The large-eddy simulation flow field is sampled at points
along the lines using linear interpolation, which is equal in order of accuracy to the spatial
discretization of the solver itself.

For this work, the virtual lidar tool was used to sample inflow to a 32.6-m hub-height turbine
at Texas Tech University’s Scaled Wind Farm Technology facility under unstable atmospheric
conditions. The domain was 4 km by 7 km by 2 km, with the predominant flow direction along
the 7-km length of the domain, a spatial resolution of 5 m, a temporal resolution of 1 s, and
periodic lateral boundary conditions. The mean wind speed and TI at hub height were 6.5 m s−1

and 17.2%, respectively. To achieve unstable convective conditions, a surface temperature flux
of 0.1 K m s−1 was specified at the lower surface. An initial capping inversion with a strength of
3 K m−1 was placed at 1300 m above the surface, and the simulation was advanced for 2 hours
before it reached a quasi-equilibrium state.

After reaching equilibrium, samples were extracted from four virtual lidars placed 1 km
apart in the turbine inflow region. Simulation data were extracted from four beams spaced 90◦

apart at an elevation angle of 60◦ and one vertical beam to mimic the scanning configuration of
the WC. A weighting function was applied to the simulated velocity data in postprocessing
to simulate volume averaging within each lidar probe volume (for example, see [14]). To
the authors’ knowledge, there is currently no accepted method for modeling noise in Doppler
lidar data, although any such model could be easily implemented into the virtual lidar tool in
postprocessing. The current version of the virtual lidar tool does not simulate instrument noise.

4. L-TERRA results
4.1. Sites
Three sites were used to train and test the initial version of L-TERRA: the Atmospheric
Radiation Measurement (ARM) site in northern Oklahoma, the Boulder Atmospheric
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Observatory (BAO) in Erie, Colorado, and an operational wind farm in the Southern Great
Plains region of the United States. Because of a nondisclosure agreement with the wind farm,
its exact location cannot be disclosed. Only data from the ARM site and wind farm are shown
in this work, as lidar data availability was low at the BAO due to a low aerosol count.

The ARM site is a field measurement site operated by the U.S. Department of Energy that
contains a variety of in-situ and remote sensing instruments [15]. From November 2012 to July
2013, a WC lidar was deployed 100 m northeast of a 60-m tower at the ARM site with Gill
Windmaster Pro 3-D sonic anemometers mounted at 25 and 60 m above ground level (AGL).
The WC was then deployed at the operational wind farm from November 2013 to January 2014
and again from May to July 2014. While at the wind farm, the WC was located in the same
enclosure as a met tower containing standard wind energy instrumentation. The tower had a
lattice structure and the WC was positioned such that none of the beam positions were blocked
by the tower. The closest turbine was approximately 240 m from the tower enclosure, and only
measurements from nonwaked wind directions were used in this work.

4.2. Initial lidar TI
Examples of sonic and cup anemometer versus lidar TI are shown in Figure 2 for the Southern
Plains sites. Stability was stratified according to the shear parameter, α, with thresholds given
in Table 1. The shear parameter was calculated using WC data from 40 to 200 m. Negative
shear parameters corresponded to cases with lower wind speeds at 200 m than at 40 m and
following standard wind engineering practices, these cases were classified as strongly unstable.

The main sources of TI error are largely evident in Figure 2: volume averaging causes the
lidar to underestimate TI under stable conditions, when scales of turbulent motion are small,
whereas variance contamination causes the lidar to overestimate TI under unstable conditions,
when scales of turbulence are larger and volume averaging is not as prevalent.

0 5 10 15 20 25 30
Cup TI (%)

0

5

10

15

20

25

30

W
IN

DC
UB

E 
TI

 (%
)

Strongly Stable (N = 620): y =  0.87x. R2  = 0.84
Stable (N = 641): y =  0.93x. R2  = 0.89
Neutral (N = 627): y =  1.05x. R2  = 0.89
Unstable (N = 1276): y =  1.12x. R2  = 0.82
Strongly Unstable (N = 204): y =  1.26x. R2  = 0.81

(a) ARM Site

0 5 10 15 20 25 30
Cup TI (%)

0

5

10

15

20

25

30

W
IN

DC
UB

E 
TI

 (%
)

Strongly Stable (N = 1500): y =  0.90x. R2  = 0.93
Stable (N = 883): y =  0.99x. R2  = 0.90
Neutral (N = 1081): y =  1.09x. R2  = 0.88
Unstable (N = 1920): y =  1.15x. R2  = 0.85
Strongly Unstable (N = 177): y =  1.15x. R2  = 0.83

(b) Wind Farm

Figure 2. Lidar versus tower TI for the: a) ARM site at 60 m AGL and b) wind farm at 80 m
AGL. Regression line equations and R2 values are given in figure legends.

