EV-Grid Integration (EVGI) Control and System Implementation

Research Overview

APEC 2016
Long Beach, CA
March 23, 2016

Mithat Kisacikoglu, Ph.D.
Research Engineer, Transportation Center

Tony Markel
Andrew Meintz
Jiucai Zhang
Myungsoo Jun
Outline

1. EVGI Research Capabilities
2. Charging management with Renewables
3. PEV charging characterization
4. Microgrid implementation of PEVs
5. Analysis of WPT stationary and in-motion charging
6. Conclusions

Source, NREL.gov
NREL Scope of Work

Systems Integration
- Grid infrastructure
- **Transportation**
 - DG interconnection
 - Battery and thermal storage

Renewable Energy
- Solar
- Wind and water
- Hydrogen
- Biomass and geothermal

Energy Efficiency
- Residential buildings
- Commercial buildings
- Personal vehicles
- Commercial vehicles

Market Focus
- Private industry
- Federal agencies
- State/local govt.
- International

Image via shutterstock
Vehicle Testing and Integration Facility (VTIF)

VTIF provides interior and exterior areas for systems, EVGI communications and power exchange.

18kW Solar PEV Parking Lot

NREL Parking Garage with 36 EVSE’s Charge
Research and Visiting Vehicles
Energy Systems Integration Facility

- 182,500 sq. ft.
- 1-MVA bi-directional grid simulator
- Low Voltage Distribution Bus
- Medium Voltage Outdoor Test Area
- Full Power Hardware in the Loop (PHIL) testing
- Petascale High Performance Computing (HPC)

Research Electrical Distribution Bus (REDB)

AC (600 V)
- 250 A
- 1600 A

DC (±500 V)
- 250 A
- 1600 A

Example microgrid

- SPL: Smart Home Loads
- PSIL: Large Scale Inverters, PV Simulators, Microgrid Power Distribution
- MVOTA: Medium Voltage Distribution Equipment
- LVOTA: Diesel Gensets, Programmable Load Banks
- Controller
- Red Ring Bus
Managed Charging
Evaluate functionality and value of load management to reduce charging costs and contribute to standards development

- GE Wattstation in NREL Parking Garage
- Grid2Home EVSE and Gateway with SEP2.0
- Leviton with Modbus
- AV EVSE via Wifi

Local Power Quality
Leverage charge system power electronics to monitor and enhance local power quality and grid stability in scenarios with high penetration of renewables

- Toyota collaboration leverages vehicles and ESIF
- Light and heavy duty wireless charging systems
- Bi-directional fast charge

Emergency Backup Power
Explore strategies for enabling the export of vehicle power to assist in grid resiliency during outages and disaster-recovery efforts

- Via Motors export power functionality
- Nissan Leaf with Nichicon V2H unit to power home-loads

Bi-Directional Power Flow
Develop and evaluate integrated V2G systems, which can reduce local peak-power demands and access grid service value potential

- Mini-E with Univ of Del and NRG
- PGE Utility truck characterization in ESIF
- Via Motors van-Coritech EVSE with grid SEP2.0
- Smith EV truck

Life Impacts
Can functionality be added with little or no impact on battery and vehicle performance?

- Using BLAST-V for scenario assessment

Information Flow and Control
How is information shared and protected within the systems architecture?

- Developed data entry and campus connections

Holistic Markets and Opportunities
What role will vehicles play and what value can be created?

- SEAC collaboration on market opportunities report
Provide simple interface with least information necessary to create managed individual and aggregate scenarios with status display
AC Microgrid System Component Characterization

- Sharp Energy Storage System: 43 kWh, 30 kW IPC interface
- Via Motors Van - Coritech EVSE: 23 kWh, 14.4 kW V2G-V2H
- Nissan Leaf - Nichicon EV Power Station 6kW V2H
- Smith EV Truck - Coritech EVSE: 80 kWh, 60 kW
- WiTricity wireless charging units 3×3.3 kW
- PV System (emulated-22 kW and real-18 kW)
- Residential and commercial loads (125kW AC)
- 30kW Grid Simulator and RTDS system

How to build an MG scenario using these assets?

