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Abstract—There is significant interest in using battery energy 

storage systems (BESS) to reduce peak demand charges, and 
therefore the life cycle cost of electricity, in commercial 
buildings. This paper explores the drivers of economic viability of 
BESS in commercial buildings through statistical analysis. A 
sample population of buildings was generated, a techno-economic 
optimization model was used to size and dispatch the BESS, and 
the resulting optimal BESS sizes were analyzed for relevant 
predictor variables. Explanatory regression analyses were used 
to demonstrate that, of the variables considered, peak demand 
charges are the most significant predictor of an economically 
viable battery, and that the shape of the load profile is the most 
significant predictor of the size of the battery. 

Keywords—batteries, energy storage, mathematical 
programming, Monte Carlo methods, regression analysis 

I. INTRODUCTION 
Batteries for utility bill savings have rarely been cost 

effective in the past, but this is beginning to change as new and 
improved storage technologies are developed and their capital 
costs continue to decline [1, 2]. Battery energy storage 
systems, or BESS, can capture revenue from multiple value 
streams, some of which include performing energy arbitrage, 
selling ancillary services to the grid, enabling participation in 
demand response programs, enabling transmission and 
distribution upgrades to be deferred, and reducing demand 
charges, or “peak shaving” [3-7]. They can also increase the 
energy resiliency of a site [8]. For this analysis, we will focus 
exclusively on behind-the-meter demand management. 

Many utilities in the United States include a fixed dollar per 
kilowatt charge for a commercial consumer’s peak demand to 
reflect the cost of infrastructure and maintenance associated 
with providing the power capacity. In areas with such demand 
billing, a BESS can reduce the peak demand charges by 
strategically discharging such that the electrical load is partially 
met from the stored energy thereby lowering the demand from 
the utility grid. The efficacy of a BESS at reducing peak 
demand varies, with some building types being very amenable 
to peak shaving, while others are not. In addition to utility bill 
savings for the building owner, peak demand reduction can be 
beneficial to utilities because a lower generation capacity has 
to be maintained. 

In this paper, we explore the correlation between the cost-
effectiveness of a BESS and various input parameters such as 
location, installed cost of the technology, prevailing utility 

tariff, the shape of the building load profile, and financial 
parameters including the discount rate and inflation rate. This 
work will help show which types of sites are good candidates 
for economical BESS as well as help policy makers understand 
how to structure incentives to promote BESS adoption. 

II. METHODOLOGY 
For this analysis we first constructed a sample population. 

We then found the optimal BESS size and resulting net 
present value (NPV) for each member in the population. 
Finally, we performed a regression analysis to explore the 
economic drivers that caused a BESS to be economically 
viable and influenced its sizing. This section describes the 
methodology in detail. 

A. Constructing the Sample Population 
The sample population consisted of 16 commercial building 

types across 15 climate zones in the continental United States, 
which represents an estimated 70% of the national commercial 
building stock [9]. Each building type and climate zone 
combination was equally weighted in the population. For each 
of those combinations, four cases were then generated with 
distinct economic parameters that were sampled from uniform 
distributions using a Monte Carlo technique. The population 
was further subdivided into a government sector dataset and a 
private sector dataset, each of which were analyzed separately. 
The federal sector dataset assumed a fixed discount rate (as 
required by 10 CFR 436A [10]) while the discount rate in the 
private sector was allowed to vary. This dataset construction 
resulted in a population of 940 different combinations of 
building type, climate zone, and uniformly sampled economic 
parameters for each of the private and federal sector 
populations. 

1) Building Load Profiles: The Department of Energy  
commercial reference buildings were used as the basis for the 
buildings in the sample population. The commercial reference 
buildings are a set of building models consisting of 16 different 
space types in each of the 15 different climate zones across the 
contiguous United States [9]. An hourly load profile for each of 
the 240 building type / climate zone combinations was created 
using Energy Plus with typical meteorological year (TMY3) 
data for the given location [11]. The building types and 
locations considered are shown in Table 1. All building models 
were of the “post-1980” vintage. 