4.3. Corrected lidar TI
Figure 3 shows the lidar TI after L-TERRA has been applied to data from both sites. Although
the regression line slopes for all the stability classes are now closer to 1 in comparison to the
original TI, there are still many large discrepancies between the met tower and corrected lidar

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

5



Table 1. Stability classifications used in this work.

Stability Classification Shear Parameter Range
Strongly stable α ≥ 0.3

Stable 0.2 ≤ α < 0.3
Neutral 0.1 ≤ α < 0.2

Unstable 0 ≤ α < 0.1
Strongly unstable α < 0

TI. To identify conditions under which L-TERRA performance is suboptimal, histograms of TI,
mean wind speed, and the shear parameter were examined for periods in which the difference
between the corrected lidar TI and met tower TI was still greater than 3%. At the ARM site,
these periods comprised 5.2% of the testing data set. Before L-TERRA was applied, 12.2% of
the lidar TI values in the testing data set had an error of more than 3%.

Histograms from the ARM site are shown in Figure 4. Large differences between the corrected
lidar TI and sonic TI tend to occur when the lidar measures high TI values, low mean wind speed
values, and low shear parameter values in comparison to the testing data set as a whole. These
trends typically correspond to unstable atmospheric conditions, suggesting that in their current
form, neither the physics-based corrections nor the machine-learning techniques in L-TERRA
can adequately mitigate the effects of variance contamination. The initial version of the variance
contamination module utilizes Taylor’s frozen turbulence hypothesis, which is less valid for
lower wind speeds when turbulent eddies are more likely to evolve as they move across the
lidar scanning circle. Thus, it is not surprising that large TI errors remain for low wind speed
conditions.

It is also likely that the machine-learning portion of L-TERRA did not have an adequate
amount of training data under these high-TI, low wind speed conditions. The histograms
shown in Figure 4 indicate that outlier conditions correspond to the tail of the TI training
set distribution and the far left ends of the mean wind speed and shear distributions. Thus,
the conditions under which L-TERRA performed most poorly also correspond to conditions in
which the machine-learning model was not supplied with a large amount of training data and
is not expected to perform as well. This highlights the need for a large training data set for
L-TERRA that includes a wide range of conditions.

5. New method for reducing variance contamination
5.1. Theoretical background
A series of equations was developed in [7] to relate the variance measured by a lidar with a
DBS technique to the true value of the variance through the use of autocorrelation functions
(ACFs). This series of equations is essentially a simplified version of the results presented in [1],
in which a model of the spectral velocity tensor is convolved with a volume-averaging function
to estimate the variance that would be measured by a lidar. This modeling approach typically
requires fitting parameters to sonic anemometer data and is technically only valid under neutral
conditions. In contrast, the technique presented in this work does not require the fitting of a
model and is much simpler to implement. A brief overview of the development of this technique
is given here.

The radial velocity, vr, measured with the DBS technique at different beam positions, can be
described by the following equations:

vr1 = v1 cosφ+ w1 sinφ (1)
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Figure 3. Corrected lidar versus tower TI for the: a) ARM site at 60 m AGL and b) wind farm
at 80 m AGL. Regression line equations and R2 values are given in figure legends. Only 25% of
the TI data are shown, as the remaining 75% of the data were used to train the machine-learning
module in L-TERRA.
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Figure 4. Histograms of a) TI, b) mean wind speed, U, and c) shear parameter from the
ARM site training and testing data sets. Yellow bars indicate histograms for cases in which
|TIlidar,corrected − TIsonic| > 3% after L-TERRA has been applied to the testing data set.

vr2 = u2 cosφ+ w2 sinφ (2)

vr3 = −v3 cosφ+ w3 sinφ (3)

vr4 = −u4 cosφ+ w4 sinφ (4)

where u is the east-west wind component, v is the north-south wind component, w is the
vertical wind component, φ is the elevation angle of the lidar beam, and subscripts 1, 2, 3, and 4
correspond to the north, east, south, and west directions, respectively. For the DBS technique,
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it is assumed that v1 = v3 = v, u2 = u4 = u, and w1 = w2 = w3 = w4 = w, which gives the
following set of equations for determining values of the u, v, and w wind components [6]:

u =
vr2 − vr4
2 cosφ

(5)

v =
vr1 − vr3
2 cosφ

(6)

w =
vr1 + vr2 + vr3 + vr4

2 sinφ
(7)

