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A Scalable Method for Extracting Soiling Rates from PV Production Data

Michael G. Deceglie1, Matthew Muller1, Zoe Defreitas2 and Sarah Kurtz1

1National Renewable Energy Laboratory, Golden, Colorado, 80401, United States
2SunPower Corporation, San Jose, California, 95134, United States

Abstract—We present a method for analyzing time series
production data from photovoltaic systems to extract the rate
at which energy yield is affected by the accumulation of dust,
dirt, and other forms of soiling. We describe an approach that
is based on prevailing methods, which consider the change in
energy production during dry periods. The method described
here builds upon these methods by considering a statistical
sample of soiling intervals from each site under consideration and
utilizing the robust Theil-Sen estimator for slope extraction from
these intervals. The method enables straightforward application
to a large number of sites with minimal parameterization or
data-filtering requirements. Furthermore, it enables statistical
confidence intervals and comparisons between sites.

I. INTRODUCTION

The soiling of photovoltaic (PV) panels is an important fac-
tor affecting the energy output of PV systems. One approach
to quantifying soiling rates at different locations involves com-
parisons between a naturally soiled and a frequently cleaned
sensor [1]. The sensors can be either reference cells, modules,
or some other type of sensors. The clean device must either
be manually cleaned or automated cleaning equipment must
be used. While these approaches can offer high accuracy, a
challenge is the cost associated with deploying such soiling
stations at a large number of sites. We consider an alternative
approach: extracting soiling rates directly from PV system
production data.

The use of PV production data enables the quantification
of soiling risk across many sites without additional hardware.
To make meaningful comparisons between sites, it is impor-
tant that a soiling rate extraction method enable statistically
rigorous comparisons while remaining flexible to the source
of the data and the varying levels of metadata available about
different sites. In this paper we will outline an approach to
extracting soiling rates from PV production data that builds
upon prevailing methods for soiling rate extraction [2]–[4],
and explain how it supports these goals.

Generally, soiling of a PV system can be assessed by
comparing actual PV production to some sort of performance
model. These performance models can take on a continuum of
complexities, from just considering nameplate rating, to simple
temperature correction, to more detailed system modeling ac-
counting for solar spectrum and shade. One goal of the method
presented here is to be agnostic to the level of detail of the
performance model, while providing meaningful information
about the uncertainty of the soiling rate.

Being performance-model agnostic will enable soiling rate
extraction from a large number diverse data sets from different
sources. This, in turn, will support the quantification of soiling
risk at global scale. In order to realize this breadth, it will
be important to extract soiling rates from a large number of
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Fig. 1. A subset of energy production data from site A. The plot shows
a time series of normalized performance metric, PMnorm, which has been
insolation- and temperature-corrected to mitigate some seasonality effects
(black) along with daily precipitation (blue). Soil accumulation during dry
periods and recovery after rain events is apparent.

PV sites, without strict limitations of the data available for
that site. Production data from different sources may have
more or less information available for detailed performance
modeling, but it is still desirable to make a meaningful
statistical comparison between them.

Existing methods for extracting soiling rates have been
limited by the systems they could consider. For example, the
analysis in [2] was only applied to sites with very strong
soiling trends while that in [3] included weaker soiling trends,
but heavy filtering was done to remove sites with data quality
problems, inverter clipping, incorrect tilt angle specification,
and other issues. Here, we only use a time series of production
data that can be aggregated to daily production, along with
minimal meteorological data; a detailed performance model
of the system is not required.

In order for a soiling rate extraction method to scale to
a large number of sites, it is also useful for it to avoid the
use individually-determined site-specific parameters. Prevail-
ing methods [2]–[4] for extracting daily soiling rates from PV
production data rely on linear regression of periods between
rainfall in conjunction with parameters including a minimum
rainfall amount that cleans the panels, and a recovery period
after rain during which time panels do not soil. These pa-
rameters must be determined for each system considered [4].
Using system-specific parameter values within the method
reduces consistency and makes comparisons between sites less
straightforward. We also use a robust regression method that
reduces the effects of anomalies or lesser-quality data.