This work was sponsored by the Department of Energy’s Science 
Undergraduate Laboratory Internship program. 
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TABLE 2. STATE VARIABLE RANGES 

Variable Range 
Inflation Rate 0%-3%a 

Electricity Cost Escalation Rate 0%-3%b 

Discount Rate (Private Sector) 7%-10%c 

Discount Rate (Federal Sector) 3%d (constant) 

Battery Cost $600e-$1500f/kWh 
a. United States Department of Labor Bureau of Labor Statistics, “CPI Inflation Calculator.”  
b. Edison Electric Institute, “Assessing Rate Trends of U.S. Electric Utilities,” Jan 2006.  
c. Oxera, “Discount rates for low-carbon and renewable generation technologies,” April 2006.  
d. A. S. Rushing, J. D. Kneifel, and B. C. Lippiatt, “Energy Price Indices and Discount Factors for 

Life-Cycle Cost Analysis - 2013,” U.S. Department of Commerce National Institute of 
Standards and Technology. 

e. Martin LaMonica, “Ambri’s Better Battery,” MIT Technology Review, 18 Feb 2013.  
f. B. Dunn, H. Kamath, J. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” 

Science 334, 6058 928-935 (2011). 

TABLE 1. BUILDING TYPES, CITIES, AND CLIMATE ZONES CONSIDERED 

Building Type Locations 
Supermarket Cities Climate Zones 
Large Office Miami, FL 1A 
Medium Office Houston, TX 2A 
Small Office Phoenix, AZ 2B 
Warehouse Atlanta, GA 3A 
Strip Mall Los Angeles, CA 3B-Coast 
Stand-Alone Retail Los Vegas, NV 3B 
Large Hotel San Francisco, CA 3C 
Small Hotel Baltimore, MD 4A 
Quick Service Restaurant Albuquerque, NM 4B 
Full Service Restaurant Seattle, WA 4C 
Hospital Chicago, IL 5A 
Outpatient Health Care Boulder, CO 5B 
Primary School Minneapolis, MN 6A 
Secondary School Helena, MT 6B 
Midrise Apartment Duluth, MN 7A 

 The commercial reference buildings dataset also includes a 
representative tariff structure for the local utility in each 
geographical location. The majority of the tariff structures 
included consist of flat usage charges and simple monthly 
demand rates. Those tariffs specifying time-of-use rates for 
either usage or demand were converted to flat usage (by 
dividing annual usage cost by annual usage) and simple 
monthly demand (by dividing monthly demand costs by 
monthly peak demand), respectively. 

B. Determining the Optimal Battery Sizing 
We assumed that each member building in the population 

had an optimally sized battery installed and that it was 
perfectly dispatched such that the life cycle cost of electricity 
was minimized. The optimal sizing and dispatching was found 
using the REopt modeling platform for energy system 
integration and optimization [12]. 

Formulated as a mixed integer linear program, the REopt 
model determines the optimal selection, sizing, and dispatching 
of technologies chosen from a candidate pool such that the 
electrical load is met in every time step at minimum life cycle 
cost. The candidate pool of technologies typically includes 
renewable and conventional distributed energy resources, the 
utility grid, energy storage technologies, and dispatchable 
loads. For the purposes of this analysis, however, the model 
could only consider battery storage and the grid. 

For this study, the inputs to the model for each run 
consisted of the load profile for the site, the cost of purchasing 
electricity from the grid (both usage and demand) as well as the 
rate that those charges were expected to escalate in the future, 
the cost of installing a BESS, a general inflation rate, and the 
discount rate. 

The output of the REopt model is generally a set of selected 
technologies, their sizing and dispatching at every hour, and 
the resulting life cycle cost. The NPV of the solution can easily 
be found by subtracting the life cycle cost of the current case 
from the base case in which only the grid is used to meet the 
electrical load. For this analysis, we were primarily interested 
in the battery sizing, which, of course, could be zero, indicating 
that a BESS was not economical in that scenario. 

