
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

Capturing the Impact of Storage 
and Other Flexible Technologies 
on Electric System Planning 
Elaine Hale, Brady Stoll, and Trieu Mai 
National Renewable Energy Laboratory 

Technical Report 
NREL/TP-6A20-65726 
May 2016 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

 

  

Capturing the Impact of Storage 
and Other Flexible Technologies 
on Electric System Planning 
Elaine Hale, Brady Stoll, and Trieu Mai 
National Renewable Energy Laboratory 

Prepared under Task Nos. SA12.0381, SA15.1015, 
and SA15.0910 

Technical Report 
NREL/TP-6A20-65726 
May 2016 



 

 

NOTICE 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at SciTech Connect http:/www.osti.gov/scitech 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
OSTI http://www.osti.gov 
Phone:  865.576.8401 
Fax: 865.576.5728 
Email: reports@osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5301 Shawnee Road 
Alexandria, VA 22312 
NTIS http://www.ntis.gov 
Phone:  800.553.6847 or 703.605.6000 
Fax:  703.605.6900 
Email: orders@ntis.gov 

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. 

NREL prints on paper that contains recycled content. 

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov


iii 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Acknowledgments 
We thank Paul Denholm, Jennie Jorgenson, Dave Mooney, and Daniel Steinberg (National 
Renewable Energy Laboratory), Mark Dyson (Rocky Mountain Institute), Nils Johnson 
(International Institute for Applied Systems Analysis), Hassan Hijazi (Australian National 
University / Commonwealth Scientific and Industrial Research Organisation), Kerry Cheung, 
Paul Donohoo-Vallett, and Ookie Ma (U.S. Department of Energy) for their thoughtful reviews, 
comments, and suggestions. We acknowledge Bethany Frew (National Renewable Energy 
Laboratory) for her supporting analysis. We also thank Steve Capanna and Ookie Ma (U.S. 
Department of Energy) for supporting this work. This research was funded by the U.S. 
Department of Energy under contract number DE-AC36-08GO28308. Any errors or omissions 
are the sole responsibility of the authors.  

http://www.nrel.gov/publications


iv 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Executive Summary 
Power systems of the future are likely to require additional flexibility due to the operating 
characteristics of many clean energy technologies, particularly those relying on renewable 
energy sources. This subject has been well studied from an operational perspective, but it has 
been more difficult to incorporate into capacity expansion models (CEMs) that study investment 
decisions on the decadal scale. There are two primary reasons for this. First, the necessary input 
data, including cost and resource projections, for flexibility options like demand response and 
storage are not widely available and are highly uncertain. Second, it is computationally difficult 
to simultaneously represent both investment and operational decisions in detail, with the latter 
being necessary to adequately value system flexibility in realistic systems. 

The primary purpose of this report is to present new capabilities that were developed for a 
particular CEM, NREL's Resource Planning Model (RPM), to better reflect the impact of 
variable wind and solar generation on system operations and resource adequacy, and, 
complementarily, to model energy-constrained flexibility resources. The additional variable 
generation modeling capabilities enable a more-accurate representation of the need for additional 
flexibility in systems with high penetrations of variable generation and, as a result, better reflect 
the value of technologies that can provide flexibility. We demonstrate the use of the new 
capabilities by examining the role of two broad technological sources of flexibility in power 
systems—utility-scale storage and interruptible load—and we model how they might contribute 
to a range of grid services for operations and planning. A wide range of different energy storage 
technologies is modeled, including multiple types of battery technologies. We also model 
interruptible load, a type of demand response that can be used to reduce demand, usually during 
peak hours, within pre-determined capacity and duration limits. 

The new capabilities use load duration curves from hourly data spanning a full year, thus 
enabling RPM to capture the impact of variable generation and the potential value of storage and 
interruptible load during infrequent, but important periods and hours within the year. The 
techniques enable RPM to accurately calculate the need for grid services and simultaneously 
consider, in its investment decision, the potential for storage and interruptible load to provide 
value to the system in multiple distinct ways: firm capacity for resource adequacy, operating 
reserve provision, energy arbitrage, and reductions in renewable curtailment. The ability of 
storage and interruptible load to lower system costs by providing these services, as well as the 
capital and implementation costs and other characteristics of the flexible technologies, are 
factored into RPM’s economic investment decisions. These new techniques adapted for RPM 
can also be implemented in other CEMs. 

Using these capabilities, we analyze deployment of storage and interruptible load in the Western 
Interconnection through 2030. Two distinct sets of underlying assumptions are modeled:  
baseline conditions that achieve about 32% renewable energy penetration by 2030 and higher 
renewable energy assumptions that lead to penetrations reaching about 40% in 2030. The 
scenario analysis is designed primarily to demonstrate new model capabilities, but it also 
includes initial estimates of the potential cost reductions and preferred storage and interruptible 
load configurations needed to achieve market deployment in the western United States. 

Key findings from our analysis include: 

http://www.nrel.gov/publications
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• Capacity expansion models can be formulated—in a computationally tractable form—to 
reflect the need for system flexibility and the potential for storage and interruptible load 
to fulfill those needs. 

• Under baseline scenarios of the Western Interconnection through 2030, interruptible load 
is found to be competitive and is deployed even when the annual costs approach the 
annualized capital costs of natural gas combustion turbines ($83 per kilowatt-year [kW-
yr]). 

• Interruptible load is deployed primarily to meet growing planning reserve requirements, 
thereby reducing the need for future natural gas combustion turbine capacity that is 
otherwise used for peaking needs, and also shifting renewable capacity from capacity-
constrained regions to those where the resource is more favorable. While resource 
adequacy needs are the principal drivers of interruptible load deployment, we find that in 
some regions, interruptible load is also deployed to meet spinning contingency reserve 
requirements. 

• Under scenarios with greater renewable energy, the higher amounts of renewable 
capacity reduces the need for new thermal or other firm capacity resources, resulting in 
less natural gas and interruptible load deployment. However, even under these conditions, 
interruptible load at the highest assumed annual cost levels that also remain below 
combustion turbine annualized capital costs are adopted in certain regions by 2030. 
Additional plant retirements beyond those assumed, possibly driven by greater renewable 
energy penetration or policies that support renewable adoption, might drive greater 
demand for firm capacity services than in the higher renewable scenarios modeled. 

• Under scenarios that assume storage cost and performance parameters developed from 
the DOE/EPRI 2013 Electricity Storage Handbook, new storage is not deployed in the 
Western Interconnection in the 2015–2030 timeframe. However, scenarios in which 
capital costs for battery storage technologies are 50% lower than the 2013 reported values 
do result in some modeled deployment of storage. It should be noted that RPM is unable 
to fully capture some of the values streams for storage technologies, including sub-hourly 
flexibility and potential intra-zonal congestion benefits. 

• If technology evolution leads to reductions in storage costs significantly below 2013 
estimated values (down to about $100/kWh), more-significant storage capacity is 
developed by the model, including over 8 gigawatts (GW) of new storage across the 
Western Interconnection by 2030. 

• The value of storage to the system varies greatly by region based on the needs of the 
regions, with value stacking being an important aspect of these installations. While firm 
capacity needs are found to be an important driver for new storage development, the 
ability of storage to contribute to other system needs (e.g., operating reserves) or lower 
system costs (e.g., energy-shifting) can also drive new storage deployment. This is clearly 
observed in situations when the least-expensive storage option (on a capacity basis) is 
passed over for a different option that offers greater overall value. 

o Storage deployment is strongest when firm capacity or reserves are needed by the 
system, and costs are competitive with alternative resources, including natural gas 
combustion turbines. 

http://www.nrel.gov/publications
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o Storage enables increased renewable penetration in regions with a high need for 
flexibility reserves, which grow with renewable penetrations. Additionally, 
energy shifting and curtailment reduction increase the value of energy storage in 
regions, such as California, with already high penetrations of variable generation. 

These findings are based on an initial modeling analysis using new methods. Additional research 
could help improve these methods and the data inputs used in RPM. Furthermore, the analysis 
does not consider the need for sub-hourly services or the associated value opportunities for 
flexibility options that could be used during these shorter timescales. In addition, while the 
methods use 8,760 hourly data, they rely on data from a single year (2006). A more robust 
assessment could include multiple years of data. Moreover, new energy policies that might be 
enacted in the future would change scenario results and alter the quantitative findings reported 
above. Finally, like many other similar models, RPM has certain limitations, including its 
system-wide approach that may not accurately reflect current market or institutional flexibility 
(or inflexibility) or the costs and value of flexibility from the perspective of developers, utilities, 
system operators, regulators, or others power sector participants. Nonetheless, our research 
demonstrates a new capability to begin to incorporate considerations of flexibility in large-scale 
capacity expansion models and provides initial estimates on the deployment potential for 
interruptible load and storage in the western United States. 
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1 Introduction 
Historical and anticipated growth in variable renewable electricity has led to increasing emphasis 
on power system flexibility. Flexibility is a measure of a system’s ability to change supply or 
demand as needed to accommodate variability and uncertainty at different time scales. Power 
system planners have always considered flexibility to accommodate load variability and 
uncertainty as well as unexpected generation and transmission outages. Increasing generation 
from variable renewable sources such as wind and solar add to this existing need. In this report, 
we describe new capabilities in the Resource Planning Model (RPM)1 to more comprehensively 
assess the need for and the associated value of flexibility (and the resources that can provide it) 
in regional power system planning, especially in the context of high penetrations of variable 
renewable generation. We then use RPM to assess—from a system optimization perspective—
deployment of two sources of system flexibility under a range of scenarios of the western United 
States: interruptible load and energy storage. 

Flexibility assessment has become an integral part of grid integration studies for renewables (GE 
Energy 2010; Lew et al. 2013; EnerNex Corporation 2011; Bloom et al. forthcoming; 
Venkataraman et al. 2010; E3 2014; GE Energy 2014; Brinkman et al. 2015). These studies use 
high-resolution models of grid operations (i.e., production cost models) to assess how the 
introduction of greater shares of variable renewable generation might affect production costs, 
emissions, and the mix of generated electricity. Covering a range of geographic areas, these 
detailed studies have generally found that increasing system flexibility can offer significant 
system benefits by reducing production costs, emissions, and renewable curtailment. 

The modeling methodologies of large-scale renewable integration studies have also been used to 
conduct more targeted system flexibility research. In these studies, the flexibility of a system is 
incrementally altered—for example, by changing thermal plant configurations (e.g., minimum 
generation points and ramp rates), or adding direct energy storage technologies, concentrating 
solar power with thermal energy storage, or demand response—and differences driven by these 
incremental changes are evaluated to discern the operational impact of flexibility (Black and 
Strbac 2006; Palchak and Denholm 2014; Zucker, Hinchliffe, and Spisto 2013; P. Denholm et al. 
2013; Jorgenson et al. 2013; Denholm et al. 2015; Hummon et al. 2013). Furthermore, these 
increments are often applied to systems with different pre-defined amounts of variable 
generation (VG) such that the marginal value of flexibility can be analyzed as a function of 
VG penetration.  

Other operational approaches have been used to research power system flexibility. These include 
“price taker” models that can be used for revenue analysis of a candidate option under historical 
or simulated conditions (Graves, Jenkin, and Murphy 1999; Denholm and Sioshansi 2009; 
Drury, Denholm, and Sioshansi 2011).2 More sophisticated approaches exist and include 
stochastic production cost models (e.g., Hargreaves et al. 2015).  

All of these methods measure the operational value of flexibility options. Production cost 
models in particular capture a great amount of hourly and sub-hourly detail by determining unit 
                                                 
1 For more information about RPM, see Mai et al. (2015) and www.nrel.gov/analysis/models_rpm.html.  
2 As opposed to production cost simulations that take a system-wide optimization approach. 
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commitment and economic dispatch, often co-optimized with operating reserves, as a function of 
fuel costs, variable operation and maintenance (O&M) costs, startup costs, and detailed 
operational constraints (e.g., generator minimum generation and ramp rates, transmission 
constraints, and reserve requirements). However, production cost modeling has certain important 
limitations. First, while operational costs are used to inform commitment and dispatch decisions 
in production cost simulations, fixed costs (e.g., capital and fixed O&M costs)—which make up 
the predominant share of costs for many flexibility options—are not. No direct comparison of 
cost versus value is made in production cost models. Second, flexibility options can offer non-
operational value to the system that is not captured in production cost models. For example, 
storage and demand response can have sizeable capacity value, which would need to be analyzed 
separately from the grid simulations.3 Third, the approach does not directly compare multiple 
options simultaneously and does not find the least-cost flexibility provider. Finally, production 
cost models rely on predetermined portfolios that do not take into account path dependencies. 
Systems are likely to evolve differently depending on the amount of, need for, and availability of 
flexibility, and the production cost modeling methods used in many valuation studies do not 
directly consider these interactions.  

In this study, we evaluate flexible technologies with a different class of model, the capacity 
expansion model (CEM), which typically determines the evolution of a power system subject to 
initial conditions, technology availability and costs, and select operational constraints. The key 
outputs from CEMs are the amounts and locations of various technologies to meet future system 
needs for capacity, energy, and policy compliance. They can be used to study the co-deployment 
of technologies like variable generation and storage. The value of variable generation could 
depend on system flexibility (including storage availability), and conversely, the value of storage 
could depend on the level of variable generation. While having a broader scope than production 
cost models, CEMs typically have more limited operational detail (Sullivan, Eurek, and Margolis 
2014). Existing CEMs often implicitly or explicitly include some representations of flexibility—
both the need for, and the potential supply of, flexibility (e.g., Ma et al. 2013; Johnston et al. 
2013; Short et al. 2011; EPRI 2014)—however, the computational complexity needed to 
simulate investment decisions necessitates simplifications that make it difficult to fully capture 
operational flexibility needs and contributions. Thus, we improve these prior methods and the 
present report describes our approach. 

In addition to research on production cost and capacity expansion models, related research exists 
on assessing the amount of flexibility in various generation portfolios. For example, Mills and 
Seel (2015) use a “screening-level flexibility inventory” based on methodology developed by 
IEA (2011) to characterize flexibility in four distinct timescales for portfolios developed in 
recent integrated resource plans for utilities and regions in the western United States. In another 
example, Mills and Wiser (2014) present a model to evaluate the long-run economic value of VG 
and how this value might be impacted by the introduction of mitigation options. They also 
examine the economic attractiveness of the mitigation options themselves. Others have 
developed new metrics to evaluate the operational flexibility of different portfolios (e.g., 
Lannoye, Flynn, and O’Malley 2012; Ma et al. 2013).  

                                                 
3 On the other hand, for systems that are long on capacity, the capacity value of a candidate option might be 
less important. 
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In this report, we describe a new approach developed for and implemented in NREL’s Resource 
Planning Model (RPM) to better reflect (1) the impact of variable generation on system 
operations and resource adequacy, and (2) the potential value of additional flexibility. The 
methods described could be adopted in other CEMS. Using these capabilities, we analyze two 
distinct flexibility investment options—storage and interruptible load—in the western United 
States through 2030. While the assessment is not comprehensive either technologically or 
geographically, it highlights potential opportunities for flexibility in power systems, particularly 
as the share of renewables grows. It also identifies the degree of cost reductions, and the desired 
configurations of storage and interruptible load, that would be needed to achieve significant 
deployment levels at the utility scale in the western United States.  

