

Battery Pack Thermal Design

Ahmad Pesaran

National Renewable Energy Laboratory Golden, Colorado

NREL/PR-5400-66960

16th Annual advanced automotive battery conference

battery conference

JUNE 14-17, 2016 | COBO CENTER | DETROIT, MI

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL Energy Storage R&D

Collaborating with industry to achieve energy storage targets for different applications

Materials Synthesis and Processing (Improve energy density and stability)

Component Testing and Characterization (Evaluate performance, life, and safety)

Multi-physics Battery Modeling (Improve performance, life, and safety)

Diagnostic, Management, and Control (Enhance life utilization)

System Evaluation and Techno-Economics (Find cost-effective pathways)

Battery Pack Design

Selecting a high-performing design is just a start

- Series and parallel integration of cells to achieve required
 - Required energy and power
 - Max and min voltage
 - Calendar and cycle life
 - Cost targets
- Pack must be safe
 - Mechanical/structural
 - Electrical
 - o Thermal

Management and Control

- Mechanical management Robust packaging for shock, vibration, crush
- Thermal management Life, performance, safety
- Electrical management Balancing, performance, life, safety
- Other
 - o Manufacturability
 - o Recyclability
 - o **Diagnostics**
 - Maintenance/repair

Battery Thermal Design

Normal Operation

- Normal driving
- Every day

Off-Normal Operation

- Abuse conditions
- o Rare

Temperature Impact on LIB

- Lithium-ion batteries (LIB) are the technology of choice for many applications
- LIBs are sensitive to temperature as it impacts life, performance (capacity and resistance), safety, and (eventually) cost

Temperature Impact on xEVs

- Higher temperatures degrade LIBs more quickly
- Low temperatures reduce power and energy capabilities
- Proper temperature control improves reliability, safety, and range

Also limits the electric driving range

Kandler Smith, NREL Milestone Report, 2008

xEV Thermal Management – Normal Operation

- Battery thermal management is needed for xEVs to:
 - Keep the cells in the desired temperature range
 - Minimize cell-to-cell temperature variations
 - Prevent the battery from going above or below acceptable limits
 - Maximize useful energy from cells and pack
- However, a battery thermal management systems (BTMS) should be designed to:
 - Minimize increased complexity
 - Added initial cost provide long term value
 - Improve reliability
 - Minimize parasitic losses

Battery Heat Balance – Lumped Capacitance

Heat Generation Rate and Specific Heat Impact Battery Temperature Rise

Battery Heat Transfer – none isothermal

Could be 2 or 3 dimensional in geometry Core region $\rho C_{\rho} \frac{\partial T}{\partial t} = Heat_{gen} + \nabla \cdot k \nabla T$

k : *thermal conductivity*

Case or boundary region

Johnsee Lee, K. W. Choi, N. P. Yao and C. C. Christianson

J. Electrochem. Soc. 1986, Volume 133, Issue 7, Pages 1286-1291

Example of T Distribution in a 6-cell Module

Heat Transfer in a Battery Pack

Information Needed for BTMS Design

- Acceptable temperature range
- <u>Acceptable temperature difference</u>
- Maximum and minimum temperature limits
- <u>Thermo-physical properties</u>
- Battery heat generation rates
- Heat rejection rates from battery
- <u>Configurations and dimensions</u> of cells and proposed BTMS

Parasitic power needed to push fluids/cooling through BTMS

NATIONAL RENEWABLE ENERGY LABORATORY

Tools for Designing BTMS

• Experimental Tools

- Isothermal calorimeters and battery testers
- Infrared thermal imaging
- Thermal conductivity meters
- Set up to measure heat transfer characteristics
- Battery thermal testing loop

Modeling Tools

- First-order/lumped capacitance thermal and fluid models
- o 1-D, 2-D, 3-D thermal and fluid-flow performance models
- 3-D electrochemical-thermal model
- Computer-aided engineering software with CFD

Measuring Heat Generation

- Isothermal conduction calorimeters along with battery testers are best equipment to measure heat generation at various current rates, temperatures, and states of charge (SOCs)
- Heat flux gauges measure heat exchanges from a battery and between a constant temperature heat sink

Example Heat Generation Data for CC Discharge

Infrared Battery Thermal Imaging

- Quickly finds thermal signature of the whole cell under electrical loads
- Helps understand thermal behavior, creates diagnostics, and improves designs
- Could be used as a validation of thermal models
- Thermal signature depends on several factors
 - Geometry, thermal conductivity of case and core,
 - Location of terminals, design of interconnects,
 - Current density, current profile, chemistry, environment

Thermal image of a 6.5-Ah NiMH module from a MY 2002 Prius under 100A CC discharge

Photo Credits: Matt Keyser, NREL

Measuring Thermal Conductivity of LIB Components

Flash Diffusivity Method:

 Measurements have shown that generally the thermal conductivity of a LIB is much lower in-plane than cross-plane
 In plane ~ 0.8 to 1.1 W/m/K Cross plane ~ 28 to 35 W/m/K

Photo Credit: John Ireland, NREL

Battery Thermal Testing Loops

Measuring heat transfer coefficients or conductance

Photo Credits: Kandler Smith, NREL NATIONAL RENEWABLE ENERGY LABORATORY

Temp dist. in a USABC module

(next to

board)

Interior Cells

balancing

Process for Battery Thermal Design

Computer Aided Engineering of Batteries

• Combines fluid flow, thermal, and electrochemical models in one package

Battery Thermal Design

Normal Operation

 Normal driving

• Off-Normal Operation

• Abuse conditions

Off-Normal Operation – Examples

- Internal and external short circuit
- Overheating
 - Crash induced crush

- Sharp object penetration
- Overcharge

Electrothermal Model

Accelerating Rate Calorimeter Testing

Measuring Heat during Thermal Runaway (TR)

NREL's THT EV Accelerating Rate Calorimeter

Temperature (°C)

Jelly Roll	Weight (g)	Onset Temp (°C)	Peak Temp(°C)	Venting Temp(°C)	Total Heat Generation (J)	Runaway Enthalpy(kJ/Ah)	Mass Change (g)
18650 3.0 Ah	45.23	111.6	932.4	128.0	31,002.91	10.33	13.27 (29.3%)
18650 2.2 Ah	43.34	91.5	782.7	143.7	25,016.76	11.37	8.97 (20.1%)

Cell to Cell Thermal Propagation

- Assuming one cell will fail and go to thermal runaway
- Is the design robust to not allow cell to cell propagation?
- How best to test the design?

 Cell-Cell Propagation Testing using NREL Battery Internal Short Circuit (ISC) Device

NREL Battery ISC Device Design

Top to Bottom: 1. Copper Disc 2. Copper Puck 3. Battery Separator 4. Adhesive/glue 5. Phase Change Material (wax) 6. Aluminum Disc

Evaluation of a Novel Li-ion Packaging Technology

- Cadenza's large prismatic cell technology for grid storage and PEV
 - Uses commoditized 26mm jelly rolls "abundant supply chain "
 - Proprietary housing material with thermal quenching ability developed by Morgan Advanced Materials
 - Large "cells" ranging from 30Ah to 200Ah in development
 - Expected low cost \$125/kWh
 - Feature: Ability to survive internal short without cascading allows high energy density
- Department of Energy/ARPA-E Range Team
 - Cadenza Innovation LLC (Principal), Fiat Chrysler Automobiles, NREL, Samsung SDI NA, Morgan Advanced Materials, Magna Styer Battery Systems, Alcoa, Karotech LLC, and Impact Design LLC

Cell to Cell Propagation Study Using ISC Device

- Intended application for ARPA-E project
 - Fiat 500e (24kWh original battery)
 - DEMO battery project: 38kWh (in the same volume)
- Proof-of-concept cells to date for two systems:
 - 6 jellyrolls in a row: 30Ah (NCM)
 - 23 jellyrolls in an array: 90Ah (NCA)

ISC Device in a 30Ah NCM cell and a 90 Ah NCA

One cell with internal short circuit device implanted jelly rolls

30Ah "cell" consisting of 6 x 5Ah NCM jelly rolls

90 Ah "cell" consisting of 23 x 3.9Ah NCA jelly rolls

Experiments Showed No TR Propagations

for 30Ah NCM cell after initiating the internal short circuit

The cell only vented with a max measured cell surface temperature less than 138°C.

Experiments Showed No TR Propagation in the 90 Ah cell after initiating the ISC (NCA)

The cell only vented with a max measured cell surface temperature less than 138°C.

Front of cell after test

Innovation for Our Energy Future

Summary – Battery Pack Thermal Design

- Battery thermal management system essential for xEVs
 - Normal operation during daily driving (achieving life and performance)
 - Off-normal operation during abuse conditions (achieving safety)
- Battery thermal management system needs to be optimized with right tools for lowest cost
- Experimental tools such as isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed
- Thermal models and computer-aided engineering tools are useful for robust designs
- During abusive conditions, designs should prevent cell to cell propagation in a module/pack (keep the fire small and manageable)
- NREL battery ISC device can be used for evaluating robustness of a module/pack to cell-to-cell propagation

Acknowledgements

The NREL Team

- Matt Keyser
- Gi-Heon Kim
- Shriram Santhanagopalan
- Kandler Smith
- Chuanbo Yang

Funding from Department of Energy, Vehicle Technologies Office

- Brian Cunningham
- Dave Howell