1) Battery Assumptions: The round trip efficiency of the 
BESS was assumed to be 80%. It was assumed that the battery 
and associated power electronics were capable of charging and 
discharging within a single time step of one hour. That is, the 
battery was assumed to have a C-rate of 1. Degradation of the 
battery due to cycling was not considered. 

2) State Variables: The uncertain variables in the Monte 
Carlo simulation consisted of the inflation rate, electricity cost 
escalation rate, battery costs, and discount rate. Values for 
each of these variables were randomly sampled from a 
uniform distribution, the range of which was determined by 
considering past trends, published estimates, and experts in the 
field. The battery cost was assumed to include the capital cost 
for the battery and the associated inverter, as well the net 
present value of any maintenance costs. Ranges for the state 
variables are summarized in Table 2. 

3) Normalizing the Output of the REopt Model: The 
REopt optimization model outputs optimal battery size and 
the NPV for each run. The absolute battery size and NPV 
cannot be compared across building types, however, because 
the range of total electric consumption is so large. For 
example, an NPV of $10,000 at an energy intensive site such 
as a hospital is much less significant than similar savings at a 
small office building. To compare battery sizes across the 
entire population, we normalized the battery size as 

 (1) 

where Babs is the battery size output from the REopt model, 
Ctot is the total annual energy consumption, and Brel is the 
relative battery size after normalization. 

4) Quantifying the Impact of Load Profile Shape: The 
efficacy at which the BESS is able to perform demand 
management is influenced by the shape of the electrical load 
profile. In the case of a perfectly flat load profile, for example, 
there are no peaks for a BESS to shave, and it would therefore 
be unable to reduce the utility demand charges at all. 
Conversely, the best case load profile shape would consist of a 
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perfectly flat load with a single peak during one time period. 
In this case, a battery would be able to reduce the peak by an 
amount equal to it its power rating. The efficacy at which at a 
specific battery can perform demand reduction on a given load 
profile, 𝜂𝜂𝐷𝐷𝐷𝐷, can be summarized as 

 (2) 

where Pold is original peak demand, Pnew is the new peak, and 
B is the size of the battery. 

 To include the load profile shape as a parameter in the 
sample population, we needed a load profile metric that 
represents the efficacy at which a BESS can perform demand 
reduction. The 𝜂𝜂𝐷𝐷𝐷𝐷  metric by itself is not an adequate 
representation of overall amenability of a load profile to 
demand reduction because it is defined for a specific battery 
size. 

 In order to more generally quantify the efficacy at which a 
BESS of arbitrary size can perform demand reduction on a 
particular load profile, we created an aggregated metric 
referred to as the Load Profile Metric, or LPM. We computed 
the LPM for each building type by first normalizing all of the 
load profiles to have the same annual consumption. We then 
performed a series of optimization runs to determine the 
maximum amount of demand reduction possible on a given 
load profile by a BESS of a specific size, which ranged from 0 
kWh to 30 kWh in 2.5 kWh increments. The resulting 13 
values of ηDR were then averaged to create the LPM for that 
building type. This process was then repeated for each of the 
16 building types. 

C. Regression Analysis 
A logistic regression was performed to investigate the 

binary response variable of whether or not a BESS is cost-
effective. An ordinary least-squares regression (OLS) was 
performed to examine the factors influencing the sizing of the 
BESS. (Members of the population in which the optimal 
BESS size was zero were excluded from this analysis.) Each 
regression was conducted twice, once for the private sector 
dataset (varying discount rates) and once for the federal sector 
dataset (single, fixed discount rate). 

