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Investigation by Subject-
Matter Expert

Analysts are typically faced with deciding which of N datasets is most 
appropriate for their application.
Analysts rarely use datasets in their raw form, but typically aggregate, transform, 
or summarize them into a set of features for their application.
One finds that rigorous statistical comparison of raw datasets usually indicates 
that they are statistically different, which is not particularly informative to 
analysts.  Only by applying statistical tests to the user-defined features of 
interest, however, can one determine if the datasets differ for the analyst’s 
application.
Statistical tests for comparing datasets typically rely on transforming, binning, or 
summarizing the data before applying the test.  The result of the test is the 
identification of the anomalous features, which can then be visualized and used in 
assessing the consequences of using each dataset.
Statistical inversion techniques can allow one to trace back the anomalies 
identified in the features of interest back to the characteristics of the raw 
datasets.  Subject-matter experts can then focus on determining the fundamental 
cause of the anomalies and assess the severity of their impact on applications.

. . .

. . .
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Study Question: How do measurement stations’ irradiance reports (dataset #1) compare with
the reports from the same hour of the same day five years previously (dataset #2)?
Results of Sign Test: There is a statistically significant bias detectable between these datasets
in many geographical regions.
Diagnosis: There is a several W/m2 bias of the dataset #1relative to dataset #2.

Group data into bins by LST hour

Pair observations Perform sign test on pairs

Diagnose problems

Visualize
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Non-parametric statistical methods combine power with 
robustness, especially regarding Type I errors.
Accessible and safe for non-statisticians
Apply broadly to many types of renewable energy data
Do not require strong assumptions about data
Avoid false positives
Perform nearly as well as parametric methods
Well suited for rapid calculation in distributed computing 
environments

Our research focuses on multidimensional applications of non-
parametric methods, particularly those with spatio-temporal 
extensions.
Dataset comparison often fits into a common data-processing 
pattern.
Such data-processing patterns can be implemented in high 
performance computing environments as a map-reduce operation.

Goals
Robustly identify differences in resource datasets.

Applicable to any kind of resource data.
Usable by engineers and analysts generally, not just by statistical 
specialists.

Apply non-parametric statistical tests to two or more spatiotemporal 
datasets at high resolution in time and geography.

Numerous spatial bins (e.g., one degree by one degree, or smaller).
Numerous temporal bins (e.g., month of year with hour of day).
Avoid assumptions (hypotheses) about the underlying probably 
distribution functions.

Example application
Compare the DHI for the years 2006 and 2007 in the
preliminary version of a new solar radiation gridded dataset.
Computational requirements

20 nodes
320 cores
400 GB memory

One degree by one degree spatial grid
Temporal grid of month of year with hour of day

Summary of results

Test Wallclock Node   Core    Result
Mean-variance     1.5 hrs    30 hrs   610 hrs  No anomalies
Kruskal-Wallace   2.0 hrs    45 hrs   740 hrs Anomalies
Anderson-Darling 11.5 hrs   235 hrs  3740 hrs  Strong anomalies

General statistical approach
Bin the two or more datasets into the same set of spatial and temporal bins.

These bins are slices and groupings in space and time.
The use of binning reconciles differences in spatial and temporal resolution between the datasets, 
so different grids, point vs grid data, etc., can be compared.

Use non-parametric statistical tests to identify differences, biases, or anomalies between the datasets.
The tests rely on comparing the empirical distributions of the datasets in corresponding bins.
The tests naturally include diagnostistics to handle cases where one dataset has far fewer points 
than another.
Where justifiable, parametric statistical tests could also be used.
Instead of hypothesis testing, descriptive statistics could just be collected for each bin.

Collect and analyze the test statistics from each of the spatiotemporal bin.
Apply corrections to account for the testing of (the numerous) multiple hypotheses.
Rank and highlight differences in order of significance, for visualizations.

Our example application of non-
parametric methods of dataset 
comparison, implemented with the 
STDC/R distributed computation 
framework, has detected previously 
unknown anomalies (not apparent 
in less sophisticated testing) in the 
preliminary versions of this dataset.

Researchers can apply similar 
diagnostic methods to their datasets 
by running minor customizations to 
an R template of less that fifty lines 
of code, with modest HPC resources.

Although the 2006 and 2007 datasets have similar 
means and variances, the difference between their 
empirical distribution functions varies significantly with 
longitude. The Anderson-Darley statistics detected this 
abrupt change at approximately 90° W longitude.

Pseudo-code for example application
# Initialized distributed computation.
init.grid()

# Use one-degree bins for all of CONUS.
lons <- c(-125.0, -66.0) ; nlon <- 59
lats <- c(  24.0,  50.0) ; nlat <- 26

# Use two-dimensional bins by month and hour of day.
time_keys <- c("month", "hour")

# Read HDF5 data files.
dsa <- get_data_list_by_lonlat('year2007.h5', 'dhi', lons, lats, nlon,

nlat, prefix='dsa')
dsb <- get_data_list_by_lonlat('year2008.h5', 'dhi', lons, lats, nlon,

nlat, prefix='dsb')

# Apply Anderson-Darling test to each spatiotemporal bin.
results.list <- test_bins(dsa, dsb, ad_test, cols=time_keys)

# Organize results into a distributed data structure.
results.dtables <- concat_bins_safe(results.list)

# Gather results onto the rank 0 node.
results.data <- gather(results.dtables, rank.dest=0, unlist=FALSE)
if (comm.rank() == 0) {

# Concatenate distributed results into a single reformatted table.
results.dtable <- unbin_result(concat_bins(results.data, rank0=TRUE))

# Save results.
save(file='anderson-darling.RData', list=c('results.dtable'))

}

# End distributed computation.
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