The report is organized as follows. Section 2 briefly describes RPM and summarizes the key 
electric sector assumptions used in the analysis. It also describes how RPM captures the need for 
system flexibility, particularly at higher renewable penetrations, and the potential value of 
increasing flexibility. Appendix A provides detail on these methods, and (Mai, Barrows, et al. 
2015) includes other model details. We describe our model characterization for interruptible load 
and storage in Section 3; Appendix B and Appendix C provide details. The scenario framework 
for this initial analysis is described in Section 4, with results following in Section 5. We conclude 
in Section 6 with key findings and potential future research.  

2 The Resource Planning Model 
NREL’s Resource Planning Model (RPM) is a recently developed capacity expansion model 
designed to investigate the evolution of a regional power system such as a utility service 
territory, state, or balancing authority area (BA). RPM co-optimizes new generation, 
transmission expansion, and dispatch over time in five-year increments beginning in 2010 and 
continuing to 2030. The least-cost optimization algorithm minimizes overall system cost, 
including capital costs, fixed and variable operations and maintenance (O&M) costs, and fuel 
costs. The model has high spatial resolution, representing individual generation units for a select 
subset of units; solar and wind resources are represented using geographic areas, each with 
similar production characteristics. RPM models hourly dispatch for a representative sample of 
days throughout a year. Each hourly step balances generation with load, maintains the required 
amount of reserve capacity, and remains within operational constraints for individual generators 
and transmission paths. (Mai, Barrows, et al. 2015) provide a thorough description of RPM.  

In this section, we summarize some essential aspects of the model, including the spatial 
configuration and initial conditions used for this analysis (Section 2.1), major input assumptions 
related to investment decisions (Section 2.2), and dispatch modeling (Section 2.3). Section 2.3 
includes an overview of our basic dispatch model and recently developed methods that augment 
the dispatch and reserve constraints to better capture the need for and value of system flexibility.  
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2.1 Spatial Structure and Initial Conditions 
RPM models a single interconnection at a time. This study focuses on the Western 
Interconnection electricity system, which includes all or parts of 13 states in the western United 
States, two western provinces in Canada, and a small region of northern Mexico. This 
geographic boundary comprises 36 model BAs, which are the primary regional units in RPM.4 
Embedded within this zonal structure, the model has a “focus region,” within which generation 
units, transmission lines, and loads are represented with a high level of detail. Within this region, 
the optimization is carried out nodally, while the remaining regions are treated zonally to capture 
power transfers into and out of the focus region and between connected BAs. For this analysis, 
the focus region is comprised of only one BA, the Sacramento Municipal Utility District 
(SMUD) – we refer to this SMUD-focused version of RPM as RPM-SMUD.5 This choice of a 
SMUD-only focus region reduces computational run times while still retaining the combined 
zonal-nodal structure of the model. This paper is mostly focused on new methodologies, so most 
results in the analysis are presented at the full interconnection-wide level or for select groups of 
BAs. Therefore, the choice of focus region would not likely have a significant impact on these 
model results.6 Figure 1 shows the combined zonal and nodal structure of RPM with the SMUD 
focus region.7  

RPM also includes additional spatial layers to represent renewable resources. RPM-SMUD 
includes 615 solar and 106 wind resource areas in the Western Interconnection to describe the 
location-specific resource potential (developable area after accounting for various land use 
exclusions), performance (annual and hourly capacity factors), and grid interconnection distances 
(to substations, transmission nodes, load nodes).8 In general, resource regions are defined 
dynamically for each version of RPM as distinguished by the focus region selected for an 
analysis, with more resource regions defined within the particular focus region being studied. 
This ensures that the region of interest is represented with the highest resolution possible. 

                                                 
4 Model BAs are closely, although not perfectly, aligned with real BAs as designated in the data used in WWSIS 
Phase 2 (Lew et al. 2013). Similar to the WWSIS Phase 2 modeling, three of the smaller BAs, GCPD, CHPD, and 
DOPD have been combined with BPA in RPM. 
5 In actuality, this BA corresponds to the Balancing Area of Northern California (BANC). We retain the misnomer 
(which derives from the WECC TEPPC 2020 Data Set) for consistency with other work. The misnomer is corrected 
in the WECC TEPPC 2024 Data Set. 
6 Future analysis could use the established methodology to evaluate the potential for flexibility options within a 
region (i.e., at the nodal level for a focus region of interest comprised of one or more BAs). 
7 Full and abbreviated names for the 36 model BAs include: Alberta Electric System Operator (AESO), Arizona 
Public Service (APS), Avista (AVA), British Columbia Transmission Corporation (BCTC), Bonneville Power 
Administration (BPA), Comision Federal de Electricidad (CFE), El Paso Electric Company (EPE), Far East 
(FAR_EAST), Imperial Irrigation District (IID), Los Angeles Department of Water and Power (LDWP), Magic 
Valley (MAGIC_VLY), Nevada Power (NEVP), Northwestern Montana (NWMT), Pacificorp East Idaho 
(PACE_ID), Pacificorp East Utah (PACE_UT), Pacificorp East Wyoming (PACE_WY), Pacificorp West (PACW), 
Pacific Gas and Electric Bay Area (PG&E_BAY), Pacific Gas and Electric Valley Area (PG&E_VLY), Portland 
General Electric (PGN), Public Service Colorado (PSC), Puget Sound Energy (PSE), Southern California Edison 
(SCE), Seattle City Light (SCL), San Diego Gas and Electric (SDGE), Sacramento Municipal District (SMUD), 
Sierra Pacific Power (SPP), Salt River Project (SRP), Tucson Electric Power (TEP), Turlock Irrigation District 
(TIDC), Tacoma Power (TPWR), Treasure Valley (TREAS_VLY), Western Area Power Administration 
Colorado/Missouri (WACM), and Western Area Power Administration Upper Missouri (WAUW). 
8 There are 22 solar regions and 1 wind resource region within the SMUD focus region. 
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Underlying data for the start-year (2010) power system infrastructure are from the Western Wind 
and Solar Integration Study (WWSIS) Phase 2 (Lew et al. 2013).9 

Table 1 presents the start-year capacity for the technologies modeled in RPM. It also presents the 
amount of capacity added or under construction since 2010 (Ventyx 2010; NREL SolarPACES 
2014)10 and retirements prescribed exogenously to the model (WECC 2014b; Saha 2013).11 
Beyond prescribed new capacity, endogenous investment decisions for the type, amount, and 
location of new capacity are based on the needs of the system, policies, and economic factors. 

                                                 
9 WWSIS Phase 2 relied on data from the WECC Transmission Expansion Planning Policy Committee (TEPPC) 
2020 Common Case (WECC 2012) with updates from the TEPPC 2022 Common Case (WECC 2014b) along with 
other revisions as described in (Lew et al. 2013). 
10 Under-construction capacity includes capacity installed since 2010 and capacity that is currently under 
construction (WECC 2014b). A majority of this new capacity is “prescribed” to occur by the 2015 solve year. 
11 Retired capacity represents any plants that have retired since 2010 and any announced retirements. We 
supplement the (WECC 2014b) and Saha 2013 retirements with those found in recent utility planning documents 
(SCE 2013; PNM 2013; SCPPA 2014; Randazzo 2014; NV Energy 2014; El Paso Electric Company 2012) and the 
Navajo Generating Station. Prescribed retirements occur over many years but are concentrated in the 2015 and 2020 
solve years. We also enable endogenous “economic” retirements based on a lower bound on the capacity factor of 
generators. Currently only coal is allowed to retire endogenously, with a lower capacity factor bound set at 7%.  
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Figure 1. Combined nodal and zonal spatial structure of the Resource Planning Model with a 

Sacramento Municipal Utility District (SMUD) focus region 
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Table 1. Start Year (2010), Prescribed, and Retiring Capacity in NREL’s Resource Planning Model 

  Western Interconnection  SMUD Focus Region 

Generator Typea 

 2010 
Capacity 

(MW) 
Planned 

Capacity (MW) 
Retirements 

(MW) 

 2010 
Capacity 

(MW) 
Planned 

Capacity (MW) 
Retirements 

(MW) 

Coal  38,818 405 8,884  - - - 

NGCC  48,505 1,941 269  1,399 - - 

NGCT  16,659 3,736 1,650  374 49 - 

NG-Other  23,423 8 14,985  100 - - 

Nuclear  9,681 - 2,246  - - - 

Biomass  1,559 76 40  18 - - 

Geothermal  3,054 35 -  - - - 

Hydropower  69,989 103 -  2,497 - - 

PHES  3,787 40 -  - - - 

Utility PVb  74 2,653 -  - 103 - 

Rooftop PVb,c  1,096 29,370 -  32 498 - 

CSP  354 1,887 -  - - - 

Wind  10,172 6,621 -  - - - 

Total  227,174 46,875 28,074  4,420 651 - 
a Technology category acronyms: NGCC = natural gas-fired combined cycle, NGCT = natural gas-
fired combustion turbines, PHES = pumped hydropower energy storage, PV = photovoltaic, and 
CSP = concentrating solar power.  
b All PV capacities are listed in MW-AC. The model uses the inverter loading ration from PVWatts 5 
of 1.1. 
c Rooftop PV capacity is exogenously input based on a scenario from the NREL dSolar model 
(Sigrin et al. 2016). 

2.2 Modeling Investment Decisions 
Starting from the 2010 initial conditions, RPM finds the least-cost capacity expansion solution in 
five-year increments through 2030. This is accomplished by matching new builds to system 
needs identified exogenously based on potential growth in annual electricity consumption, peak 
demand, planned retirements and capacity additions, and reserve requirements. In addition, 
policy requirements such as state renewable portfolio standards may result in demand for new 
capacity. Economic factors and assumptions inform the least-cost solution found by the model. 
We describe some of the essential assumptions related to RPM’s investment decision-making in 
this section but refer readers to (Mai, Barrows, et al. 2015) for details.  

Load growth assumptions are based on data from WECC (2014a), where we assume constant 
annual demand growth rates for each BA based on the average of estimated annual load growth 
between 2010 and 2016. As a result, the annual load growth rate between 2010 and 2030 is 0.9% 
per year for the entire interconnection, but there is a good deal of diversity in individual BA 
growth rates. Hourly demand (and wind and solar) profiles are based on 2006 meteorology for 
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all years (Lew et al. 2013). Exogenous retirements and prescribed capacity are described in 
Section 2.1.  

We include many of the major existing federal and state power sector policies as of January 1, 
2016. These include the extensions of federal renewable tax credits that are part of the 
Consolidated Appropriations Act of 2016,recent changes to state renewable portfolio standards 
(RPS), and the U.S. Environmental Protection Agency’s Clean Power Plan.12 We notably 
exclude California’s storage mandate and carbon cap and trade program (de Leon, Williams, and 
Leno 2015; California PUC 2013; California Air Resources Board 2014). Existing demand 
response programs or local incentives are also excluded in our analysis. These omissions could 
have an impact on model estimates of future capacity, generation, and emissions, but as the 
current analysis is focused on methodological representation of flexibility needs and economic 
investment in flexibility options, these policy omissions likely have little impact on the findings 
of this report. In addition, our analysis is not intended as a direct analysis of any particular 
energy policy, and none of the scenarios represent predictions of the future. 

Table 2 shows the assumed technology costs and performance used in our analysis.13 Data for 
new natural gas-fired, wind, and solar capacity are consistent with those found in the National 
Renewable Energy Laboratory’s 2015 Annual Technology Baseline central case (Blair et al. 
2015).14 Fuel prices are from the Energy Information Administration’s Annual Energy Outlook 
2015 Reference case (EIA 2015). While significant uncertainties exist for future technology cost 
and performance, we do not conduct a sensitivity analysis as part of this study, again, due to the 
study’s methodological nature. RPM also includes financing assumptions that differ between 
technologies to account for construction periods, accelerated tax depreciation rules, and 
tax credits.15 Transmission expansion is also allowed, however only along existing corridors. 

In addition to our core set of scenarios, which use the assumptions shown in Table 2, we 
simulate a set of sensitivity scenarios (Section 4) with higher natural gas prices and a carbon 
price. In these cases, natural gas prices are derived from the EIA’s Annual Energy Outlook 2014 
Low Oil & Gas Resource case, which estimates delivered natural gas prices to be $ 5.43/MMBtu 
and $ 8.20/MMBtu in 2020 and 2030, respectively (EIA 2014). Carbon prices are based on a 
median across non-zero prices used in multiple integrated resource plans collected in Lawrence 

                                                 
12 For all scenarios presented, we model Clean Power Plan compliance as a mass-based policy for all states and full 
credit trading between states. This simplified assumption is not meant to assume that states will choose such a 
policy, but merely to demonstrate a reasonable implementation of this policy. RPM has the capability to model other 
compliance variants, including more restrictive trading and rate-based policies, but these variants were not included 
in the present analysis.  
13 RPM allows new nuclear capacity to be built starting in 2025, using cost and performance estimates from Blair et 
al. (2015). This is restricted to those locations in which nuclear facilities were operating in 2010. However, we find 
that in no scenario does the model choose to build nuclear facilities. 
14 Real 2010 dollars are used throughout this report unless otherwise noted. 
15 RPM uses technology-specific fixed charge rates. Fixed charge rates for NG-CC and NG-CT are 0.117 and 0.111, 
respectively, for all years. Assumed fixed charge rates for wind and solar PV consider the impact of changing tax 
credits consistent with federal tax policies as of January 1, 2016 (Mai et al. 2016) and their impact on cost of capital 
(Mai, Cole, et al. 2015). For wind this leads to a fixed charge rate of 0.0993 in 2015, declining to 0.0975 in 2030. 
Fixed charge rates for solar are 0.062 in 2015 and 2020; 0.074 in 2025; and 0.084 in 2030. These fixed charge rates 
are used to calculate amortized capital over 20 years using a nominal weighted average cost of capital of 8.1%.  
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Berkeley National Laboratory’s Resource Planning Portal.16 Assumed carbon prices in these 
scenarios grow over time and are $16.06/metric ton CO2 in 2020 and $33.02/metric ton CO2 in 
2030, and are applied uniformly across all of WECC. These scenarios and assumptions are 
designed to evaluate higher renewable growth as is common in utility planning. The assumptions 
reflect a proxy for a number of potential future energy policies or market conditions only and 
should not be interpreted as a policy recommendation or prediction.   