Collinear predictor variables can be problematic in 
explanatory regression [13]. The variance inflation factor was 
used to measure collinearity, and correlated predictor variables 
were removed from full models. A backward selection 
procedure was used to select the variables for each of the four 
models with the Bayes Information Criterion (BIC) as the 
measure of model quality. The process began with a full 
model and removed a variable at each step until the BIC no 
longer decreased. If goodness of fit was the only selection 
criterion then the full model would always be selected, so a 
BIC-based selection procedure was chosen because it 
penalizes models with many variables that do not fit 
significantly better than those with fewer variables [14]. The 
assumptions that OLS and logistic regressions rely upon were 

tested using diagnostic plots. The variables considered for the 
models after collinearity testing are listed in Table 3. 

TABLE 3. VARIABLES CONSIDERED 

Variable Name Variable 
Average Monthly Peak Demand Mdem 
Average Demand Price Pdem 
Average Usage Price Pcon 
Load Profile Metric LPM 
Battery Cost Bcost 
Inflation Rate I 
Electricity Escalation Rate E 
Discount Rate (Private Sector) D 

III. RESULTS 
This section presents the results of the statistical analysis. 

A. Load Profile Metric 
The results of the LPM calculation are shown in Table 4. 

These demonstrate the estimated efficacy at which a battery 
can reduce peak demand in each of the 16 building types. 

B. Logistic Regression 
In a logistic regression, the response variable is the log-

likelihood of the dichotomous variable outcome happening. In 
these models, Bbin represents the probability that a BESS is 
economical. The logistic model for the federal dataset can be 
described as 

 

 

(3) 

TABLE 4. BATTERY PEAK DEMAND REDUCTION EFFICACY  

Building Type LPM  
Large Hotel 0.959 
Full Service Restaurant 0.848 
Medium Office 0.831 
Small Hotel 0.807 
Large Office 0.754 
Secondary School 0.661 
Small Office 0.657 
Primary School 0.653 
Quick Service Restaurant 0.621 
Strip Mall 0.590 
Stand-alone Retail 0.561 
Outpatient Health Care 0.555 
Warehouse 0.549 
Supermarket 0.516 
Hospital 0.370 
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The logistic model for the private sector dataset can be 
described as 

 

 

(4) 

The Wald z-statistics indicate that all the independent 
variables have a non-zero association with the dependent 
variable. To determine the relative importance of the variables 
to the dichotomous battery variable the standardized (beta) 
coefficients of the models were examined [15]. Table 5 shows 
the standardized coefficients for the predictor variables ranked 
by magnitude and thus by strength of association with the 
response variable. 

TABLE 5. COEFFICIENTS FOR PREDICTOR VARIABLES  

Federal Sector Private Sector 
Variable Standardized Coeff Variable Standardized Coeff 
Pdem 19.04 Pdem 20.72 
Bcost -7.41 Bcost -11.48 
E 3.15 E 3.64 
Mdem 3.10 D -3.29 
Pcon -2.47 Mdem 2.22 
LPM 2.17  

Fig. 1 shows the probability that a BESS is economically 
viable for four of the model variables. In each case, the 
selected variable was varied over a range while the others 
were held constant. 

C. OLS Regression 
In order to transform the data into a normal state, a Box-Cox 
power transformation was performed on both the federal and 
private datasets. The results of the Box-Cox transformations 
indicated that a logarithmic transformation of the relative 
battery size response variable was appropriate for both 
models. More sophisticated methods for determining relative 
importance are available for linear regression than for logistic 
regression [16]. One such method, entitled LMG for its 
authors Lindeman, Merenda, and Gold, was used in the OLS 
regression and the results are displayed in Table 6 and Fig. 2 
[17]. The OLS model for the federal dataset can be described 
as 

 

 

(5) 

 

 
Fig. 1. Probability that a BESS is economical for four model variables. In each case, the selected variable is varied over a range while the others are held 

constant. Pdem = 6.75 $/kW, Pcon = 0.062 $/kWh, E = 2%, Bcost  = 1000 $/kWh, Mdem = 750 kW, LPM = 0.5 (federal sector only), D = 7.5% (private 
sector only) 

}44.1,016.0,58.1,81.1,0021.0,16.8{
},,,,,{ 54321

−−
=βββββα
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Fig. 2. Relative importance of predictor variables in both the (a) federal sector and (b) private sector datasets  

using the LMG method with 95% bootstrap confidence intervals. 

