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Importance of Thermal Management and Reliability 
• Excessive temperature degrades the performance, life, and 

reliability of power electronics and electric machines.   

• Advanced thermal management technologies enable  
o Keeping temperature within limits 
o Higher power densities 
o Lower-cost materials, configurations, and system 
o Improve lifetime/reliability 

• Predictive lifetime models help in time-and cost-effective design. 
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DOE Vehicle Technologies Office Electric Drive Technologies 
(EDT) Program Targets 

(on-road status) 
• Discrete components 
• Silicon semiconductors 
• Rare-earth motor magnets 

• Fully integrated components 
• Wide-bandgap (WBG) semiconductors 
• Non rare-earth motors 
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From DOE EV Everywhere Grand Challenge Blueprint, 
http://energy.gov/sites/prod/files/2016/05/f31/eveverywhere_blueprint.pdf  
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Management 

Power Electronics 
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Management 

NREL EDT Research Focus Areas 

Research Focus Areas Will Reduce Cost and Improve Performance and Reliability 

Enabling Materials 

Photo Credit: Jana Jeffers, NREL 

Photo Credits: Doug DeVoto, NREL Photo Credits: Doug DeVoto and Gilbert Moreno, NREL 
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Power Electronics Thermal Management 
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Power Electronics Thermal Management Strategy  
• Packages based on WBG devices 

require advanced materials, 
interfaces, and interconnects  
o Higher temperature capability 
o Higher effective thermal conductivity  

 
 
 
 
 

 
 

 
 

 
 

• Low-cost techniques to increase heat 
transfer rates 
o Coolants – water-ethylene glycol 

(WEG), air, transmission coolant, 
refrigerants 

o Enhanced surfaces 
o Flow configurations 

 
• System-level thermal management  

(capacitor and other passives) 

WBG Module Packaging Design with Integrated Cooling 
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The Challenge with Interfaces/Interface Materials 
• Interfaces can pose a major bottleneck to heat removal. 

 
• Bond materials, such as solder, degrade at higher temperatures and are prone to 

thermomechanical failure. 
 

• Problem can become more challenging for configurations employing WBG devices. 
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Thermal Resistance of Various Non-Bonded Thermal 
Interface Materials (TIMs) 
 

• Red dashed line in the two figures above is the target thermal resistance (3 to 5 
mm2K/W). 

• Most non-bonded TIMs do not come close to meeting thermal specification of 3 
to 5 mm2K/W at approximately 100-μm bond line thickness. 
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Pump Laser 
        

              

              

                

                

                

                

                

                

Function Generator 
Lock-in Amplifier 

Multi-mode 
optical fiber 

Collimation lenses 

Lens tube 
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pump laser 
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chopper 

Probe laser 

Reflecting 
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Heat transfer 
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Thermal Resistance of Thermoplastics with Embedded 
Carbon Fibers 

• Thermoplastics with 
embedded carbon fibers 
show very good thermal 
performance 

 
 

 

Frequency-domain transient thermoreflectance experiment configuration 
Thermoplastic 

film                        
HM-2  

Bondline 
thickness (µm) 

60 

Bulk thermal 
conductivity 
(W/m·K) 

37.5 ± 6.8 

Contact 
resistance 
(mm2·K/W) 

3.1 ± 1.1 

Total thermal 
resistance 
(mm2·K/W) 

7.5 ± 1.9 

Photo: Courtesy of  BtechCorp 
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• Bonded interface resistance in the range of 0.4 to 2 mm2K/W 
is possible. 
 Materials developed in the DARPA programs are in this range 

o Copper nanowires 
o Boron-nitride nanosheets (0.4 mm2K/W for 30- to 50-µm bondline thickness) 
o Copper nanosprings (1 mm2K/W for 50-µm bondline thickness with very good reliability) 
o Graphite solder 
o Nanotube-based 

 

 

Other Bonded Interface Materials 
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Integrated Module Heat Exchanger 