- System component modeling, MG central controller design and testing.
Export Power Using PEVs

Via Motors Van with Coritech EVSE
- 14.4 kW on-board bidirectional charger
- Series hybrid PHEV with 23 kWh battery
- V2H and V2G capable, SEP 2.0 grid link, Homeplug GREEN PHY
- Single phase 120V/240V up to 60A off-grid power generation

Nichicon EV Power Station
- 6 kW off-board charging capability
- 120V/240V, total 50A@120V V2H power capability
- Runs with Chademo compatible PEVs (Leaf, Mitsubishi i-MiEV)
- Switching from grid connected to grid-isolated operation

Research scope
- Analysis of powering real home loads with Nissan Leaf and Via Van w/o grid.
- Evaluating the emergency power capability of EV (Leaf) and PHEV (Via-Van).
- Integrating emulated/real solar PV systems with V2H to extend the emergency power duration.
- Investigating microgrid operation of vehicles to power several houses.
System Modeling for Emergency Operation

Stages for modeling:
- Switching time simulation of one on/off-board charger
- Daily RMS simulation of utility grid with tens of PEVs
- Real time simulation of developed system
- Controller HIL real-time simulation to test communications and controllers
- Power HIL real-time simulation to validate power flow

Example for emergency power system management scheme:

For more info:
On-board Charging Characterization

- Unidirectional control of EVSEs over Modbus using market vehicles:
- 5 to 10 A step-up/down tests to validate dynamic performance
Unidirectional Charging Characterization

- ~0.56s communication delay using Modbus protocol
- Different vehicles respond with different transfer functions

MY13 Toyota IQ

MY13 Chevy Volt

Mini-E
Testing of Microgrid Embedded PEVs

- Communication protocol testing
- Implementation of control through DMS
- Verification of charging/discharging algorithm development.
WPT Grid Integration Testing

- Power quality testing for different grid voltage/frequency, receiver alignment, and battery charging power conditions.
 - Current harmonics
 - Battery ripple current
 - Power factor
- Management with renewable and L2 EVSEs
- Three-phase implementation in a microgrid study.

Source NREL, Mithat Kisacikoglu
WPT Grid Impacts Load Shape Analysis

- Grid load for the Atlanta region was determined from the power consumed by the transmission zones in the 2013 Atlanta CSA - Eastern Renewable Generation Integration Study (ERGIS) developed by NREL.
- The grid load for the four seasons have been determined by averaging the hourly load throughout a week for each hour within the season.
- For the graphs, the numbers in colored text indicate the percent load growth over the baseline at the new seasonal average load peak resulting from each fractional VMT electrification scenario.

Electrified Roadway Scenarios added to Typical Fall Grid Load

Electrification of 5% of light-duty VMT results in a load growth between 0.70% and 1.16% for the peak load hour. Typical utility load growth 1-1.5%/yr

A. Meintz, J. Gonder, J. Jorgenson, and A. Brooker “Analyzing potential grid impacts from future in-motion roadway wireless power transfer scenarios” to be presented in EVS29, 2016
Conclusions and Future Work

• Framework of EVGI infrastructure described.
• EVGI includes not just power electronics but also communication, standards, signal processing, grid-level control, and distribution modeling.
• Each PEV model has different EVGI response characteristics during grid-interaction.

Future work:
• Development of an EVGI C-HIL and P-HIL testing platform
 o Verification of grid-level EVGI control development
 o Implementation of SEP2.0 communication for V2G signals
 o Distribution system impact analysis of V1G, V2G, and V2H (Black-start)
• Wireless charging
 o Multi-unit testing of static WPT systems for grid impact analysis
Energy Benefits from Vehicles, Buildings, and Renewables Working Together

Questions
Mithat Kisacikoglu,
mithat.kisacikoglu@nrel.gov

Source, NREL.gov