The OLS model for the private dataset can be described as 

 

 

(6) 

IV. DISCUSSION 
From the logistic regression, it is observed that demand 

charge is the strongest predictor and battery cost is the second 
strongest predictor of whether or not a BESS will be 
economically viable. Reducing peaks with a BESS is only 
cost-effective in areas where demand charge savings can 
offset the cost of the BESS over the analysis period. 
Intuitively, higher demand charges (as a fraction of the total 
utility bill) increase the value of the peak-shaving performed 
by the battery. Conversely, lowering the cost of the battery 
decreases the savings required to justify the BESS. The 
financial variables of escalation rate and discount rate affect 
how the future energy savings are valued and thus are also 
predictors of the dichotomous BESS variable, albeit weaker 
ones. The average monthly peak demand variable is likely a 
predictor because in energy-intensive buildings the tariff 
structures are more likely to include demand charges. As there 
would be no benefit to peak-shaving without a demand charge,  
a BESS is never economical when there are no demand 
charges. Fig. 3 demonstrates this trend. It is interesting to note 
that the LPM, which represents the shape of the load profile, is 
a predictor variable, albeit a weak one, for the federal dataset, 
but insignificant for the private dataset. We hypothesize that 
this is because the lower discount rate used for the federal 
dataset renders what would otherwise be expensive options as 
more cost-effective, and as a result the shape of the load 
profile becomes mildly important. 

TABLE 6. LMG RESULTS  

Federal Sector Private Sector 
Variable LMG Variable LMG 
LPM 0.48 LPM 0.57 
Pdem 0.15 Pdem 0.086 
Bcost  0.086 Bcost 0.060 
Mdem 0.050 Mdem 0.050 
Pcon 0.016 E 0.034 

From the ordinary least-squares regression, we observe that 
the load profile metric created to quantify the effect of the 
load profile shape on BESS economics is the strongest 
predictor of optimal BESS sizing. If a BESS is proven to be 
cost-effective at a site, the LPM metric determines the 
marginal rate of return for adding additional battery size. A 
larger marginal rate of return means that the point at which 
adding additional battery capacity is no longer economical 
comes at higher BESS sizes, leading to larger cost-effective 
BESS sizes in general. This is illustrated in Fig. 4. 

 
Fig. 3. Probability of having demand charges as a function of monthly peak 
demand. As the average demand peak increases, demand charges are more 
likely to be included in the tariff structure. 

}24.0,79.5,0026.0,32.0,26.0,00024.0,06.1{
},,,,,,{ 654321

−−−
=ββββββα



6 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Fig. 4. (a) Normalized demand reduction as a function of BESS size. (b) 
Marginal product of the BESS size which is equivalent to the slope in (a). The 
lower marginal product for the Stand-alone Retail building type means that it 
is less beneficial to add a unit of battery size onto buildings of that type than it 
is the other two building types. Note that increasing rates of returns never 
occur as demand peaks cannot decrease in width as they are reduced. 

V. CONCLUSION 
In this paper we have shown that BESS are most likely to 

be economical when peak demand charges are high and 
battery costs are low. We have also shown that the shape of 
the load profile influences the sizing of cost-optimal BESS 
since it determines how much storage is required to reduce 
peak demand. While this work represents a preliminary study 
into the factors that influence BESS economics when behind-
the-meter demand management is the primary revenue stream 
available, there remains much research to be done in this area. 
Research is currently underway at the National Renewable 
Energy Laboratory on BESS economics in residential, 
commercial, and utility-scale storage markets with a focus on 
stacking multiple value streams including demand 
management, energy arbitrage, ancillary services, demand 
response, transmission and distribution deferral, and energy 
resiliency. 
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