• Up to 100% increase in power per die 
area 

• Up to 34% increase in coefficient of 
performance (efficiency) 

NREL integrated module heat exchanger  
Patent No.:  US 8,541,875 B2 

Photo Credit: Kevin Bennion, NREL 
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Liquid Jet-Based Plastic Heat Exchanger 

Metalized  
substrate 

Base plate 

Plastic manifold  

 Device 

Bonded interface 
material (BIM) 

Wire/ribbon  
bonds 

WEG jets 

Enhanced 
surface 

• Up to 12% increase in power 
density 

• Up to 36% increase in specific 
power 

Photo Credit: Doug DeVoto, NREL 

Photo Credit: Gilbert Moreno, NREL 
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Two-Phase Cooling for Power Electronics 

Fundamental 
Research 

Module-Level 
Research 

Inverter-Scale 
Demonstration 

Vapor Liquid

Evaporator

Characterized performance of 
HFO-1234yf and HFC-245fa 

Achieved heat transfer rates of up 
to ~200,000 W/m2-K 

Reduced thermal resistance by 
over 60% using immersion two-

phase cooling of a power module 

Quantified refrigerant volume 
requirements 

Dissipated 3.5 kW of heat with only 
250 mL of refrigerant 

Predicted 58%–65% reduction in 
thermal resistance via indirect and 

passive two-phase cooling 

Power electronics 
modules

Evaporator

Air-cooled 
condenserPhoto Credit: Bobby To, NREL 

Photo Credit: Gilbert Moreno, NREL 
Photo Credit: Gilbert Moreno, NREL 
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WBG  Power Electronics Thermal Management  

Create thermal models of 
an automotive inverter 

Simulate WBG operation 
using the inverter model 

Explore advanced cooling 
strategies 

Quantify the inverter 
component temperatures 

under elevated device 
temperatures 

Validate the thermal models 

Evaluate different module 
topologies 

Experimentally validate some 
key thermal management 

concepts  

cold plate 

copper 
copper-molybdenum direct-bond copper 

cold plate 

Develop thermal 
management concepts to 

enable WBG power 
electronics 

Identify the primary thermal 
paths through which heat is 

conducted from the devices to 
the other components 
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Advanced Packaging Reliability 

15 
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Bonded Interface Material Reliability 

• Thermoplastics 
yield very good 
reliability 

 
• Reliability of 

sintered silver is 
better than 
solder 

Photo Credit: Doug DeVoto, NREL 
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Bonded Interface Material Reliability 

• Thermoplastics 
yield very good 
reliability 

 
• Reliability of 

sintered silver is 
better than 
solder 
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Bonded Interface Material Finite Element Modeling 
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Temperature Cycling Profile • Temperature cycling parameters: 
– -40°C to 150°C 
– 5°C/minute ramp rate 
– 10 minute dwell/soak time 

• Anand viscoplastic material model applied to 
solder layer 

• Temperature-dependent elastic material 
properties incorporated for base plate and 
substrate 

Quarter Symmetry Model 

Substrate 

Solder 

Base Plate 
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Strain Energy Density 

Top view of strain energy density 
contour plot in the solder layer 

Corner fillet region 

• Volume-averaged strain energy density/cycle (ΔW) in the corner 
fillet region is the final output 
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Impact of Geometric Variations on Reliability 

Profile Joint Thickness 
(µm) ΔW (MPa) Predicted experimental 

cycles to failure – Nf 

Thermal cycle 

50 2.65 465 

100 1.36 1,400 

150 0.93 2,600 

• Joint Thickness 

• Substrate Variation 

Profile Substrate CTE (x 10-6/°C) ΔW (MPa) 

Predicted 
experimental 

cycles to failure – 
Nf 

Thermal cycle 

Si3N4 2.8 1.36 1,400 

AlN 4.5 1.08 2,000 

Al2O3 8.1 0.44 9,000 

 Predictive Lifetime Model, Nf = 2312.5 (ΔW)-1.645 

CTE: coefficient of thermal expansion 
Si3N4 : silicon nitride 
AlN: aluminum nitride 
Al2O3: aluminum oxide 
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Electric Machines Thermal Management  