                                                 
16 See resourceplanningportal.lbl.gov. 

http://resourceplanningportal.lbl.gov/
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Table 2. Technology Cost and Performance Assumptions for New Generation Capacity 

 2015 2020 2025 2030 

Overnight Capital Costs (2010$/kW)a,b,c     

Natural Gas-Combined Cycle 900 890 880 860 

Natural Gas-Combustion Turbine 770 750 740 720 

Wind (best resource class) 1,530 1,480 1,440 1,430 

Wind (worst resource class) 1,650 1,630 1,620 1,620 

PV Fixed-Tilt 1,740 1,410 1,160 910 

PV Single-Axis Tracking 1,830 1,510 1,260 1,010 

Fixed O&M (2010$/kW-yr)     

Natural Gas-Combined Cycle 13 13 13 13 

Natural Gas-Combustion Turbine 7 7 7 7 

Wind (all classes) 47 46 45 44 

PV (all) 15 8 8 8 

Variable O&M (2010$/MWh)     

Natural Gas-Combined Cycle 3 3 3 3 

Natural Gas-Combustion Turbine 12 12 12 12 

Wind (all classes) 0 0 0 0 

PV (all) 0 0 0 0 

Heat Rate (MMBtu/MWh)     

Natural Gas-Combined Cycle 6.68 6.62 6.57 6.57 

Natural Gas-Combustion Turbine 10.0 9.76 9.50 9.50 

Fuel Cost (2010$/MMBtu)     

Natural Gas 4.38 5.43 6.91 8.20 

Capacity Factor (%)a,c     

Wind (best resource class) 52% 54% 55% 56% 

Wind (worst resource class) 33% 35% 36% 37% 

PV Fixed-Tilt 12–22% 12–22% 12–22% 12–22% 

PV Single-Axis Tracking 14–28% 14–28% 14–28% 14–28% 

This table represents those technologies installed by the model. Nuclear builds were allowed, but never 
realized, and new coal plants were not allowed. 

a PV capacity is represented in DC terms. PV capacity factor reflects AC output over DC capacity. 
AC capacity and output are used for all other technologies.  
b PV refers to utility PV only; rooftop PV performance characteristics are from the dSolar model 
(Sigrin et al. 2016) and the costs are not presented here nor included in RPM’s system cost 
estimates.  
c Wind resource classes represent different turbine technologies and rotor sizes, based on 
assumptions from the 2015 Annual Technology Baseline.  
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2.3 Modeling System Operations and Flexibility 
RPM’s model results are primarily aimed at informing potential future infrastructure 
deployment; however, the model necessarily includes dispatch modeling to inform the 
economics of different generation options. In other words, dispatch and investment decisions are 
inextricably linked in the RPM optimization to capture changes in cost (and value) of individual 
assets, both new and existing.17 RPM uses an hourly chronological dispatch algorithm that is 
similar to, but reduced from, the algorithms used in production cost models. One key difference 
is that RPM does not model all hours of the year; this has important implications for how the 
need for and value of system flexibility are captured. The limited number of hours within the 
dispatch periods in RPM’s optimization is the primary reason additional methods have been 
developed (Section 2.3.2) to better capture system flexibility.  

More specifically, RPM models four dispatch periods within each model year optimization. The 
dispatch periods (Low, Mid, High, and Peak) are named according to the amount of electricity 
consumption in each period.18 Each dispatch period includes 24 hours,19 with each hour 
weighted by how many hours in the year it represents for the purpose of accurate annual 
accounting. Furthermore, wind, solar, and load profiles are also scaled so that annual quantities 
(e.g., annual energy production and consumption) are retained. These measures to ensure 
accurate annual economics are generally carried through the entire model, applying for example 
to variable costs. This approach balances the model so that it can capture both seasonal, diurnal, 
and hourly variations in electricity supply and demand (which are important for valuing 
operational flexibility needs) as well as longer-term annual values needed to inform investment 
decisions. This approach does this all while managing the computational tractability challenges 
of detailed operational modeling (e.g., modeling dispatch decisions over all 8,760 hours in a 
year).  

Figure 2 shows how the reduced dispatch periods in RPM compare with the full hourly data set. 
It shows the 2010 aggregate Western Interconnection load duration curve (LDC) at hourly 
resolution compared to the down-selected and scaled representation. Although the model 
dispatch period structure does well in capturing the general shape of the LDC, it is clear from 
Figure 2 that some of the important features of the LDC’s high and low regions are missing. In 
fact, it is often during these times that flexibility is most desired. Figure 2 also shows net load 
duration curves (NLDCs)—defined as the sorted hourly load minus VG production—for the 
same system with 40% annual generation-based VG penetration for both the raw hourly data as 
well as the sampled and scaled hours used in the model.20 As illustrated in Figure 2, differences 

                                                 
17 For example, the capacity factors for thermal power plants are the product of multiple model decision variables 
rather than predefined quantities. 
18 (Mai, Barrows, et al. 2015; Getman et al. 2015) describe the methods used to select these days within a dispatch 
period. 
19 We use 2006 meteorological data for wind, solar, and electricity consumption profiles. For each dispatch period, 
the same 24 sequential hours are selected for wind, solar, and load profiles. For all but the Peak period, those 24 
hours are actually the average of a full week, to avoid putting undue weight on any particular day of the week. Using 
24 hours for each of four dispatch periods yield 96 total dispatch hours modeled in this configuration of RPM. 
20 De Sisternes and Webster (2013) introduce an approximation method where model weeks are sampled based on 
NLDCs. This method could potentially improve the dispatch representation within RPM; however, it would require 
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between the full hourly data set and the limited sampling in RPM are even greater when VG is 
considered, particularly on the low and high ends of the NLDCs where flexibility is likely to be 
most valuable. The inability of the sampled LDC to fully capture flexibility needs as a result of 
these differences is the motivation behind the new methods presented in Section 2.3.2, which 
utilize instead the full aggregated LDC.  

 
Figure 2. Comparison of 8,760 hourly and RPM 96-hour sampled load duration curves (LDCs) (left) 

and net load duration curves (NLDCs) (right) for the 2010 Western Interconnection for an 
illustrative 40% VG scenario  

This load duration curve methodology is applied for each of five planning reserve regions based 
on the North American Electric Reliability Corporation (NERC) sub-regions (Figure 3), 
including California/Mexico (CAMX), Northwest Power Pool Canada (NWPP-CA), Northwest 
Power Pool United States (NWPP-US), Rocky Mountain Power Pool (RMPP),21 and Southwest 
Reserve Sharing Group (SRSG).These planning reserve regions have their own capacity 
requirements in the model. We chose to calculate the LDC and NLDC at the level of NERC sub-
region due to this planning reserve requirement and in order to capture the variability in both 
load and renewables profiles between the regions.  

                                                                                                                                                             
dynamically changing the dispatch periods (and likely other related data) in between model years. This capability is 
not available in the current version of the model. 
21 RMPP is also referred to as the Rocky Mountain Reserve Group (RMRG), which is the official NERC sub-region 
name; however we use the RMPP abbreviation in RPM and throughout the remainder of the report. 



 

13 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 3. Western U.S. NERC sub-regions used for RPM planning reserve regions (NERC 2015a)22 

2.3.1 Co-Optimization of Operations and Investments 
Within each dispatch period, RPM’s energy balance equations ensure that supply and demand 
match in each hour for every node and zone. These equalities account for imports, exports, 
transmission losses, storage losses, and renewable curtailment. In addition, RPM endogenously 
co-optimizes energy and reserves. Operating reserves include frequency regulation, spinning 
contingency reserves, and renewable forecast error reserves. These reserves are referred to as 
regulation, spinning, and flexibility reserves, respectively, for the remainder of this report. We 
only model reserves in the “up” direction.23 Reserve provision is restricted by generator-specific 
ramp rates and the timescale of the different reserve products. As is common in production cost 
simulations, we model the need to hold reserve capacity available but do not model reserve 
events (e.g., contingency events) or operations explicitly.  

Renewable curtailment is a decision variable in the model within the optimal dispatch algorithm, 
but it is constrained by and interactive with the other constrained variables and parameters. In 
RPM and in real system operations, local curtailment can be caused by transmission limits or by 
generator inflexibility. We also constrain curtailment on an hourly basis to not exceed the 
amount of available renewable energy during that hour.24 In addition to this upper limit on 
hourly curtailment, we apply a lower limit on annual curtailment, allowing the model to choose 
when this curtailment occurs during the four dispatch periods. The lower limit is based on system 
conditions outside of the model dispatch periods, particularly during low net load period hours 
where curtailment is expected to occur. Section 2.3.2 describes our new method for calculating 
this lower limit. Finally, we use this methodology to model curtailment of both the existing 
renewable capacity and, more importantly, the marginal curtailment of potential new renewable 
energy to inform investment decisions. 

                                                 
22 This information from the North American Electric Reliability Corporation’s website is the property of the North 
American Electric Reliability Corporation and is available at 
http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2015_Summer_Reliability_Assessment.pdf. 
This content may not be reproduced in whole or any part without the prior express written permission of the North 
American Electric Reliability Corporation. 
23 We only model up reserves for several reasons. First, simulations from production cost models frequently show 
much lower costs for down reserves; oftentimes there is zero cost for providing these products. Additionally, a least-
cost model will preferentially have more units at maximum capacity, such that down reserve constraints are typically 
non-binding. And finally, our model does not in most cases have minimum generation levels, making it even more 
likely that down reserves would be non-binding. 
24 We allow curtailment of utility-scale PV, CSP without thermal energy storage, wind, and fixed-dispatch hydro 
(e.g., run of river facilities). We recognize that curtailment can be strongly influenced by market rules and other 
local factors that are not easily modeled. Therefore, our analysis and reporting does not focus on differential 
curtailment, for example between wind and solar; however our methods do differentiate between technologies. 



 

14 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Relatedly, the capacity value assigned to new investments when evaluating the planning reserves 
constraint is another aspect of the model in which operational considerations and investment 
decisions interact. For fully dispatchable resources (e.g., gas capacity), full nameplate capacity is 
assumed. However, the capacity value of variable generators depends on the time-varying and 
system-dependent correlation between hourly production and peak net load hours. Conceptually 
and based on our approximate capacity value method, VG capacity value is estimated based on 
the upper end of the NLDC as it evolves through time – this is explained in greater detail in 
Section 2.3.2.  

Other model configurations used for the analysis include linear representation of generators, a 
pipe-flow transmission representation, and must-run coal25 and nuclear plants. Details about 
these configurations can be found in (Mai, Barrows, et al. 2015), which finds that model capacity 
expansion outcomes are generally insensitive to many of these configurations. 

2.3.2 Net Load Duration Curve-Based Flexibility Adjustments 
RPM’s dispatch algorithm captures some of the impacts that increasing VG deployment would 
have on systems operations, and some of the more significant sources of operational value for 
flexibility options. These value opportunities include operating reserve provision, energy 
arbitrage, and reduction in renewable curtailment.26 Operational costs of flexibility provision are 
also modeled, including efficiency losses and variable costs. However, optimal dispatch in RPM 
is restricted to a limited number of hours in the year and so does not fully capture the impact of 
VG integration and value of flexibility during all hours. In this section, we describe our method 
of estimating the capacity value of VG27 and a new method that better captures VG curtailment. 
Appendix A provides details on these methods. 

Estimating Capacity Value 
To capture a more complete range of variability in system operation, we use the LDC and NLDC 
to capture the tail events, which are not fully represented in RPM’s dispatch of sampled hours. 
The LDC reflects the sorted hourly demand over all hours in the year. We define the NLDC as 
the sorted hourly demand net of variable generation. Additionally, for new capacity an 
incremental load duration curve (ILDC) is calculated independently for each type of potential 
incremental VG technology installed in each region in which the model could build a resource. 
The ILDC reflects the NLDC, but it is perturbed by an additional incremental amount of VG, 
storage, or interruptible load that the model might build, and sorted after the perturbation. 
Capacity value of renewable resources is estimated by accounting for their average ability to 
contribute to the capacity needs of the system during the top 100 hours of the year28 

                                                 
25 We assume all large coal-fired units over 300 MW in the focus region and over 550 MW elsewhere are operating 
during all modeled hours. 
26 To be more precise, renewable curtailment reduction is a form of energy shifting or arbitrage where an increase in 
low- or zero- variable cost renewable energy production in low-demand times replaces production from higher-
variable cost sources at high demand times.  
27 This method is consistent with the method used in Mai et al. (2015) but refined for VG and extended to apply to 
storage and interruptible load. 
28 These top hours are calculated separately for each LDC, NLDC, and ILDC, such that the hours under 
consideration may actually shift between the various load duration curves. This allows us to consider changing net 
load shapes, as for example increased solar power moves the peak hours of a day from the afternoon to evening.  
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Capacity value is estimated for the aggregate existing VG fleet, as well as marginal values for 
potential new VG capacity—separately by technology and for each region—considered. This is 
calculated on a per-MW basis using the difference in duration curves. For calculating existing 
VG capacity value, differences between the LDC and NLDC are used, whereas for calculating 
marginal capacity value, differences between the NLDC and ILDC yield the appropriate capacity 
value estimate. For example, the capacity value of the existing VG resources is calculated as: 

𝐶𝐶𝐶𝐶 =
∑ 𝐿𝐿𝐿𝐿𝐶𝐶ℎ − 𝑁𝑁𝐿𝐿𝐿𝐿𝐶𝐶ℎ𝑁𝑁
ℎ=1

𝑁𝑁 ∙ 𝐶𝐶
 

where CV is the capacity value; N is the number of peak hours (100 in this case); LDC and 
NLDC are the load duration and net load duration curves, respectively; and C is the installed 
capacity of the resource. The marginal capacity value of a potential resource is calculated 
similarly but using NLDC – ILDC in the numerator and an assumed amount of incremental 
capacity C in the denominator. Throughout this work, the assumed increment is 500 MW.  

A graphical representation of this method is shown in Figure 4. More robust methods can be 
used to estimate capacity value; however, this method has been demonstrated to be an effective 
approximation (Madaeni, Denholm, and Sioshansi 2012). 

 
Figure 4. Conceptual depiction of the NLDC-based capacity value estimation method 

This method estimates the capacity value of the existing VG fleet collectively at a given point in 
time. For example, during each solve period, the aggregate output profile29 of all VG capacity 
installed to that point is used to derive the NLDC, which in turn is used to estimate the average 
capacity value of this existing VG fleet. This aggregate capacity value, along with the nameplate 
capacity of the non-VG units, peak demand, and the planning reserve margin, are used to 
estimate any additional firm capacity needs of the system. Marginal capacity value is similarly 

                                                 
29 We estimate capacity value for each reserve-sharing group separately. For this purpose, we assume five reserve-
sharing groups in the Western Interconnection, comprised of five NERC sub-regions. We assume contracts for firm 
capacity are possible between the reserve-sharing groups. 
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calculated for each wind and solar technology in each resource region. If the planning reserve 
constraint is binding, these marginal capacity values can influence the type, location, and amount 
of VG deployed. All else being equal, the optimization would choose the technology and region 
with the highest marginal capacity value. This method ensures that estimated—average and 
marginal—capacity values change with a changing system. Figure 5 shows estimated capacity 
values from an example RPM run for those technologies currently existing or installed by the 
model in that year. In this scenario, the estimated average VG capacity value declines over time 
primarily as a result of greater reliance on wind generation, which typically has lower capacity 
value than solar. It also shows slightly declining marginal capacity value for solar as a result of 
net peak hours shifting away from peak solar output hours. 

