

Research Tool to Evaluate the Safety Response of Lithium Batteries to an Internal Short Circuit

Authors: Matthew Keyser, NREL **Eric Darcy, NASA-JSC** Ahmad Pesaran, NREL

18th International Meeting on Lithium Batteries June 20, 2016

Poster #248

Background

- · Li-ion cells provide the highest specific energy and energy density rechargeable battery with the longest life.
- Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions
- Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur.
- Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture.

Motivation

Lithium Ion Battery Field Failures-Mechanisms

- · Latent defect (i.e., built into the cell during manufacturing) gradually moves into position to create an internal short while the battery is in use.
- Sony concluded that metallic defects were the cause of its recall of 1.8-million batteries in 2006
- · Inadequate design and/or off-limits operation (cycling) causes Li surface plating on anode, eventually stressing the separator

Both mechanisms are rare enough that catching one in the act or even inducing a cell with a benign short into a hard short is inefficient.

Current abuse test methods may not be relevant to field failures

- Mechanical (crush, nail penetration)
- · Cell can or pouch is breached; pressure, temperature dynamics are different • Thermal (heat to vent, thermal cycling)
- Cell exposed to general overheating rather than point-specific overheating
 Not a valid verification of "shutdown" separators
- Electrical (overcharge, off-limits cycling) • Not relevant to the latent-defect-induced field failure

To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures.

Objectives

- The internal short circuit (ISC) is capable of simulating all four types of shorts.
- Produces consistent and reproducible results. · Cell behaves normally until activated - cell can
- be cycled as needed.
- · Provides relevant data to verify abuse models.

Design

- Small, low-profile and implantable into Li-Ion
- Cells, preferably during assembly.
 Key component is an electrolyte-compatible wax.
 Triggered by heating the cell or ISC above the wax melting temperature. NREL has developed
- an ISC that triggers at 47°C and 57°C. In laboratory testing, the activated device can
- handle currents in excess of 300 amps to simulate hard shorts. The impedance of the device is less than 2mQ.

Design of Battery Internal Short Circuit Device (BISCD)

ating the components of the Battery ISC Device and Diagram illust its implantation in a battery cell.

ng of Battery ISC Device in ide an 18650 ion battery. Yellow represents copper and blue represents aluminum Credit: Donal Finegan and Paul Shearing, University College Lond

Dow Kokam 8 Ah cell activation at 10% SOC. Voltag response shows dependence on type of BISCD used

Macro image of fused cathode tab after testing with Type 4 BISCD. Photo Credit: Eric Darcy, NASA-JSC Molten Al is evident several places

Conclusions

• US Patent #9,142,829 NREL – Matt Keyser, Dirk

Repeatability Study with Shutdown Separator in 18650 Cell with Type 2 BISCD

Cell	Successful Formation	Successful Activation?	Thermal Runaway?	
1	Yes	Yes	Yes	Type 2 ISC – 8 out of 10 ISCs Activated
2	Yes	Yes	Yes	
3	Yes	Yes	No	
4	Yes	Yes	Yes	
5	Yes	Yes	No	
6	Yes	Yes	Yes	
7	Yes	No		
8	Yes	Yes	Yes	
9	Yes	Yes	Yes	
10	Yes	No		
18650	Cell after BISCD a	Citivation at	The sl	hubbon separator activated and rited thermal runaway in cells 3 and 5.
18650	Cell after BISCD a 100% SOC.	ctivation at	0 200 400	600 800 1000 1200 1400 1600 Time (Seconds)

Non-Flammable Electrolyte Study with Type 2 BISCD

Test Fixture for 20 Ah pouch cells

- Both the control and non-flammable electrolyte caught fire and the cell temperature exceeded 300°C
- The non-flammable electrolyte showed no improvement over the control electrolyte.
- A type 4 (current collector to current collector) BISCD was also tested with similar result

Acknowledgments

 DOE VTO – Dave Howell and Brian Cunningham • E-One Moli – Mark Shoesmith • Dow Kokam – Ben McCarthy

Visual and infrared images of pouch cell

Electrode stack design with BISCD. Credit Ben McCarthy, Dow Kokam

8, U) · · · · · · · ·

00.00 .00

D on the dimension

- 4000 (100 mg - 0

> PP/PE/PP se PP/PE/PP separator extracted rom unwetted jellyrolls

wn when tested with Type 4 BISCD

After BISCD activation" - PP/PI separator extracted from cell wi activated ISC device showing reduced "shutdown" porosity