22 DOE APEEM FY14 Kickoff Meeting 

Stator 
Laminations 

Slot Winding 

Rotor 
Laminations Rotor 

Hub 

Case 

Air Gap 

Stator-Case 
Contact 

Nozzle/Orifice 

ATF 
Impingement 

Shaft 
ATF Flow 

ATF Flow 

Stator Cooling Jacket 

End Winding 

Motor Axis 

Electric Machines Thermal Management Strategy 
 

Problem 
• Multiple factors impacting heat 

transfer are not well quantified or 
understood. 

Contributing Factors 
1. Direction-dependent thermal 

conductivity of lamination stacks 
2. Direction-dependent thermal 

conductivity of slot windings and 
end windings 

3. Thermal contact resistances (stator-
case contact, slot-winding interfaces) 

4. Convective heat transfer coefficients 
for ATF cooling  

5. Cooling jacket performance 
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Motor Cooling Section View 

ATF: Automatic Transmission Fluid 
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Transmission Oil Jet Heat Transfer Characterization 

Heat transfer coefficients of all target 
surfaces at 50°C inlet temperature 

• Surface features increase heat 
transfer 

18 AWG surface target 

Note: Heat transfer coefficient calculated from the base projected area (not wetted area) 

Top View 

Side View 
50°C Inlet Temperature 
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Photo Credits: Gilbert Moreno, NREL 
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• Enclosure allows direct impingement on motor 
for heat transfer measurements and flow 
visualization 

Stator Thermal Management with Transmission Oil 

Enclosure with stator and ATF cooling Jet impingement on target surface 

Photo Credits: Kevin Bennion, NREL 
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• Performing thermal analysis on passive thermal 
materials 
 

Motor Passive Thermal Materials Characterization 

Slot windings 

Slot liner or ground insulation 

Stator laminations 

Measure cross-slot winding 
thermal conductivity 

Measure winding-to-liner 
thermal contact resistance 

Measure liner-to-stator 
thermal contact resistance 
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Lamination Stack Effective Thermal Conductivity 

Measured Stack Thermal 
Resistance 

Lamination-to-Lamination 
Thermal Contact Resistance 

Effective Through-Stack 
Thermal Conductivity 
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Transverse Winding Thermal Conductivity 
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• Error bars represent 95% measurement 
uncertainty (U95)  

• Finite element analysis (FEA) model results 
based on measured sample copper fill factor  

• FEA assumes hexagonal or closed-pack wire 
pattern 

 

Photo Credit: Emily Cousineau, NREL 
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Slot Liner Paper and Thermal Interface Resistances 

• Limited sample size for 
measurements 

• Slot liner paper thermal 
conductivity of 0.18 W/m-K 
(thickness 0.29 mm) 

• Winding thermal conductivity 
measured to be 0.88 ± 0.11 
W/m-K (U95) 

• FEA estimate of thermal 
conductivity is 0.99 W/m-K for 
measured copper fill factor 
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• Industry-led inverter development with VTO and AMO funding 
– Delphi inverter (VTO) 
– GM inverter (VTO) 
– Wolfspeed WBG inverter (VTO) 
– John Deere WBG inverter (AMO) 

 
• UQM Technologies motor development (VTO funding) 

Participation in Industry-Led Projects 

AMO: Advanced Manufacturing Office 
VTO: Vehicle Technologies Office 
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Summary 

• Low-cost, high-performance thermal management technologies are helping meet 
aggressive power density, specific power, cost, and reliability targets for power 
electronics and electric machines. 
 

• NREL is working closely with numerous industry and research partners to help 
influence development of components that meet aggressive performance and 
cost targets through: 
o Development and characterization of cooling technologies 
o Thermal characterization and improvements of passive stack materials and interfaces. 

 
• Thermomechanical reliability and lifetime estimation models are important 

enablers for industry in cost- and time-effective design. 
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