 
Figure 5. Marginal and existing capacity value from utility-scale solar and wind by year from an 

example of an RPM scenario that reaches 40% VG penetration by 2030 

The box-and-whiskers plots show quartiles including medians. Outliers are shown with black dots. 
These ranges reflect the capacity that was installed in a given year for the example scenario. 
Greater ranges would be expected in plots of all possible wind and solar builds. The existing 
capacity value is an average of all wind, solar, and fixed-dispatch hydropower.  
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Estimating Curtailment 
The method for estimating curtailment is similar to the capacity value method in that it utilizes 
load duration curves to capture the hourly variability of the system over an entire year. However, 
it focuses instead on the lower tail of the curve, and it is complicated by the need for an effective 
system minimum generation level below which the system must curtail energy.30 Figure 6 
depicts the methodology for calculating curtailment. The effective minimum generation line 
represents the limit of the system’s flexibility to de-commit generators. It must be evaluated for a 
particular system, and it will change as the system’s generator fleet changes and as the 
penetration of variable generation increases. While curtailment can occur in higher load hours, 
particularly due to forecast errors, this methodology is focused on capturing curtailment from 
system flexibility constraints and better representing the impacts of a more flexible system. 

 
Figure 6. Conceptual depiction of the NLDC-based minimum curtailment estimation method 

To implement this curtailment method, we generated a regression model for the effective 
minimum generation of each NERC sub-region as a function of variable generation capacities. 
This regression is calculated using production cost model results from two WECC-wide studies 
(Lew et al. 2013; Brinkman et al. 2015), which are used as training data for the regression. This 
method of calculating the effective min-gen does not explicitly account for transmission between 
regions, nor does it account for upgrades in the transmission network that the model might build. 
However, transmission between regions is implicitly accounted for due to the transmission flows 
in the training data from the production cost simulations. The regression methodology and results 
are described in detail in Appendix A.  

Once the effective “min-gen” level is determined, the total curtailment of all existing variable 
generation is calculated as the area underneath the effective min-gen level and above the NLDC. 
The marginal curtailment is calculated using the incremental area between the effective min-gen 
line, the ILDC, and the NLDC. Figure 7 shows the existing and marginal curtailment fractions, 
                                                 
30 The minimum generation capabilities of a system are influenced by the flexibility of the system, including 
physical minimum generation levels, commitment statuses of generators, transmission congestion, and ramping 
capabilities. The duration curve-based method does not contain commitment decisions, and so is unable to fully 
capture the actual minimum generation capability of a system. 
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curtailed VG energy over available VG energy, installed in the system for each model solve year 
for an example scenario with 40% variable generation penetration in 2030. Only utility-scale 
resources are allowed to be curtailed (i.e., utility-scale PV, CSP without storage, wind, and fixed-
dispatch hydro). Rooftop PV is not included in the curtailment calculation, which is consistent 
with current practices in the western United States, however these resources are incorporated into 
the load duration curves so their energy provision is accounted for. In this example, we observe 
curtailment fractions of less than 5% through 2025, but significantly higher marginal curtailment 
rates in 2030 due to growing renewable penetrations. This nonlinear behavior is consistent with 
other studies (e.g., Palchak and Denholm 2014). 

 
Figure 7. Existing and marginal curtailment fractions for variable resources installed in RPM for 

each solve year for an example of a scenario with 40% VG penetration by 2030 

The box-and-whiskers plots show quartiles including medians. Outliers are shown with black dots. 
The marginal ranges reflect the capacity that was installed in a given year for the example 
scenario; greater curtailment ranges are possible across the full range of wind and solar regions 
and technologies, however these were not economical to the model. The existing curtailment is an 
average of all wind, solar, and fixed-dispatch hydropower. 

RPM uses the calculated existing and marginal curtailment fractions as constraints on the amount 
of energy that may be provided from variable resources,31 enforced separately for each of five 
NERC sub-regions. The marginal curtailment fraction in particular contributes to the model’s 
decision of where to build additional resources, as locations with higher marginal curtailment 
levels will be unable to provide as much energy, and so will offer less value, than other locations.  

                                                 
31 More specifically, RPM applies a lower limit on estimated annual curtailments based on the method presented, but 
RPM’s dispatch constraints allow for even higher curtailments as a potential source of additional flexibility. 
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Appendix A provides details on the new methods designed to better reflect curtailment and 
capacity value. In addition, Section 3 and Appendix B describe how these methods are extended 
to estimate parameters for interruptible load and storage resources. 

3 Modeling Flexibility Investments 
The primary purpose of this work is to improve flexibility investment modeling in RPM. We 
focus on technologies whose primary purpose is flexibility, that is, utility-scale energy storage 
and demand response, rather than institutional or market changes that improve the flexibility of 
generators. Although the latter are important focuses of study in their own right, as well as likely 
lower cost to deploy in the near-term, they are more difficult to reflect endogenously in a least-
cost optimization model. Note that some incremental improvements to generator flexibility (e.g., 
increased ramp rates, allowing reserves from wind and solar) can already be modeled within 
RPM, such that the current work positions the model more generally for future studies that allow 
a choice between improving existing-fleet flexibility versus investing in flexibility-focused 
technologies. For this initial work, we further limit scope to two particular technologies: energy-
constrained interruptible load and utility-scale storage. Although other flexible technologies, 
including thermal storage-based demand response are potentially low-cost and thus noteworthy 
potential resources, their operation is more complex and their costs are highly uncertain. We 
leave this and modeling of demand response from other highly flexible end uses as future work. 
In this section, we describe our models for interruptible load and utility-scale storage. 

3.1 Interruptible Load 
Demand response is currently most often used as a capacity resource, that is, load is briefly 
reduced either automatically or manually during peak time periods, under direction of the utility 
(or, less commonly, in response to a price signal). Direct load control of air conditioners can be 
used in just this way, and many utilities also offer interruptible load utility rates to large 
customers. In the realm of public data, demand response is primarily reported as a capacity for 
reducing annual or seasonal peak load (e.g., as “annual potential peak reduction” [in MW] in 
FERC’s annual Assessment of Demand Response and Advanced Metering reports), and as a 
capacity subtracted from overall peak demand in the NERC reliability assessments (Lee et al. 
2014; NERC 2014).  

In RPM, we therefore model interruptible load as a highly energy-limited resource that can be 
dispatched as part of load balancing, contributes capacity value to the planning reserve 
requirements, and can be held as spinning contingency reserve when it is not being actively 
used.32 That is, it can provide three services to the system: capacity, energy, and contingency 
reserves. Consistent with the notion of interruptible load primarily being a capacity resource, we 
do not model make-up energy, but rather assume that dispatch results in an overall load 
reduction.33 Interruptible load is also resource-constrained in a way that differs from other 
technologies in RPM—it is built at the BA level, and its capacity is restricted to be less than or 
                                                 
32 The model assumes that contingencies are rare enough that the re-dispatch of interruptible load following a 
contingency event would not significantly affect its capacity or energy value. 
33 Admittedly for some end-uses (including residential air conditioners), this assumption is likely too simple, 
however, based on the prevalence of direct load control DR, it appears that operators are able to utilize DR resources 
as capacity without rebound effects negating the overall effort. 
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equal to a fraction of the BA’s peak load. For the purpose of integrating with the rest of the 
optimization model, interruptible load is assumed to be able to ramp fully over an hour (the 
finest time resolution modeled in RPM); all costs are modeled as annual costs, similar to 
generator Fixed Operating & Maintenance (FOM); and the BA-level capacity is distributed to 
individual nodes in proportion to each node’s load participation factor.  

The energy-limitedness of these resources is modeled at two timescales—each sub-class of 
interruptible load is characterized by a daily energy capacity and an annual energy capacity, each 
expressed in hours. For example, a simplified version of the annual energy capacity constraint 
for each resource is: 

�𝑃𝑃𝑑𝑑,ℎ ∙ 𝑠𝑠𝑑𝑑
𝑑𝑑,ℎ

≤ 𝐶𝐶 ∙ 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 

where 𝑃𝑃𝑑𝑑,ℎ is the power “produced” during each modeled hour (denoted by the pair d, h, where d 
is the dispatch period and h is the hour within that dispatch period) in MW, 𝑠𝑠𝑑𝑑 is the number of 
hours in the full year represented by that modeled hour, C is the capacity of the resource in MW, 
and 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the annual energy capacity of the resource (again, in hours). 

Together, the daily and annual energy constraints capture the premise that most demand response 
resources agree to terms in which they will only be used for some small portion of any given 
day, and only a handful to a few dozen times throughout the year. Note that this formulation does 
not restrict the number of hours in which the resource is used on an absolute basis but rather 
insists that the sum of the dispatch is less than or equal to a particular amount of energy. It thus 
accurately represents aggregated demand response resources, albeit (1) only at the hourly 
timescale (and not at the sub-hourly timescale, which could, for instance, allow the same amount 
of interruptible load to provide a greater amount of spinning reserves) and (2) only to the extent 
that it is reasonable to assume constant (rather than time-varying) demand response capacity. 

Capacity value for interruptible load is assumed in the planning reserves constraint, and it is 
calculated using a methodology similar to that used for variable generation. In particular, the 
contribution of interruptible load to meeting demand in the top 100 hours of net load is 
determined based on a heuristic dispatch given its daily and annual energy capacities. These 
energy constraints typically result in capacity values less than one, though they can be very high 
for products with greater annual and daily energy limits. To calculate the capacity value, we 
assume operation of these products at times of high demand, and we create a heuristic dispatch 
profile that respects the resource’s energy constraints. We therefore produce heuristic dispatch 
profiles that correspond to an approximate best case in terms of operating interruptible load as a 
capacity resource, which is consistent with the notion that a resource built for its capacity value 
is more likely to be operated as such. These example profiles are then used in the same way that 
the variable generation profiles are used to calculate the fractional capacity value of existing and 
incremental resources. However, unlike variable generation, the dispatch in the optimization 
model is not required to match these heuristic profiles in any way. The methodology is explained 
in detail in Appendix B. 

Because we model interruptible load as a capacity resource without explicit energy shifting, it is 
not able to contribute to reducing curtailment, and is therefore only able to support renewables in 
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limited ways. For example, the use of interruptible load for contingency reserves can free up 
other resources to provide flexibility reserves. Interruptible load capacity can also make it 
possible to develop higher-value wind and solar resources in non-capacity constrained regions 
instead of developing poorer resources in capacity constrained regions. 

3.2 Storage 
Utility-scale storage is in many ways a more straightforward flexibility option than demand 
response in that it is built simply to provide grid services, whereas demand response by 
definition simultaneously provides an end-use service, provision of which must be retained, and 
grid services. However, modeling storage remains significantly more complex than modeling 
conventional generation, and because its costs are currently typically higher than generation or 
demand response, value stacking is a relatively more important factor in its deployment.   

In RPM, we allow storage to provide the following services: 

• Capacity, estimated through a dynamically calculated capacity value that depends on the 
energy capacity of the technology34 and characteristics of the net load curve at and near 
the peak hours of the year. 

• Energy arbitrage modeled as part of RPM dispatch. Each storage technology is 
characterized with a roundtrip efficiency, which implicitly determines the gap in hourly 
electricity prices needed to make energy arbitrage worthwhile. 

• Curtailment reduction. The ability to shift variable generation enables a reduction in 
curtailment, measured through net-load duration curve methods. Curtailment reduction is 
a specific example of energy arbitrage. 

• Spinning reserves. Just as is done with our model of interruptible load, storage is 
modeled with a ramp rate that is sufficiently fast to not be binding on an hourly 
timescale. This means that storage is able to provide spinning reserves up to its full 
capacity rather than a smaller, ramp-limited amount. Only resources with at least 20 
minutes of storage are allowed to provide this service. 

• Flexibility reserves. As they are meant to help balance longer-term (1–4 hour) 
uncertainty in variable generation, storage resources must have at least one hour of 
storage to provide this service.  

• Regulation reserves. All storage resources are allowed to provide this short-term 
service.  

Utility-scale storage is generally achieved by technologies such as pumped hydro, compressed 
air energy storage (CAES), batteries, flywheels, and thermal storage coupled to concentrating 
solar plants (CSP). Due to their entanglement with other technologies (process heat sometimes 
generated by a gas-fired combustion turbine and solar field plus steam turbine, respectively), we 

                                                 
34  Equal to energy capacity in MWh divided by power capacity in MW, and thus expressed in hours (h). 
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do not address CAES or CSP any further and instead focus on the others, which are characterized 
by an energy capacity (e in MWh/MW), a roundtrip efficiency (𝜂𝜂), and a time-varying storage 
level (L). 

Storage level is modeled by letting the model choose the starting storage level 𝐿𝐿𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 for each 
dispatch period d, and then calculating changes to that level based on generation 𝑃𝑃𝑔𝑔𝑔𝑔𝑎𝑎, charging 
𝑃𝑃𝑐𝑐ℎ𝑔𝑔, and use for flexibility and regulation reserves (𝑅𝑅𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓and 𝑅𝑅𝑠𝑠𝑔𝑔𝑔𝑔, respectively):  

𝐿𝐿𝑑𝑑,1 = 𝐿𝐿𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑑𝑑,1
𝑔𝑔𝑔𝑔𝑎𝑎 + 𝑃𝑃𝑑𝑑,1

𝑐𝑐ℎ𝑔𝑔 ∙ 𝜂𝜂 − 0.25�𝑅𝑅𝑑𝑑,1
𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 + 𝑅𝑅𝑑𝑑,1

𝑠𝑠𝑔𝑔𝑔𝑔�(1− 𝜂𝜂) 
𝐿𝐿𝑑𝑑,ℎ = 𝐿𝐿𝑑𝑑,ℎ−1 − 𝑃𝑃𝑑𝑑,ℎ

𝑔𝑔𝑔𝑔𝑎𝑎 + 𝑃𝑃𝑑𝑑,ℎ
𝑐𝑐ℎ𝑔𝑔 ∙ 𝜂𝜂 − 0.25�𝑅𝑅𝑑𝑑,ℎ

𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 + 𝑅𝑅𝑑𝑑,ℎ
𝑠𝑠𝑔𝑔𝑔𝑔�(1 − 𝜂𝜂), ∀ℎ > 1 

where each operational variable is indexed by the model hour (𝑑𝑑,ℎ). The storage level Ld,h must 
always be less than the total energy capacity, and the total dispatch (𝑃𝑃𝑑𝑑,ℎ

𝑔𝑔𝑔𝑔𝑎𝑎 + 𝑃𝑃𝑑𝑑,ℎ
𝑐𝑐ℎ𝑔𝑔 + 𝑅𝑅𝑑𝑑,ℎ

𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 +
𝑅𝑅𝑑𝑑,ℎ
𝑠𝑠𝑔𝑔𝑔𝑔) must always be less than the total power capacity. The initial storage level is allowed to 

float freely because the dispatch periods do not have an obvious sequential order, and we assume 
that the long time periods and variability represented by most of the dispatch periods would 
facilitate the gradual shifts in storage level needed to accommodate 8,760 operations. The use of 
storage to provide flexibility and regulation reserves results in a partial need to recharge the 
resource due to the assumption that these signals will be energy neutral, thereby leaving a deficit 
proportional to one minus the roundtrip efficiency. The proportionality constant of 0.25 was 
chosen based on the multiplication of two factors, with one factor of 0.5 representing energy-
neutrality and another factor of 0.5 representing a uniform distribution of actual dispatch 
between 0 MW and the amount of capacity committed to that service. For example, on average a 
100 MW storage facility providing one hour of flexibility or regulation reserves would spend 
half of its time charging and half discharging, and would on average be operating at 50 MW, 
resulting in a change in level of −50MW ∙ 0.5h + 50MW ∙ 0.5h ∙ 𝜂𝜂𝑐𝑐 = −0.25 ∙ 100MWh(1 −
𝜂𝜂). 