We begin by describing our method for quantifying daily
soiling rates from PV production data. We then demonstrate
the use of the method considering a case study of two different
sites.
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Fig. 2. The intervals of temperature-corrected and normalized performance metric, PMnorm, vs. days since rain, d, considered for the two sites. The different
colors indicate different precipitation-free intervals. A slope is extracted from each of these intervals with the Theil-Sen method. The median of these extracted
slopes in taken as a measure of the daily soiling rate for the site.

II. SOILING RATE EXTRACTION METHOD

The method we describe for determination of soiling rates
from PV production data is a two-stage process. In the first
stage, a daily performance metric is calculated based on a
general model for the expected energy yield (for example,
this could be performance index). In the second stage, the
time series of the performance metric is analyzed along with
precipitation data to determine a median daily soiling rate and
the associated confidence interval. The focus of this work is
on the second stage, which can be applied to various methods
for calculating a daily performance metric with more- or less-
detailed performance models.

A. Performance metric calculation
The first step in soiling rate extraction is to calculate a daily

performance metric for the system under consideration. In
this work we calculate a performance metric by temperature-
correcting power measurements and comparing those to the
daily plane-of-array insolation.

The inputs into our calculation are:
1) Time series of PV instantaneous power or energy pro-

duction. In this study we used data with resolution of 15
minutes. Because we are concerned only with changes
in performance relative to a system’s peak performance,
and thus will consider a normalized dimensionless per-
formance metric, both power and energy measurements
can be treated in the same way. In this paper we will
use language assuming instantaneous power measure-
ments for simplicity. The data considered here were not
affected by inverter clipping, but the effects of clipping
may be important for other systems.

2) Time series of ambient temperature. For this study we
used 15-minute ambient temperature that was measured
on-site. However there are other viable sources such
as the National Solar Radiation Database in the United
States (NSRDB) [5].

3) Time series of plane-of-array irradiance. We used 15-
minute data that was measured on-site, however sources
such as NSRDB could also be used. External sources
can be particularly useful in cases where the irradiance
sensor soils, is re-calibrated, or is otherwise adjusted.

4) Daily precipitation totals. We used data available from
PRISM [6].

The first step in the performance metric calculation is
to temperature-correct each power measurement, P, in the
production time series to 25◦C (T0). In this work we used an
empirical model for module temperature based on irradiance
(neglecting wind speed) [7]. However, if module temperature
measurements are available they can be used, relaxing the
requirement for ambient temperature data. The temperature-
corrected power, P0, is calculated according to

P0 =
P

1+ γ(T −T0)
(1)

where γ is the power temperature coefficient for the mod-
ules in the array. Once calculated, the temperature-corrected
power measurements are integrated over each day to give a
temperature-corrected daily energy production for the system,
E. This is combined with the daily insolation G (calculated
by integrating the irradiance) and the array of the array A to
give a daily performance metric, PM, according to

PM =
E

AG
. (2)

To minimize impact of bias in the model and reduce the
information required about a system, we normalize the daily
values of PM to the 95th percentile of observed values for
PM at a given site. This gives a dimensionless performance
metric, PMnorm, appropriately sized relative to the near-peak
performance of the system. In the results described here, area,
A is not explicitly included in the calculations; it is normalized
out. This approach avoids the need for a detailed performance
model for the system and serves to isolate soiling losses from
other system losses.

B. Soiling rate calculation
To calculate daily soiling rate, the daily PM data is consid-

ered along with daily precipitation totals. An example subset
of the daily values for PMnorm along with daily precipitation
totals is shown in Fig. 1. The figure illustrates the soiling signal
to be extracted from the dataset; dry periods are associated
with a decline in system output as soil accumulates on the
panel surfaces. Rain events clean the system, but sometimes
only partially. It is the rate of change in PMnorm during dry
periods that we seek to extract as a daily soiling rate. Fig. 1
also highlights a challenge in quantifying annualized soiling;
since not all rain events clean the system entirely, the effects

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 3. PMnorm vs. d for an example precipitation-free interval from site A
showing the advantage of the Theil-Sen method (black line) as compared to
a least-squares linear regression (red line). This interval appears to have an
unaccounted-for cleaning event near its end. This causes substantial skewing
of linear regression, but the Theil-Sen method successfully extracts the soiling
rate of interest. The use of the Theil-Sen estimator makes the proposed method
more easily scalable to large numbers of sites without the need for anomaly
filtering.

of partial cleaning and persistent soiling must be taken into
account to quantify annualized soiling loss.