If the lidar model includes a fifth, vertically pointing beam, as does the model used in this work,
w can also be approximated as w = vr5. The time series of u, v, and w can then be used to
calculate the variance components and TI. However, if the instantaneous velocity components
change across the scanning circle, as is often the case in turbulent flow, then additional variance
components will contaminate the true value of the variance. It was shown in [7] that in this
case, the true u and v variance values can be expressed by the following equations:

u′2 =
2

1 + ρu
u′2DBS −

(1− ρw) sin2 φ

(1 + ρu) cos2 φ
w′2 (8)

v′2 =
2

1 + ρv
v′2DBS −

(1− ρw) sin2 φ

(1 + ρv) cos2 φ
w′2 (9)

where the subscript DBS refers to estimates from the lidar, ρu, ρv, and ρw are autocorrelation
functions (ACFs) that describe the autocorrelation values of the u, v, and w velocity components,

respectively, measured at different positions along the scanning circle, and w′2 is the value of
the vertical variance measured by the WC’s vertical beam. If the instantaneous wind field is
assumed to be uniform across the lidar scanning circle, as it is with the DBS technique, then
ρu = ρv = ρw = 1 and the horizontal variance values are simply calculated by taking the variance
of Equations 5 and 6. However, when the velocity components decorrelate across the scanning
circle, which is often true in turbulent flow, then the ACFs are not equal to 1 and the true value
of the variance is contaminated by additional components (Equations 8 and 9). In the following
section, characteristic values of the ACFs are estimated using the virtual lidar tool and the ACF
technique is implemented in L-TERRA.

5.2. Application to lidar data
In [7], values of the ACFs were estimated from 100-m sonic anemometer data from opposite
booms at the BAO. Mean values of ρu, ρv, and ρw estimated under unstable conditions were 0.96,
0.81, and 0.66, respectively, and 0.95, 0.71, and 0.69 under stable conditions. Newman et al. [7]
also estimated values of the ACFs by obtaining least-squares solutions to Equations 8 and 9 for
WC and sonic data at the BAO, finding similar values of ρu and ρv to those estimated from
the sonic anemometers and values of 0.29 and 0.13 for ρw under unstable and stable conditions,
respectively. Although using these ACF values did reduce variance contamination somewhat in
the WC data, they do not represent the actual decorrelation that occurs between WC beams.

In this work, the virtual lidar tool was used to estimate realistic values of the ACFs for the
distance spanned by the lidar scanning circle and the time it takes the lidar beam to move
from one side of the scanning circle to the other. For these initial estimates, only data under
unstable conditions were used in the simulation, as variance contamination is most prominent
under unstable conditions when compensation by volume averaging is small [1].

Values of the ACFs for u, v, and w are shown in Figure 5 as a function of height from 50 to
150 m. These ACF values describe the correlation of the u, v, and w wind speeds for a time
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lag of 2 s (i.e., the time it takes the WC beam to move from one side of the scanning circle
to the other) and for two different spatial separation distances: the distance corresponding to
the lidar scanning circle diameter at each height (blue lines) and the distance corresponding to
the lidar scanning circle diameter at a height of 100 m (red lines). Plotting the ACFs for a
constant separation distance allows for examination of the change in ACFs with height without
the influence of the increasing scanning circle diameter.

Mean values of ρu that correspond to the scanning circle diameter at each height are
approximately 0.55 at 50 m and gradually decrease to 0.4 at a height of 150 m (Figure 5a).
Mean values of ρv are just under 0.5 at 50 m and similar to ρu, decrease with height, reaching a
value of approximately 0.37 at 150 m (Figure 5b). However, values of ρu and ρv that correspond
to a constant distance do not change significantly with height. Scales of horizontal turbulence
are not expected to change drastically with height in the simulations, as turbulent length scales
for u and v tend to scale with the boundary layer height in the convective boundary layer (CBL)
[16]. Thus, the increasing diameter of the lidar scanning circle is likely primarily responsible for
the decrease in horizontal ACF values with height when a spatial separation corresponding to
the scanning circle diameter is used.