The storage level is then constrained to stay within the energy constraint both on an hourly, and a 
seasonal basis. The seasonal energy constraint is necessary because we allow imbalances over 
each of our four dispatch periods, and we only require circular balancing to take place over the 
year. Practically, this lets our model over-generate during the peak demand day, for instance, and 
make up the balance of the charging at other times, subject to the storage levels remaining within 
bounds. The detailed model equations can be found in Appendix C. 

Capacity value is calculated similarly to interruptible load, except that now storage level and 
charging must also be accounted for. An example profile is created for each storage technology, 
again using a heuristic algorithm that in this case charges during periods of low net demand, 
discharges during peak net load hours, and ensures that the constraints on the energy level are 
respected. A cycle period of 𝑒𝑒(1 + 1/𝜂𝜂) is assumed for each technology, where e is the energy 
capacity, with a minimum cycle time of one day. The example profile is used to calculate the 
capacity value of each technology based on dispatch during the top 100 net-load hours of the 
year. Further methodological information may be found in Section B.2 (Appendix B).  

In addition to providing capacity value to the system, storage technologies can also reduce 
curtailment of variable generation. Similar to the calculation of capacity value, the heuristic 
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charge and discharge profile informs the ability of storage technologies to reduce curtailment 
from existing variable generation sources. The methodology provides a curtailment reduction 
fraction from existing and a marginal curtailment reduction factor from new generators, which is 
included in the investment decision. Details are provided in Section B.2 (Appendix B). 

4 Scenario Framework 
We demonstrate these new investment choices in RPM by modeling high and low renewables 
assumptions, first without either technology investment, then with each new technology type 
enabled separately. This evaluation is conducted for the Western Interconnection, using SMUD 
as the focus region. As this work is primarily methodological—and the costs of flexible 
technologies, especially projected to the 2030 timeframe, are highly uncertain—we do not aim to 
determine likely deployment scenarios. Rather, we investigate at what price points these 
technologies would be built, when and where they might be built, and why. Further, we do not 
model scenarios with both interruptible load and storage (or other flexibility options) available at 
the same time; therefore, our scenarios may overestimate deployment of these options compared 
to a situation with greater competition for flexibility provision. On the other hand, the model 
takes a system-wide optimization approach, which might over-represent the current flexibility of 
the system. More-constrained operations might offer more demand for flexibility and yield 
greater deployment of storage and interruptible load than our estimates indicate.  

Different approaches are used to determine price points for deployment of the two technologies. 
Both make use of technology subclasses, which allow for some technology parameters to vary 
while keeping the overall model structure the same across all subclasses under a given 
technology category.  In this work, for interruptible load, subclass characteristics include the 
amount of resource (as a fraction of BA peak load) allocated to the subclass, annual and daily 
energy constraints, and cost. Storage subclass characteristics include hours of energy capacity, 
roundtrip efficiency, and cost. 

Price points for interruptible load deployment are investigated by keeping the amount of resource 
available per subclass constant and very small. Then within a given scenario, the cost of each 
subclass is different, such that which subclasses are enabled indicates the price the model was 
willing to pay to obtain access to that resource. Again due to the methodological nature of this 
study, the subclass energy capacities and costs are chosen to bracket the problem and make it 
possible to determine why and to what extent interruptible load might be attractive in particular 
locations and at particular times; we do not model particular demand response programs or 
products. On the other hand, we model particular storage technologies for the storage scenarios, 
with data selected from the DOE/EPRI 2013 Electricity Storage Handbook, from which energy 
capacity (h), roundtrip efficiencies, and costs (capital, FOM, and VOM) are easily extracted 
(Akhil et al. 2013). Price points for deployment are in this case determined by applying different 
assumed cost reductions to storage capital costs for each scenario, and comparing deployment 
across the scenarios. 
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4.1 Interruptible Load Scenarios 
For interruptible load, we explore the parameter space of daily and annual energy capacities, 
which roughly correspond to how much a given day’s operations could be interrupted and how 
many times a year the resource could be called. We then ask at what price points these different 
sub-classes of interruptible load would be enabled on an annual cost ($/MW-yr) basis.  

Our scenarios are consistent with the current understanding of demand response as primarily a 
capacity resource, that is, load is assumed to be interrupted only occasionally, generally at peak 
times or during a contingency event, and is compensated primarily for its capacity. However, we 
are not attempting to model current demand response programs, which FERC estimates to 
provide capacity resource of approximately 6% of peak demand across the ISOs and RTOs in its 
jurisdiction (Lee et al. 2014). Instead, each scenario identifies 0.25% of non-coincident peak BA 
load as potential interruptible load resource. This small quantity is chosen to isolate the marginal 
value of interruptible load providing capacity, energy, and/or spinning reserves in particular 
locations and at particular times.35 Further, to determine which service is most important in these 
different situations, the daily energy capacities are varied within individual scenarios, and the 
annual energy capacities are varied between scenarios. This provides differentiation in capacity 
value and energy value; the former both within and between scenarios, the latter mostly between 
scenarios. 

Within each scenario, the 0.25% of peak load is split into 28 equal slices, each of which is 
assigned to a different technology subclass. The set of subclasses spans four daily energy 
capacities: 1, 2, 4, and 8 hours; and seven annual costs. The subclasses are then defined as all 
possible combinations of daily energy capacity and cost—that is, 28 subclasses altogether. Table 
3 lists the annual costs and provides an illustration of how the subclasses are constructed. Taken 
as a whole, the subclasses form a supply curve such that the model is expected to build the least 
expensive and least constrained resource first (8h, $22,000/MW-yr), and proceed from there. The 
relative value of resources with different daily energy capacities depends on which service is 
most coveted by the model. For example, if spinning reserves are most needed, we do not expect 
to see much difference in deployment across the different daily energy capacity subclasses, but 
capacity hungry systems are expected to have a preference for the subclasses with higher daily 
energy capacities as they tend to have higher capacity values.36 Unlike other infrastructure 
investment decisions in RPM, interruptible load capacity built by the model in previous years is 
not retained and must be re-purchased on the same annual cost basis in subsequent model years. 

                                                 
35 We chose this quantity to be (1) small enough to give a good measure of price points (by not shielding more 
expensive but still valuable-to-the-system resource with abundant less-expensive resource) and (2) large enough to 
be significant in the numerical decision-making process. 
36 For one particular scenario in 2030, the capacity value of the subclasses with 1h daily energy capacity ranged 
from 0.17 to 0.31, while that for the 8h subclasses was 0.82 to 1.00. We chose this quantity to be (1) small enough to 
give a good measure of price points (by not shielding more expensive but still valuable-to-the-system resource with 
abundant less-expensive resource) and (2) large enough to be significant in the numerical decision-making process. 
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Table 3. Full Factorial Design of Interruptible Load Technology Sub-Classes 

Daily Energy 
Capacity (h) 

 Annual Costs  
($/MW-yr) 

 Example Sub-classes 

1  22,000  1h, $22,000/MW-yr 

2 X 28,600 = 1h, $28,600/MW-yr 

4 (full factorial) 37,180  … 

8  48,334  1h, $62,834/MW-yr 

  62,834  … 

  81,684  8h, $62,834/MW-yr 

  106,189   

Interruptible load is modeled as 28 technology subclasses in RPM, one for each combination of 
daily energy capacity and annual cost shown above. 

The cost levels for this analysis are based on the notions that (1) customers will need to be 
incentivized on an energy basis at a rate greater than retail rates and (2) capital and fixed costs 
are likely to dominate for this technology, but they are highly uncertain. We therefore model all 
costs as annual costs (for simplicity’s sake), have a floor LCOE of $0.15/kWh, and then scale up 
the costs by a factor of 1.3 over seven levels to bracket the highest costs at which these resources 
may be valuable to the system. The highest level in particular was chosen to exceed the 
annualized costs for combustion turbines in our model, which are about $90/kW-yr, under the 
assumption that demand response more expensive than CTs is unlikely to be competitive. 
Indeed, the model never choses to build these highest priced resources, giving us confidence that 
we have bracketed the problem. 

The scenario framework ultimately consists of three different scenarios that vary only in the 
annual energy capacity assigned to their interruptible load resources. In this case, we do not try 
to bracket the range of plausible capacities but instead choose values that help discern whether 
BAs enable interruptible load for capacity, energy, spinning reserves, or some combination 
thereof. The three scenarios have annual energy capacities of 50h, 100h, and 150h, and are listed 
in Table 4 along with rough indications of how much value they provide for each of the three 
aforementioned services. For example, for energy value, the 50h scenario provides significantly 
less energy per unit of capacity than does the 150h scenario. Since these scenarios are modeled 
using the same annual costs, interruptible load energy is much more expensive in the 50h 
scenario than in the 150h scenario (a minimum LCOE of $0.44/kWh in the former case, 
compared to $0.15/kWh in the latter), and thus not as much of the supply curve from the 50h 
scenario is expected to be used if energy is the primary service that the system needs. Briefly 
touching on the other services, maximum capacity value also varies across the scenarios, but the 
availability of each resource to provide spinning contingency reserves is essentially flat (as 
reflected in the Min. Contingency Capacity column). 
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Table 4. Interruptible Load Scenario Framework 

Scenario 
Name 

Annual Energy Capacity 
(h) 

Max. Capacity Value Min. Contingency 
Capacity (h)a 

50h 50 0.5 8,710 

100h 100 1.0 8,660 

150h 150 1.0 8,610 

The three scenarios vary only in annual energy capacity, the values of which were chosen to 
discern the relative importance of particular grid services in individual deployment decisions. 

a Minimum contingency capacity refers to the minimum number of hours that can be used for 
spinning contingency reserves. This is calculated as the total number of hours in the year minus 
the annual energy capacity. If the full energy capacity of a particular resource is not used, it could 
instead provide additional reserves beyond what is listed in the table.  

The scenario framework is duplicated for a central assumptions case and a high renewables case 
(implemented with high gas prices and a carbon price as described in Section 2) to explore the 
impact of having more renewables in the system. Also, in Section 5.1.2 we use the 
mathematically regular structure of our supply curves to quantitatively analyze deployment 
drivers, and so take a moment to highlight that structure here. By grouping the interruptible load 
sub-classes into those with the same daily energy capacity, each scenario contains four supply 
curves per BA, each with seven cost levels. If we denote the fraction of all resource with a 
particular daily energy capacity deployed in a given BA as d, we expect d to be 0, 1/7, 2/7, 3/7, 
etc., up to a maximum value of 1. These values (when they are non-zero) can further be mapped 
to the maximum annual cost paid by the model with the equation 

maximum annual cost paid = �̅�𝑝 = $22,000/MW ∙ 1.3(𝑑𝑑−1/7) (1/7)⁄  

where the factor of 1.3 is the multiplicative difference between each of the annual cost levels 
listed in Table 3. In Section 5.1.2 we combine this expression with capacity and energy values to 
derive expectations of deployment difference between and within scenarios depending on which 
grid service is most important in a particular BA and a particular year, and use those 
relationships to analyze results. 

4.2 Storage Scenarios 
For utility-scale storage, we build on the DOE/EPRI 2013 Electricity Storage Handbook to select 
a dozen technologies of varying energy capacity to represent in RPM (Akhil et al. 2013). These 
were chosen by sorting all the pumped hydro, battery, and flywheel technologies listed in 
Appendix B of that report by energy capacity, and then selecting one or two technology types in 
each energy capacity bin based on relative costs and efficiencies. The resulting technologies are 
listed in Table 5. 
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Table 5. Storage Technology Sub-Classes Modeled in RPM 

Storage 
Subclass 

Description Energy 
Capacity 

(h) 

Roundtrip 
Efficiency 

Capital 
Cost 

($/kW) 

FOM 
($/MW-yr) 

VOM 
($/MWh) 

c0 Li-Ion for regulation 0.25 0.9 1,038 6,403 1.04 

c1 Lead-acid for reserves 0.5 0.9 1,633 5,917 0.49 

c2 Li-Ion 1 0.9 1,426 6,984 3.72 

c3 Li-Ion 2 0.93 4,570 26,800 2.70 

c4 NaCl-Ni 2 0.85 2,040 10,137 2.62 

c5 Lead-acid 4 0.9 4,261 13,320 0.97 

c6 Iron-chromium 4 0.75 1,500 8,924 1.36 

c7 Zinc-air 6 0.8 1,663 7,404 0.74 

c8 Pumped hydro 8 0.81 2,350 6,603 0.30 

c9 Lead-acid 10 0.9 5,023 9,200 0.50 

c10 Iron-chromium 10 0.75 2,484 7,596 0.40 

c11 Pumped hydro 16 0.8 2,200 6,130 0.30 

To examine deployment potential as a function of price point, this same suite of storage 
technologies is retained, but the capital cost is multiplied by a fraction less than or equal to one. 
(Fixed and variable O&M costs are kept constant.) We do not attempt to model realistic learning 
curves or time-varying cost reductions for any technology. Before 2020, the values in Table 5 are 
used. In 2020 and beyond for each cost scenario, a fractional cost between 1.0 and 0.05 of the 
capital cost values in Table 5 are used to explore the effect of different cost levels on storage 
deployment.37 However, these multipliers are not applied to the pumped hydro technologies (c8 
and c11) because of the relative maturity and site-dependence of that technology, and we further 
limit the reduction to a minimum cost of $100/kWh. The scenarios studied are listed in Table 6. 

Table 6. Scenario Framework for Storage Technologies 

Scenario Capital Cost Multiplier 
Ranges for Subclasses 

with at Most 2h of Storage 

Capital Cost Multiplier 
Ranges for Non-Pumped 
Hydro Subclasses with 
More than 2h of Storage 

Capital Cost Multiplier for 
Subclasses c8 and c11 

(Pumped Hydro) 

1p00 1.00 1.00 1.00 

0p50 0.50 0.50 1.00 

0p10 0.10 0.10 – 0.40 1.00 

0p05 0.05 – 0.10 0.09 – 0.40 1.00 

                                                 
37 The latter value is loosely based on optimistic price projections for electric vehicle battery packs, for instance see 
Nykvist and Nilsson (2015).  
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4.3 Overall Framework 
Taken altogether, the scenarios analyzed in this work are listed in Table 7. In particular, the labels 
in the main body of the table are the scenario names we use in the remainder of the report to 
specify which RPM run or runs we are discussing. Differences under low and high renewable 
penetrations are analyzed by duplicating each technology-specific set of scenarios across two sets 
of baseline assumptions. The Base assumptions achieve 32% renewable penetration on an energy 
basis by 2030, whereas the High RE assumptions achieve 40% penetration by the same metric.  