To extract the daily soiling rate, we proceed to calculate the
number of days elapsed, d, between each day in the production
dataset and the most recent preceding precipitation event. We
place no threshold on the magnitude or intensity of precipita-
tion event. We then partition the dataset into precipitation-free
intervals and select only those intervals longer than 14 days.
Plots of these intervals for the two sites considered in this
study are shown in Fig. 2.

For each interval longer than 14 days, we use the Theil-
Sen estimator [8] to extract a slope of PMnorm vs. d for
that interval. The Theil-Sen estimator is calculated for a
collection of points by calculating the slopes between all pairs
of points in a dataset and then taking the median value of those
calculated slopes. It is more robust to outliers than a least-
squares linear regression. An example comparing the use of
the Theil-Sen estimator to a least-squares linear regression is
shown for one dry interval in Fig. 3. This example illustrates
how the Theil-Sen estimator is more robust to anomalies;
in this case an apparent cleaning event not associated with
precipitation. This robustness is an advantage in scaling our
soiling-rate extraction method to more sites, as it alleviates
filtering requirements that may otherwise need to be tuned on
a site-by-site basis.

Finally, once slopes have been calculated, the median of
these slopes is taken as the metric for soiling at that site.
The samples from different sites can also be statistically
compared to one another. We use bootstrapping [9] to estimate
confidence intervals for the median daily soiling rate.

C. Irradiance data considerations
An important consideration in carrying out these calcula-

tions is the source and nature of the irradiance data used in
calculating the performance metric. If an irradiance sensor
soils concurrently with the PV system, there is potential for
bias to be present in the slopes of the performance metric
during periods without rain. It’s also important to note that
different irradiance sensors may soil differently; for example
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Fig. 4. Cumulative distribution functions for the soiling rates extracted from
every interval at both sites. This shows that site A has more severe soiling
than site B. Note that scatter and anomalous intervals sometimes give negative
rates. To minimize the effect of such anomalies, we take the median of the
observed rates as the soiling metric.

a domed thermopile pyranometer may soil less than a reference
cell. Because of the potential for the PV and irradiance sensor
to soil concurrently, comparisons between different sites where
the irradiance sensors are cleaned with different frequencies is
not straight forward. In the two systems considered here, the
irradiance sensors were cleaned annually.

An interesting potential solution to the challenges around
irradiance data is the use of modeled irradiance based on satel-
lite data, such as that available from the NSRDB [5]. Noise
introduced by the use of such satellite data will be reflected in
the confidence intervals calculated in the soiling rate extraction
method. However, bias will not be automatically captured
by the soiling rate calculation. Detailed understanding of the
application of satellite-based irradiance data to this soiling rate
extraction method will be an important consideration for future
efforts.

III. APPLICATION TO FIELD DATA

As an example application we consider results of the above
calculations for two sites, A and B. We consider more than
six years of production data from each site. Cumulative
probability functions for the soiling rates extracted from each
dry interval are shown in Fig. 4. It is also interesting to note
in Fig. 4 that the distributions extend below zero. This is a
result of noise in the data. Because of such results, we take the
median value as the soiling metric for the site. The sign test on
each sample gives p-values less than 10−4, indicating that for
both sites, the null hypothesis that the median of the population
is equal to 0 can be rejected with high confidence. Thus we
can conclude that there is statistically significant soiling at
each site.

The distributions show that Site A generally has more severe
soiling than Site B. The confidence intervals for the median
soiling rate, calculated via bootstrapping [9] are compared for
the two sites in Fig. 5. The confidence intervals shown in Fig. 5
support the conclusion that Site A has more severe soiling than
Site B.