The mean value of ρw is approximately 0.16 at 50 m for a separation distance corresponding to
the changing scanning circle diameter, and mean values increase with height up to about 100 m
when the mean value of ρw stays at approximately 0.19 between 100 and 150 m (Figure 5c).
In the CBL, horizontal fluctuations in w are dominated by updrafts and downdrafts associated
with turbulent eddies. These thermal plumes typically merge into larger plumes higher in the
CBL (for example, see [17]), causing horizontal fluctuations in w to occur on larger spatial scales.
Thus, in contrast to u and v, the horizontal length scale of w fluctuations increases with height.
When a constant separation distance is used, values of ρw increase more rapidly with height
(Figure 5c).
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Figure 5. Profiles of the ACF functions for a) u, b) v, and c) w derived from the lidar simulator
as a function of height. Circles indicate mean values from twelve 10-min. periods and error bars
indicate standard deviation.

Equations 8 and 9 were then used with mean values of the ACFs at a height of 60 m
to reduce variance contamination in the ARM site data. As characteristic ACF values were
only determined for unstable conditions, this new variance contamination method was only
applied to TI estimates under unstable conditions. For TI estimates under neutral and stable
conditions, the method involving Taylor’s frozen turbulence hypothesis was used to reduce
variance contamination [13]. Results from the application of the ACF technique in L-TERRA
are shown in Figure 6 for the ARM site.
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Incorporating the ACF correction into L-TERRA improved some lidar TI estimates, with
regression line slopes increasing from 0.99 to 1.00 under strongly stable conditions and from
0.87 to 0.89 under neutral conditions. The ACF correction had the largest impact on strongly
unstable TI estimates, with the regression line slope decreasing from 1.06 to 0.98. However, when
the ACF correction was applied, scatter increased significantly for unstable and strongly unstable
TI estimates, as evidenced by lower R2 values in comparison to the original implementation of
L-TERRA (Figures 3a, 6). The scatter is likely related to the large spread of ACF values
at each height (Figure 5); for example, although the mean 60-m ρu value of 0.567 was used
in L-TERRA, values of ρu at 60 m in the simulator ranged from 0.367 to 0.732. These ACF
values represent values from three 10-min. periods at four different locations in simulated flow,
suggesting that values of the ACFs can change significantly from one 10-min. period to the next
and from one location to another. In addition, values of the ACFs change with both height and
scanning circle diameter, making it difficult to apply the ACF correction to lidars with different
scanning configurations. These findings highlight the importance of incorporating current flow
characteristics into TI corrections, rather than using climatological values of correction factors.
Even in the limited data set used in this work, values of the ACFs appear to change significantly
depending on the precise atmospheric conditions experienced during each 10-min. period and
the separation distance corresponding to the lidar scanning circle diameter at each height.
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Figure 6. Corrected lidar versus tower TI for the ARM site with the ACF correction used in
the variance contamination module of L-TERRA. Only testing data are shown.

6. Discussion and Conclusions
A new model was recently developed to reduce errors in TI measured by Doppler lidars [10].
Initial results shown here indicate that L-TERRA generally reduces TI errors under all stability
conditions but does not fully capture TI errors under unstable conditions, likely as a result of
variance contamination. Currently, there is no simple method to quantify the effects of variance
contamination on lidar TI estimates. Thus, as part of this work, a series of virtual lidars was
placed in a modeled wind field to examine the impact of variance contamination on TI estimates
and to evaluate equations presented in [7] for reducing variance contamination.

The variance contamination equations contain the parameters ρu, ρv, and ρw, which indicate
the degree of correlation between wind components at different sides of the lidar scanning circle.
Results from the lidar simulator indicate that these correlations can change significantly from
one 10-min. period to the next and for different lidar scanning circle diameters, making it difficult
to apply a general variance contamination correction to all lidar TI estimates under unstable
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conditions. When mean values of the ACFs were used to reduce variance contamination in
L-TERRA, some lidar TI estimates improved, but scatter increased. This result suggests that
the variance contamination method must adapt to the differing atmospheric conditions during
each 10-min. time period to accurately reduce variance contamination. Future work will involve
using available lidar data to quantify the degree of variance contamination during each 10-
min. period. By using data from the lidar itself, rather than a generalized equation, variance
contamination can be quantified more accurately for different sites and under different kinds of
stability conditions. Variance contamination corrections can be tested with the virtual lidar tool
to examine the validity of the corrections for different lidar scanning geometries, measurement
heights, and atmospheric conditions.
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