Table 7. Summary of Scenario Framework 

 Base Assumptions High RE Assumptions 

No New Flexible Technologies Base High RE 

Interruptible Load Scenarios Base-Interruptible Load High RE-Interruptible Load 

Annual energy capacity of 50h 50h High RE-50h 

Annual energy capacity of 100h 100h High RE-100h 

Annual energy capacity of 150h 150h High RE-150h 

Storage Cost Scenarios Base-Storage Cost High RE-Storage Cost 

Capital costs at 100% of 2013 Base-1p00 High RE-1p00 

Capital costs at 50% of 2013 Base-0p50 High RE-0p50 

Capital costs at 10% of 2013 Base-0p10 High RE-0p10 

Capital costs at 5% of 2013 Base-0p05 High RE-0p05 

5 Results 
The scenarios described in Section 4 are used to explore the potential value of flexibility 
investments to the Western Interconnect from 2015 to 2030. The Base assumptions include a 
central gas price trajectory and current policy as of the beginning of 2016. The High RE 
assumptions include a high gas price trajectory and an effective carbon price, which does not 
reflect any specific policy in particular but is meant to represent a generic future in which carbon 
emissions are penalized. Details are provided in Section 2.2. 

For reference, the capacity expansion for the Base scenario is shown in Figure 8. The difference 
in the capacity expansion for the High RE scenario as compared to the Base scenario is in Figure 
9, which clearly shows additional wind and solar deployment, especially in the years 2025–2030. 
Regionally, CAMX mimics the overall pattern seen across the interconnection: economic builds 
of wind and solar result in less need to provision CT capacity. RMPP and NWPP-U.S. build 
additional renewables without reducing investments elsewhere, because for those regions the 
planning reserve constraint is not binding for any of the model years. SRSG, on the other hand, 
builds additional wind and solar in 2025, but by 2030 swaps a capacity-value equivalent amount 
of wind for solar, netting an overall difference of +1.4 GW wind and -0.7 GW solar.38 Although 

                                                 
38 In the remainder of the report, we will continue to discuss many results in the context of NERC sub-regions, 
which are the geographical unit of accounting for planning reserves. These results are not meant to be interpreted as 
 



 

29 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

the model allows new transmission to be built along existing corridors after 2021, this 
investment option is not exercised in either reference scenario. This finding is likely influenced 
by the primarily zonal structure of the RPM-SMUD model, along with the hurdle rates applied 
along many inter-BA lines; RPM configurations for other focus regions may identify more need 
for transmission. 

The methodology described in Section 2.3.2 and Appendix A finds some curtailment for both the 
Base and the High RE scenarios. This is depicted, for instance, in the dispatch plots of Figure 10. 
By 2030, the Base scenario reaches a renewable penetration of 32% and a variable generation 
(wind and solar) penetration of 28%, whereas the high renewables case has penetrations of 40% 
and 37%, respectively, all on an annual generation basis. Average curtailment of wind and solar 
in 2030 is 1.0% in the Base scenario and 1.3% in the High RE scenario; however, marginal 
curtailments are often higher. 

 
Figure 8. Base scenario system-wide capacity expansion over time 

Retirements are visible as declining capacity.  

                                                                                                                                                             
precise analyses of these sub-region’s capacity needs over the study period of interest, as they are highly sensitive to 
model inputs, some of which are significantly uncertain from the point of view of the authors. A prime example of 
this uncertainty is the row labeled “External & Imports” in Table 8. 
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Figure 9. Difference in capacity between the High RE and Base scenarios 

 
Figure 10. Hourly dispatch for the High RE scenario 
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The scenarios presented in Figures 7–9 do not include new interruptible load and storage 
capacity, which are the focus of this report, because they were specifically excluded from the 
investment options. The following sections describe their impacts in detail. As will be shown, the 
availability of interruptible load and storage amount to minor perturbations of the overall 
scenario results presented here, with a minor exception for the lowest cost storage scenarios. In 
particular, the dispatch plots here can be taken as largely indicative for all modeled scenarios. 
The most extreme storage cases still do not impact the results as much as the High RE 
assumptions do compared to the Base case, with, for instance, the former impacting renewable 
energy penetrations by less than 0.5% of annual generation and the latter representing an 8 to 9 
percentage point swing. 

5.1 Interruptible Load 
Interruptible load provides three services to the system: capacity value via the planning reserves 
constraint, spinning reserves, and energy dispatch (with load typically interrupted at peak times 
in fulfillment of its capacity-providing role). The three scenarios described in Section 3.1, taken 
together and then duplicated for both Base and High RE conditions, show (1) at what prices 
these services are acquired in different parts of the Western Interconnect as it evolves through 
the model years 2015–2030 and (2) how different levels of energy availability, on a daily basis 
and an annual basis, affect the results. In addition to presenting the system-wide perspective, we 
present NERC sub-region specific results to highlight capacity built to satisfy planning 
requirements, but these results are not meant to be interpreted as precise analyses of capacity 
needs, which are in practice highly sensitive to uncertain model inputs (e.g., the row labeled 
“External & Imports” in Table 8, as well as load growth assumptions). Similarly, we also discuss 
BA level results, because they allow us to represent a wider diversity of power system conditions 
than that seen in the aggregate, even at the NERC sub-region level. 

5.1.1 General Trends in the Least Constrained Scenarios 
To first examine the overall usefulness of interruptible load in RPM, we start with the least-
constrained 150h scenario in which all sub-classes are allowed to provide up to 150 hours of 
energy over the course of the year. Figure 11 shows the difference between the capacity 
expansion of the 150h scenario and the Base scenario (whose detailed capacity expansion is 
shown in Figure 8). Recall that we require the model to re-purchase its interruptible load each 
year, such that while the capacity differences for all other technologies shown in Figure 11 are 
cumulative, the interruptible load shown is the amount that the model chose to enable (by paying 
an annual cost) for that year. Interruptible load is also modeled as a limited resource with the 
maximum amount available in the model equal to 0.25% of non-coincident load by BA. In 
particular, Table 8 shows the total amount of resource per energy capacity class in each NERC 
sub-region in 2030. 
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Figure 11. Capacity differences for the 150h scenario relative to the Base scenario 

Interruptible load capacity is repurchased in each model year, while all other builds persist to the next 
model year. 

Unsurprisingly, interruptible load appears to become a generally more attractive resource over 
time. Figure 11 also shows that interruptible load mostly offsets renewables in 2020 and 2025, 
and new thermal peaking capacity (i.e., CTs) in 2030. The main drivers in these results are the 
NERC sub-regions that need additional capacity to meet their planning reserves constraint: 
CAMX, SRSG, and NWPP-Canada. California’s ability to meet its 50% RPS requirements via 
REC trading is also a major factor, as will be seen momentarily.   
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Table 8. Interruptible Load Resource Available in each NERC Sub-Region 

NERC Sub-Region Amount of 8h Resource Available 
in 2030a (MW) 

CAMX 45.4 

NWPP_CAN 18.1 

NWPP_US 34.7 

RMPP 9.1 

SRSG 18.8 
a These quantities are equal to 0.0625% of non-coincident peak load by BA, summed to the NERC 
sub-region level. The same amount of resource is available no matter the daily or annual energy 
capacity of the resource. However, it does vary by model year (based on load growth). 

In general, the time varying deployment of interruptible load in CAMX, NWPP-Canada, and 
SRSG, shown in Figure 12 as the fraction of available interruptible load resource deployed in 
each year, is driven by the planning reserves constraint, the components of which are shown in 
Table 9 for the years 2020–2030 (next page). The data in that table clarify that for all cases of 
NERC sub-region deployment greater than 15% of available resource, interruptible load in that 
case is contributing positively to satisfying a binding planning reserves constraint. This need is 
highly (sub)-system dependent, with NWPP-Canada and CAMX needing capacity in all years, 
NWPP-U.S. and RMPP needing capacity in no years, and SRSG needing capacity in 2025 and 
2030. 

 
Figure 12. Deployment of interruptible load for the 150h scenario by year and NERC sub-region 
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Viewing capacity differences by NERC sub-region starts to explain the use of interruptible load 
to replace renewables in 2020 and 2025, and to enable wind and solar switching in 2030 (see 
Figure 13). In particular, larger sub-region deployments for those regions that build interruptible 
load specifically for capacity, namely CAMX, NWPP-Canada, and SRSG, are apparent. In 
NWPP-Canada, the predominant effect is the enablement of interruptible load instead of building 
CT’s. However in CAMX, in addition to replacing CT’s in 2030, capacity from interruptible load 
allows California to defer its own renewable builds in favor of procuring cheaper renewables to 
meet its 50% RPS, through increased REC trades with NWPP-U.S., RMPP, and SRSG in 2020, 
2025, and 2030, respectively. A technology preference switch from wind to solar is also apparent 
between 2025, in which RMPP wind is preferred, and 2030, in which additional SRSG solar fills 
the gaps left by CAMX renewables and SRSG CTs. The technology switching is likely 
influenced by the changing relative prices of wind and solar over the modeling horizon. 

 
Figure 13. Capacity differences by year and NERC sub-region for the 150h scenario 

As an example of other possible uses for interruptible load, we explore RMPP’s nearly constant 
(over time) deployment of some interruptible load even though it is not needed for capacity. In 
that case, the average deployment level of 7% to 9% for 2020 through 2030 masks a severe 
difference in deployment by BA. In particular, RMPP is composed of three BAs: PSC and 
WACM form the Colorado operating reserves sharing group, and PACE Wyoming is the sole 
member of the Wyoming operating reserves sharing group. It is this latter BA in which all of the 
interruptible load is being deployed, at levels from 42.9% in 2015 to 85.7% in 2030. Looking at 
its dispatch, we see that in 2015, 2020, and 2030, all interruptible load capacity in PACE-
Wyoming, when it is not being actively interrupted, is being held for spinning reserves, that is, 
its capacity factor including reserves is 1.0. In 2025, this picture only moderates slightly with the 
smallest capacity factor including reserves being 0.980. In contrast, there are other BAs that 
deploy interruptible load but do not use it to provide spinning reserves at all (their capacity 
factors with and without reserves are equal). 
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Table 9. Planning Reserve Constraint Summary for the 150h Scenario 

Meaningful capacity contributions from interruptible load are highlighted in green. 

  CAMX  NWPP-Canada  NWPP-U.S.  RMPP  SRSG 

Capacity (MW)  2020 2025 2030  2020 2025 2030  2020 2025 2030  2020 2025 2030  2020 2025 2030 

Existing & Planneda  56,430 63,380 67,343  28,788 32,183 34,692  58,832 59,052 59,477  18,103 18,186 18,822  34,720 34,787 35,995 

External & Importsb  16,250 16,250 16,250  (4,500) (4,500) (4,500)  (1,000) (1,000) (1,000)  (2,500) (2,500) (2,500)  (4,000) (4,000) (4,000) 

Capacity Need  82,927 85,071 87,307  27,737 30,209 32,996  52,281 54,480 56,808  14,816 15,506 16,310  29,906 31,963 34,194 

Capacity Shortfall  10,248 5,441 3,714  3,449 2,526 2,804  (5,551) (3,573) (1,670)  (787) (181) (12)  (814) 1,177 2,199 

New Dispatchable  - 1,338 3,222  3,429 2,504 2,781  - - -  - 68 -  - - 112 

New VG  10,223 4,050 412  - - -  148 372 490  102 209 145  - 1,163 2,053 

New Interrupt. Load  24 53 80  20 22 23  - 3 3  1 2 2  - 13 34 

Excess Capacity  - - -  - - -  5,699 3,947 2,162  890 459 159  814 - - 
a Includes 2010 capacity, prescribed builds through the model year, and capacity built by the model in previous years; This is capacity for 
planning reserves purposes, so capacity value fractions are applied to non-dispatchable and energy-constrained resources. 
b This row lists our estimates of capacity physically located within one NERC sub-region, but for contractual or other reasons counts toward 
another sub-region’s planning reserves, combined with estimated transfers at time of peak load. These estimates were made using several 
resources (NERC 2015b; NERC 2015a) combined with modeling judgment, and they are only indicative and are not highly accurate, 
especially in out-years. Note that CAMX, RMPP, and SRSG are summer-peaking systems whereas NWPP-Canada and NWPP-U.S. are 
winter peaking systems, and RPM models the planning reserves constraint accordingly.
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High Renewables Scenarios 
Comparing Figure 14 with Figure 10 shows that interruptible load deployment is reduced and 
delayed under conditions that favor more rapid deployment of renewables. Interruptible load 
deployment steadily increases over time, with noticeably less deployment in 2025 as compared 
to the Base case. Again, the primary driver here is capacity value. Figure 15 shows that while 
NWPP-Canada’s deployment is unchanged, CAMX has delayed and reduced deployment, which 
is directly tied to their delayed and reduced capacity needs. This effect is likely exaggerated by 
RPM’s limited ability to endogenously retire underutilized capacity39; however, it is generally 
true that interruptible load will be less attractive as a capacity resource the more capacity there 
already is on the system.  

 
Figure 14. Capacity differences for the High RE 150h scenario relative to the High RE scenario 

Interruptible load capacity is repurchased in each model year. 

At a regional level, the overall patterns for CAMX, NWPP-Canada, and RMPP are similar 
between the High RE and Base scenarios, with the exception that RMPP wind is preferred in 
2020 and CAMX wind is preferred in 2025 in the High RE case. There is a noticeable change in 
deployment patterns for NWPP-U.S. and SRSG, however, reflecting a difference in relative 
attractiveness for the next increments of renewables in the Base and High RE cases. In particular, 
NWPP-U.S. builds more interruptible load in High RE conditions, and also provides additional 
wind in 2025 and 2030; whereas SRSG goes from using interruptible load to provide more solar 
in 2030 under Base conditions, to using interruptible load to replace solar in 2025 and 2030 
under High RE conditions. These changes are a continuation of the trends seen by directly 
comparing the High RE Scenario to the Base Scenario (both without interruptible load). In 
particular, NWPP-U.S. economically builds more wind and solar under High RE conditions, 
while SRSG shows a preference for more wind, first in addition to more solar in 2025, but then 

                                                 
39 In the configuration of RPM used here, coal units are required to maintain a capacity factor of 0.07 or retire some 
capacity. This option is not exercised in any of the interruptible load scenarios. 
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at the expense of solar in 2030. NWPP-U.S.’s additional appetite for interruptible load is curious, 
however, as it still has excess capacity according to the model. We thus turn now to discerning 
the interruptible load grid services that are of most interest, when and where. 