Finally, this approach allows useful statistics to be calcu-
lated around risk for a given site. For example, applying the
bootstrap to the slopes from all the dry periods at each site
allows us to conclude, with 97.5% confidence, that the median
soiling rate at Site A is no worse than 0.17%/day and that the
soiling rate for Site B is no worse than 0.12%/day.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 5. Box and whisker chart illustrating the uncertainty in the median daily
soiling rate at each site. The uncertainty was calculated via bootstrapping. The
whiskers indicate the 95% confidence interval, the boxes indicate the central
50% confidence interval, and the white lines indicate the median value.

IV. EFFECTS OF PV MODELING AND SEASONALITY

One of the strengths of the soiling rate calculation described
in Section II-B is that it can be applied to performance indices
calculated with varying levels of detail in a meaningful way.
To demonstrate this, we carry out the soiling rate calculation
described in Section II-B on synthesized time series of daily
PM values. This enables us to calculate confidence intervals
and compare them to a known soiling rate. One factor that
performance models handle with varying degrees of accuracy
is seasonality; that is, changes in the performance metric
over the different seasons. We vary the amount of residual
seasonality (that unaccounted-for in the performance model
used to calculate PM) present in the synthesized time series
and demonstrate that the soiling rate calculation method and
associated statistics appropriately account for this uncertainty.

We synthesized datasets based on real precipitation data
from Site A in order to capture the non-random seasonal nature
of rainfall. The synthesized daily performance metric, PMsynth
on the ith day of operation is given by Equation 3.

PMsynth = NS (1−Y sin(2πi/365.−φ)) (3)

Here, N is a random noise factor drawn from a normal distribu-
tion about one with a standard deviation of 0.02. S is a soiling
factor. S is calculated assuming a linear reduction in PM during
precipitation-free periods. The slope of the reduction for each
period is randomly drawn from normal distribution of soiling
rates with a mean soiling rate of 0.15%/day and a standard
deviation of 0.075%/day. On each day with precipitation, S
recovers by a randomly chosen fraction between 0 and 1.
The final term in Equation 3 represents residual seasonality
in PM, where φ represents the phase relationship between the
residual seasonality and the seasonal rain patterns and Y is
the fractional amplitude of the residual seasonality. Here we
consider the worst case scenario for φ , where the downward
slope of the seasonality coincides with the dry season causing
constructive interference in the PMsynth signal. An example of
one such synthesized PM time series is shown in Fig. 6a.

This approach allows us to carry out the soiling rate calcu-
lation described in Section II-B with varying levels of residual
seasonality. Fig. 6b shows the 95% confidence intervals for the
median daily soiling rate calculated as described in Section
II-B. We see that the confidence interval tends to expand at
higher levels of residual seasonality, but continues to bracket
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Fig. 6. (a) Time series of daily performance synthesized according to
Equation 3 with a value for Y of 0.05. (b) 95% confidence interval in the
median daily soiling rate calculated by applying the method described in
Section II-B to synthesized PM time series for varying levels of residual
seasonality (Y in Equation 3). Residual seasonality is that which remains in the
data after application of a performance model for calculation of performance.
The known true median soiling rate is indicated by the gray line. With varying
levels of residual seasonality, the soiling rate extraction method yields a
meaningful confidence interval that appropriately brackets the underlying true
median soling rate.

the known median soiling rate in the synthesized time series.
This demonstrates that the soiling rate calculation is robust to
different performance models that will leave different levels
of residual seasonality in the daily PM time series. This
is an important feature of the approach, as it will allow
meaningful comparisons between many different sites, even
in the presence of varying levels of metadata available for
performance modeling and PM calculation.

V. CONCLUSION

We have presented a method for extracting median daily
soiling rates from PV production data. The method is de-
signed to scale to large numbers of sites in a straightforward,
consistent, and robust way. As we have shown, the method
can extract statistically significant daily soiling rates and allow
comparisons of confidence intervals.

The method described here is also agnostic to the perfor-
mance model used to calculate a performance metric. We
demonstrated this by analyzing synthesized data sets and
showing that the confidence intervals respond appropriately
to increased seasonality which is not accounted for by the
performance model. In practice, different PV systems have
different level of detail in their available metadata, facilitat-
ing different levels of detail in their associated performance
models. The method described here enables meaningful com-
parison between such diverse systems and supports the goal
of building a world-wide and coherent understanding of risk
factors for soiling.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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