 
Figure 15. Deployment of interruptible load for the High RE 150h scenario by year  

and NERC sub-region 

5.1.2 Discerning the Primary Grid Service for which Interruptible Load is Enabled 
The two contrasting cases of CAMX and RMPP in the Base scenarios highlight the fact that 
interruptible load (and flexible technologies in general) can and do provide multiple grid 
services, and that which service or services are most important is highly technology- and system-
dependent. The scenario framework described in Section 3.3.1 was designed to make it easier to 
discern exactly which service is most important in the particular cases under study.  

Interpretation of the Scenario Framework 
The annual energy capacities in the three interruptible load scenarios listed in Table 4 reflect the 
RPM capacity value calculations. In particular, because the top 100 hours of net load are used to 
capture resources’ ability to contribute firm planning capacity, the 50h annual energy capacity 
scenario yields a maximum capacity value of 0.5 for all of the interruptible load resources, but it 
is possible for them to capture full capacity value in the 100h and 150h scenarios. On the other 
hand, the three scenarios obviously differ in the amount of annual energy available from each 
resource, and they are largely the same with regard to how much spinning contingency service 
they can provide. This is illustrated somewhat more clearly by taking the annual cost tranches 
applied to each resource and then dividing them by the maximum (or minimum, in the case of 
spinning reserves) amount of each service that they can provide. The results of these calculations 
are shown in Table 10. 
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Table 10. Minimum Prices for Grid Services from Interruptible Load as a Function of Annual Cost 
and Annual Energy Capacity 

  Min. Capacity Cost ($/MW)  Min. Energy Cost 
($/MWh) 

 Max. Spinning 
Reserves Cost 

($/MW-h) 

Annual 
Costs 

($/MW-yr) 

 

50h 100h 150h  50h 100h 150h  50h 100h 150h 

22,000  44,000 22,000 22,000  440 220 147  2.5 2.5 2.6 

28,600  57,200 28,600 28,600  572 286 191  3.3 3.3 3.3 

37,180  74,360 37,180 37,180  744 372 248  4.3 4.3 4.3 

48,334  96,668 48,334 48,334  967 483 322  5.5 5.6 5.6 

62,834  125,668 62,834 62,834  1,257 628 419  7.2 7.2 7.3 

81,684  163,368 81,684 81,684  1,634 817 544  9.4 9.4 9.5 

106,189  212,378 106,189 106,189  2,124 1,062 708  12.2 12.3 12.3 

The minimum capacity cost columns assume the resource is able to achieve the maximum capacity 
values shown in Table 4, which is not the case for resources with small daily energy capacities. 

Notice that, for the same annual cost on a nameplate capacity basis, the effective cost for each 
service actually varies by scenario, such that how the depth of deployment across the different 
scenarios varies for a given BA provides some indication as to which service that BA values 
most. In particular, beyond the stylized service costs shown in Table 10, we can calculate the 
maximum price paid by the model for a given service in a given BA using the fact that fractional 
deployment d can be directly mapped to the annual costs paid (a detailed derivation is available 
in Section 4.1): 

maximum annual cost paid = �̅�𝑝 = $22,000/MW ∙ 1.3(𝑑𝑑−1/7) (1/7)⁄ . 

Then, we can divide this quantity by the amount of service provided or available per unit of 
nameplate capacity. For providing firm capacity, this quantity is the capacity value 𝑣𝑣𝑐𝑐𝑎𝑎𝑐𝑐 
(MW/MW) calculated per the methods described in Section 3.1 and Appendix B; for energy it is 
the annual energy capacity 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (MWh/MW) equal to 50 h, 100h, or 150h; and for spinning 
reserves it is 8760 − 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (MW-h/MW). For the moment, we represent these factors 
generically as v, and then we consider comparing deployment across resources with different 
daily or annual energy capacities, or both. Because the amount of interruptible load available in 
the system is small, we expect a given BA to pay a similar price for the service it most needs 
independent of the particular interruptible load resource, but dependent on underlying conditions 
(Base or High RE) and year. However, due to our coarse discretization, and also, for instance, 
differences in the relative ability of resources with different daily energy constraints to contribute 
to the highest value hours, we do expect some variation. To this end, consider a resource 1 and a 
resource 2 and suppose that the price paid for resource 2 is a multiplicative factor 𝛼𝛼 times that 
paid for resource 1:  

�̅�𝑝2 = 𝛼𝛼�̅�𝑝1. 
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Then, for the same BA, underlying conditions, and year we expect 𝛼𝛼 to be close to one and for 
the deployment of the two resources to be related to each other via: 

 �̅�𝑝1 =
1.3(𝑑𝑑1−1/7) (1/7)⁄

𝑣𝑣1
=
�̅�𝑝2
𝛼𝛼

=
1.3(𝑑𝑑2−1/7) (1/7)⁄

𝛼𝛼 ∙ 𝑣𝑣2
. 

By rearranging we get:  

𝑑𝑑2 − 𝑑𝑑1 =
1/7

log 1.3
∙ log

𝑣𝑣2
𝑣𝑣1

+
1/7

log 1.3
∙ log𝛼𝛼 .                                         (1) 

Now, if we plot deployment fraction differences against, for instance, log 𝑣𝑣2
𝑐𝑐𝑎𝑎𝑐𝑐 log 𝑣𝑣1

𝑐𝑐𝑎𝑎𝑐𝑐� , and the 
BA is primarily building interruptible load for capacity, we would expect all comparisons of this 
sort for that BA to lie along a line with slope 0.1428/ log 1.3 and y-intercept close to zero. For 
BAs enabling interruptible load for another purpose we would expect little to no correlation with 
log 𝑣𝑣2

𝑐𝑐𝑎𝑎𝑐𝑐 log 𝑣𝑣1
𝑐𝑐𝑎𝑎𝑐𝑐� , that is, a slope of zero, and a y-intercept value close to that calculated by the 

first term of the right hand side of Equation 1 expressed for the service that is of most interest to 
that BA (i.e., v replaced with 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 in the case of energy service, or 8760 − 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 in the 
case of contingency service). Finally, note that for BAs that primarily need spinning reserve, we 
expect 𝑑𝑑2 − 𝑑𝑑1 ≈ 0 in all cases.  

Just such a plot is shown in Figure 16 for the Base-Interruptible Load scenarios in 2020, where 
the green-tinted BAs belong to CAMX, AESO and BCTC comprise NWPP-Canada, and PACE 
Wyoming is in RMPP. Note that it confirms what we found earlier—CAMX and NWPP-Canada 
enable interruptible load to provide firm capacity (as those comparisons generally follow the 0-
intercept, 0.1428/ log2 1.3-slope line shown on the plot), and PACE Wyoming enables 
interruptible load to provide reserves. Some subtleties also emerge, as the failure of some of the 
CAMX 1h daily energy capacity resources to fall along the line indicate that perhaps energy and 
contingency service are also valuable there. This is in contrast to NWPP-Canada, which shows a 
more consistent preference for capacity. 
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Figure 16. Deployment fraction differences versus the logarithm of capacity value ratios, Base-

Interruptible Load scenarios, 2020 

All possible comparisons across daily energy capacities, with resource 2 fixed to have an annual energy 
capacity of 150h, and resource 1 otherwise chosen to be more constrained than resource 2. 

To separate resources built for energy capacity from the others, we can instead plot deployment 
fraction differences against log 𝑒𝑒2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 log 𝑒𝑒1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ . Using both types of plots for the High RE 
scenario in 2030, shown in Figure 17, we see that CAMX, NWPP-Canada, and SRSG are using 
interruptible load for firm capacity in this case; the BAs in NWPP-U.S. and RMPP are more 
focused on its use for energy and spinning reserves. We also observe BAs taking advantage of 
multiple services simultaneously. For one example, NWPP-U.S. points with nonzero 𝑑𝑑2 − 𝑑𝑑1 
values (more clearly visible in the capacity-value plot on the left) are for Nevada Power (NEVP), 
which has no within-scenario deployment differences, but does have less deployment in the 50h 
scenario than in the others. This is in contrast to the other NWPP-U.S. BAs that deploy 
interruptible load, PACE Utah and SPP, whose deployments are constant across all energy 
capacity variations (both between and within scenarios). This suggests that NEVP enables 
interruptible load for both its energy and its reserves value while PACE Utah and SPP almost 
exclusively focus on providing contingency reserves. As another example, the difference in 
deployment for the 2h daily energy resource in SRSG in 2030 for the 100h as compared to the 
150h scenario appears to be driven by energy capacity concerns, as the capacity value 
differences are almost negligible (on the order of 1E-4), while the deployment changes from 3/7 
to 4/7 in SRP, TEP, and WALC. This hypothesis is further bolstered by a similar pattern in 2025 
(for the same BAs, but deployment levels jumping from 1/7 to 2/7), when there are absolutely no 
capacity value differences. 
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Figure 17. Deployment fraction differences versus the logarithm of capacity value ratios (left) 

and the logarithm of annual energy capacity ratios (right) in the High RE-Interruptible Load 
scenarios, 2030 

All possible comparisons are plotted on the left. The right plot (energy capacity ratios) only includes 
comparisons between the 150h scenario and the others, with resources matched on daily 
energy capacity. 

5.1.3 Summary of Price Point Findings 
To bring the analysis back to a discussion of price points, we show in Table 11 the capacity 
deployed, the available resource, and the resulting fractional deployment for interruptible load as 
a whole for the Base 150h scenario. Note that when shown for a particular daily energy capacity 
in a particular BA, fractional deployments are a direct reflection of the maximum cost paid by 
the system for that resource (e.g., 0.1428 means that only $22,000/MW resource was built, and 
0.4286 means that the system availed itself of all of the resource through the first three price 
points, up to $37,180/MW). At more aggregated levels (multiple daily energy capacities and/or 
multiple BAs), the fractional deployments represent a load-weighted average, and are thus 
indicative of the price the system was willing to pay, but they may mask large differences 
between technology sub-classes and/or BAs. 

Table 11. Interruptible Load Deployment and Resource by Year for the 150h Base Scenario 

 All Sub-Classes 

Year 
Capacity 

(MW) 
Resource 

(MW) 
Fraction 

Deployed 

2015 2 441 0.00 

2020 68 460 0.15 

2025 133 482 0.28 

2030 202 505 0.40 
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This aggregated picture gives a rough indication that interruptible load is attractive at moderate 
to high prices at times. The actual price points reached by year and NERC sub-region are shown 
in Table 12 and Table 13 (on the following pages) by listing the number of BAs in each sub-
region that deploy capacity in each price bin for the 150h scenarios, and for the 1h and 8h daily 
energy capacity resources in particular. The results for the Base scenarios are in Table 12; High 
RE results are shown in Table 13. In these tables, combinations of sub-region and year identified 
above as building interruptible load for capacity purposes are highlighted to help distinguish the 
patterns seen in those cases versus the others. In particular, the sub-regions that use interruptible 
load for firm capacity have greater difference in deployment between the 1h daily and 8h daily 
resources, and they have more uniform deployment across all of the BAs in the sub-regions. On 
the other hand, most of the other instances show just one or two BAs deploying interruptible load 
per sub-region, and less sensitivity to the daily energy constraint, which is consistent with 
spinning reserves being an important component of the resources’ value. 

In comparing the results from the two sets of scenarios, Base and High RE, we again see how the 
additional capacity in the system under High RE conditions generally lessens the value that 
interruptible load can provide. On the other hand, there are still times and locations for which 
$81.68/kW-yr is a price worth paying for the capacity, energy, and/or spinning reserves 
interruptible load is able to provide. This finding is generally consistent with the notion that 
interruptible load’s main competitor is CT capacity, which in our model has an annualized cost 
of about $90/kW-yr. CAMX in the High RE scenarios and the years 2025 and 2030 also provides 
an interesting case study in that the highly various results by BA (despite the fact that the sub-
region-wide planning reserve constraint is binding), point to multiple value streams being 
important to this region as it achieves high levels of wind and solar generation.
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Table 12. Price Points Achieved in the Base 150h Scenario 

Price points are depicted as number of BAs in each NERC sub-region deploying resource at the given cost. Sub-region years with binding 
planning reserves constraints are highlighted. 

Annual Cost per MW-yr  $22,000  $28,600  $37,180  $48,334  $62,834  $81,684  $106,189 

Year Sub-Region  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h 

2015 CAMX (of 9)  - 1  - -  - -  - -  - -  - -  - - 

 NWPP-Can. (of 2)  - -  - -  - -  - -  - -  - -  - - 

 NWPP-US (of 16)  - -  - -  - -  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  - -  - -  - -  - - 

 SRSG (of 6)  - -  - -  - -  - -  - -  - -  - - 

2020 CAMX (of 9)  1 9  - 9  - 9  - 3  - -  - -  - - 

 NWPP-Can. (of 2)  2 2  - 2  - 2  - 2  - 2  - 1  - - 

 NWPP-US (of 16)  - -  - -  - -  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  - -  - - 

 SRSG (of 6)  - -  - -  - -  - -  - -  - -  - - 

2025 CAMX (of 9)  9 9  1 9  1 9  1 9  - 1  - 1  - - 

 NWPP-Can. (of 2)  2 2  1 2  - 2  - 2  - 2  - 1  - - 

 NWPP-US (of 16)  2 2  1 1  1 1  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  1 1  - - 

 SRSG (of 6)  2 6  2 6  2 6  2 2  - 2  - -  - - 

2030 CAMX (of 9)  9 9  9 9  - 9  - 9  - 9  - 9  - - 

 NWPP-Can. (of 2)  2 2  1 2  - 2  - 2  - 2  - -  - - 

 NWPP-US (of 16)  2 2  1 2  - -  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  1 1  - - 

 SRSG (of 6)  6 6  6 6  - 6  - 6  - 6  - 6  - - 
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Table 13. Price Points Achieved in the High RE 150h Scenario 

Price points are depicted as number of BAs in each NERC sub-region deploying resource at the given cost. Sub-region years with binding 
planning reserves constraints are highlighted. 

Annual Cost per MW-yr  $22,000  $28,600  $37,180  $48,334  $62,834  $81,684  $106,189 

Year Sub-Region  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h  1h 8h 

2015 CAMX (of 9)  - 1  - -  - -  - -  - -  - -  - - 

 NWPP-Can. (of 2)  - -  - -  - -  - -  - -  - -  - - 

 NWPP-US (of 16)  - -  - -  - -  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  - -  - -  - - 

 SRSG (of 6)  2 2  - -  - -  - -  - -  - -  - - 

2020 CAMX (of 9)  1 9  1 9  - 6  - 1  - -  - -  - - 

 NWPP-Can. (of 2)  1 2  1 2  - 2  - 2  - 2  - 1  - - 

 NWPP-US (of 16)  1 1  - -  - -  - -  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  1 1  - - 

 SRSG (of 6)  - -  - -  - -  - -  - -  - -  - - 

2025 CAMX (of 9)   2 8  2 4  1 2  1 1  1 1  - 1  - - 

 NWPP-Can. (of 2)  2 2  1 2  - 2  - 2  - 2  - 1  - - 

 NWPP-US (of 16)  3 3  3 3  2 2  1 1  - -  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  1 1  - - 

 SRSG (of 6)  6 6  2 6  2 6  2 2  - 2  - -  - - 

2030 CAMX (of 9)  8 9  6 9  4 9  4 9  - 8  - 4  - - 

 NWPP-Can. (of 2)  2 2  1 2  - 2  - 2  - 2  - 1  - - 

 NWPP-US (of 16)  3 3  3 3  3 3  2 2  2 2  - -  - - 

 RMPP (of 3)  1 1  1 1  1 1  1 1  1 1  1 1  - - 

 SRSG (of 6)  6 6  6 6  2 6  - 6  - 6  - 2  - - 
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5.2 Utility-Scale Storage 
Utility-scale storage technologies provide a wide range of services to the system, including 
capacity, energy shifting, reserves provision, and curtailment reduction. Different types of 
storage technologies are able to meet these needs in different ways, and in particular, different 
technologies become more valuable at varying price points for different regions. Note however, 
that the high cost of storage leads to no storage being installed at full price in either scenario and 
only small amounts installed when the costs drop to 50% of the current costs. However, as costs 
drop further, an increasing amount of storage is installed across the Western Interconnection. 
The following sections describe in detail what the price points and motivations are for installing 
storage in various regions under Base and High RE assumptions.  

5.2.1 General Trends in Storage Deployment 
To examine general trends in how the model deploys storage, we examine the end conditions in 
2030 for the Base scenario and identify the price points at which various technologies are cost-
effective. We then compare these results to what is seen in the High RE case. By examining the 
year 2030, we get an overall picture of cost effectiveness as a function of renewables deployment 
and we can observe changes in the deployment of other technologies enabled by the presence of 
these flexible resources. We then examine one price point in detail to identify the model years in 
which storage technologies are deployed. 

In the Base scenarios, no storage is deployed at current costs and only a very small amount of 
storage is deployed at 50% of current (capital) costs.40 However, at 10% of current costs (or 
$100/kWh, whichever is greater, see Table 6), storage begins to be installed in large quantities. 
Figure 18 shows the capacity differences in 2030 for each of the price scenarios examined 
relative to the Base scenario in which no storage builds are allowed. We can see that in general, 
once it is deployed, storage replaces gas CT and solar generators, and it enables increased 
deployments of wind. Note that 10% of current costs is the point at which the firm capacity cost 
of some storage technologies, on a $/kW-yr basis and accounting for the capacity value 
calculated for planning purposes, falls below that of CTs, which is $90/kW-yr in 2020 and 
$87/kW-yr in 2030. Additionally we found that in many cases wind is more constrained by lack 
of reserves than solar, such that increased storage, which can provide low-cost reserves, enables 
increased wind deployment.41 

                                                 
40 Per Section 4.2, only capital costs are reduced; fixed and variable O&M costs are kept constant. In the remainder 
of this section, we will simply refer to “cost reductions”, but these should be taken to only apply to capital. 
41 Traditional generators are required to be generating when providing reserves. Wind more than solar has high 
generation patterns when most generators are offline, i.e. at night. Therefore the relative cost of reserves is higher 
for wind than solar. 
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Figure 18. Differences in installed capacity in 2030 for the four Base-Storage Cost scenarios 
relative to the Base scenario 

This analysis indicates that for most applications the price point for economic deployment of 
storage lies between a 50% and 90% cost reduction from current costs. Further, cost reductions 
of up to 95% enable even more deployment. While for many of the technologies we examined 
such a cost reduction would be unrealistic, this may be feasible in the future for some, 
particularly lithium ion batteries.  

Further examination of the results at a finer resolution show additional trends based on the needs 
of individual NERC sub-regions. We focus in particular on four of the five sub-regions: CAMX, 
NWPP-US, RMPP, and SRSG. Figure 19 shows the capacity differences in 2030 for each of 
these four NERC sub-regions. NWPP-Canada was not allowed to build storage in these 
scenarios,42 so results for that region do not vary between scenarios and are not shown. 

42 This is due to anomalies in results when NWPP-Canada is allowed to build storage, primarily based on its general 
need for capacity, the fact that our scenario framework lets storage costs get below those of gas CTs on a capacity 
value basis, and the further factor of reduced resolution wind and solar modeling in Canada. In fact, AESO and 
BCTC are modeled as having no solar resource. 
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Figure 19. Difference in capacity installed for each of the Base-Storage Cost scenarios compared 
to the Base scenario by NERC sub-region in 2030 

The different NERC sub-regions as modeled43 demonstrate a variety of binding constraints, 
which lead to different patterns of installed storage technologies. In particular, the various 
motivations to install storage technologies range from a need for reserves (as seen in RMPP), a 
need for capacity (in SRSG), and a need for enabling increased renewables (as seen in CAMX). 

Regions that show a need for reserves (e.g., RMPP) may be able to tolerate higher storage costs. 
As noted in Section 5.1.1, RMPP, and in particular PACE Wyoming, which comprises the 
Wyoming operating reserves sharing group, have a strong need for reserves in the low and mid 
dispatch periods in our model under the Base assumptions due to a lack of flexible generation. 
With regard to storage, this BA installs storage at 50% of capital cost and is the only BA to do so 
under Base assumptions. Additionally, this region only installs short-term storage to provide 
these reserves, as can be seen in Figure 20. 

The need for capacity can also lead to storage installations. In particular, SRSG shows a need for 
capacity in 2025 and 2030 in our model. In the Base scenario, a combination of PV and CT’s 
were installed to provide significant firm capacity for the sub-region’s planning requirements, 
however as the cost of storage drops, its cost of peak-capacity becomes lower than either PV or 
gas CT’s. The Base-0p10 and Base-0p05 scenarios both install storage technologies with 
equivalent capacity-value as the displaced technologies. The 2h storage technology built in the 
Base-0p10 has a similar capacity value to PV, and in the Base-0p05 scenario the cost of Li-Ion 
batteries have dropped enough such that it can provide capacity at a lower cost. These storage 
technologies can therefore effectively compete to provide the required capacity when technology 
costs are sufficiently reduced.  

43 The caveats expressed at the beginning of Section 5.1 apply here as well. In particular, we present NERC 
sub-region and a limited number of BA-level results because they are interesting and demonstrate a diversity 
of deployment drivers. They are not necessarily accurate representations of actual capacity (or reserves) needs 
or excesses. 
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Finally, storage may be installed to increase variable generation penetration. An increase in VG 
penetration requires both increased reserves and energy shifting to match generation with load. 
In particular, in the Base-0p10 scenario, CAMX typifies this use pattern and installs storage with 
one and two hours of energy capacity, which is able to provide reserves for the increase in 
installed wind and also helps shift this new energy to times of higher demand.  

Figure 20 shows the breakdown by region of which types of storage are installed. As noted 
above, the NERC regions have different needs from storage and therefore install storage types 
with different energy capacities. It is of interest that only three of the twelve storage technologies 
available in the model were installed, and all are largely differentiated from the technologies not 
installed by their low cost. Additionally, due to the $100/MWh lower cost bound, the Base-0p05 
case only has a significant cost reduction for technologies with 1 hour or less of storage. The 
much cheaper cost of these technologies overshadowed the benefits of longer energy capacities, 
reiterating that cost is a very important driver in storage installations. 

Figure 20. Storage capacity in 2030 by technology sub-class and NERC sub-region for the Base-
Storage Cost scenarios 

High Renewables Scenarios 
The scenarios with more renewables (High RE) deploy and use storage in similar ways as the 
Base scenarios, however more storage is installed, and also is installed at higher price points in 
some locations. Figure 21 shows the changes in capacity installed by 2030 for the Western 
Interconnection in the High RE-Storage Cost scenarios as compared to the High RE scenario 
with no new storage allowed. Again storage generally replaces gas CT units and solar PV while 
slightly increasing wind; and the impacts on renewables vary by region. As will be discussed 
below in detail, the initial installations of storage are short-term storage used to provide reserves, 
predominantly flexibility reserves for the higher renewables present in these scenarios compared 
to the Base assumptions. Later these storage products are used for energy shifting.  
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Figure 21. Differences in installed capacity in 2030 for the four High RE-Storage Cost scenarios 
relative to the High RE scenario 

Again we examine the NERC sub-regions in detail to provide a description of the diverse 
motivations for model deployment of storage. Figure 22 shows the changes in installed capacity 
for each of four NERC sub-regions.  

Figure 22. Difference in capacity installed compared to the high renewables scenario for each of 
the storage scenarios and NERC sub-region in 2030 

Again in the High RE case RMPP installs storage technologies initially for reserves. In particular 
as storage costs drop below 10% of current costs, additional storage installations enable 
increased wind installations due to the capability of storage to provide more flexibility reserves. 
RMPP installs a significant amount of wind energy in the high renewables case, reaching 52% 
annual penetration of wind on a generation basis. Longer-term storage could enable additional 
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energy shifting of these wind resources to peak time periods, however these storage technologies 
remain too expensive for the model to build. 

In the High RE case, NWPP-US installs storage to replace gas CTs when costs are 50% of 
current costs. These installations are largely used to provide additional flexibility reserves that 
are required with increased renewable installations. In this 0.50 cost scenario there is an increase 
in solar. This further indicates that storage used for reserves can often justify a higher price point, 
which makes sense with regard to value stacking of storage. In the Base scenarios, NWPP-US 
did not install appreciable amounts of storage; however, at higher renewable energy penetrations 
and low storage costs, this becomes economical. 

As costs drop further, storage and renewables deployments both increase, predominantly in 
CAMX, which has a high renewables penetration due to the 50% RPS requirement in California. 
In this region, as in the base scenario, storage is used to further enable renewable growth. 

Figure 23. Storage capacity in 2030 by technology sub-class and NERC sub-region for the High 
RE-Storage Cost scenarios 

Cost by Year 
In addition to trends in installation by price point, the timing of deployments varies based on the 
underlying system conditions (Base versus High RE). To see these trends, we focus on the 0p10 
cost scenarios, as 10% of current costs are the highest storage costs at which significant model 
deployment is observed. 

Figure 24 depicts deployment through time for the Base-0p10 scenario and the High RE-0p10 
scenario. The High RE case installs more storage than the Base case, but has less of an impact on 
renewables than the Base case. A large part of this is likely the already high renewable 
penetrations in the High RE scenario. Both scenarios see a large increase in deployments in 
2030, again when the costs of variable generation have dropped further, and there is more need 
for capacity due to load growth. In all years it is installed, storage replaces gas CT units. 
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Figure 24. Yearly capacity differences at a system level for the 0p10 scenario for both the Base 
and High RE assumptions  

Figure 25 shows the storage classes installed by year for both sets of underlying assumptions. 
Interestingly, 2hr storage is installed to a higher degree in the Base case, and 1hr storage is more 
important under the High RE conditions. The High RE scenarios however also install a small 
amount of 4hr storage. 

Figure 25. Cumulative system-level storage capacity by technology sub-class for the Base-0p10 
and High RE-0p10 scenarios 

5.2.2 Description of Storage Operations 
The value of storage to a system is in large part based on its ability to provide reserves, to shift 
energy to times of higher (net) demand, or reduce curtailment. In this section, we analyze how 
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the storage resources deployed by the model are used in the model dispatch, and how this 
corresponds to the value of storage to the system.   

Figure 26 shows the changes in dispatch for the entire interconnection on an annual basis, both in 
the year 2030 for all of the Base-Storage Cost scenarios, and for all years for the Base-0p10 cost 
scenario, with all relative to the Base scenario dispatch. These results show that the use of 
storage for energy arbitrage is similar across scenarios with significant storage deployment and is 
largest in 2030, with accompanying significant curtailment reductions.44 In general, storage 
enables the increased use of low-variable cost generation, including renewable energy and coal, 
at the expense of higher-variable cost technologies such as gas combined cycle (CC) and gas 
steam units, both through actual energy arbitrage and as a consequence of the capacity changes 
analyzed above. Energy arbitrage does appear to be more important in 2030, when more 
renewables are in the system than in previous years. Significant curtailment is also mitigated in 
this year. One factor may be storage units that are built in 2025 to provide reserves are in 2030 
already in the system and available to respond to the increased need for energy arbitrage and 
curtailment reduction implied by VG deployment. 

Figure 26. Differences in annual generation for the Base scenarios. 

All Base-Storage Cost scenarios versus the Base scenario in 2030 (left) and differences in Base-
0p10 and Base annual generation by year (right) 

It is of interest to note that the use of storage does not result in greater greenhouse gas (GHG) 
emissions in these scenarios, despite increased coal generation, due to the significantly greater 
corresponding reduction in natural gas generation. The Base-0p10 and Base-0p05 cost scenarios 
show a very slight reduction in GHG emissions and the other scenarios are essentially equivalent 
to the base scenario. 

44 This may be partially due to a modeling artifact, in that new storage is unable (in our model) to reduce 
curtailments from new renewable builds, as that would introduce a nonlinearity (and RPM is a mixed-integer 
program, that is, a MIP). 
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The use of storage to provide reserves is an important aspect of the value of storage. Figure 27 
shows the changing makeup of the generator types providing all reserve products for the entire 
interconnection for all Base-Storage Cost scenarios in the year 2030 (left), and for the Base-0p10 
cost scenario for all years (right). Beginning in 2025, storage provides a noticeable amount of the 
reserves for the system, reaching 8% of reserves provision by 2030 in the Base-0p05 cost 
scenario and 6% in the Base-0p10 cost scenario. Interestingly, the fraction of reserves provided 
by storage drops in 2030 for the Base-0p10 cost scenario; this is due to a greater provision of 
energy in that year compared to previous years. 

Figure 27. Flexibility reserves provision by generator type, as a fraction of all flexibility reserves 
provided, for the entire Western Interconnection 

Note – Here “New Storage” refers to storage built according to the scenarios described above; 
“Storage” refers to pumped hydro (PHES) that existed as of 2010 or is added to the model as a 
prescribed build. 

Figure 28 shows the changes in reserves provision in 2030 for each of the Base-Storage Cost 
scenarios and specifically for the reserve-sharing group of Wyoming, the most reserves-
constrained region under Base assumptions due to its high percentage of coal generation. In this 
region low-cost storage displaces gas CT builds and enables coal to provide energy instead of 
reserves. Additionally, storage provided reserves enable an increase in renewable generation. 
Flexibility reserves in particular, on the left in Figure 28, are required to be held based on a 
percentage of the generation from variable generation sources, and this provision of reserves is a 
binding restraint in the Base scenario. In particular, in the Base-0p50 scenario the increase in net 
reserves provided exactly equals the increase from storage. At lower storage costs, the net 
amount of reserves required to be held increases over that needed for the Base scenario, 
indicating that higher renewables penetrations are being supported by storage. 
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Figure 28. Differences in Flexibility and Regulation reserves for the Wyoming reserve 
sharing group in 2030 

High Renewables Scenarios 
The High RE scenarios show similar patterns as the Base scenarios, with storage enabling 
increased use of low variable cost generation, including wind and coal. Additionally, in 2020 
there is an increase in wind generation without a large increase in storage-based energy arbitrage. 
This supports the idea that in the High RE scenarios, storage is initially built to provide 
additional capacity and reserves and only later is used to provide energy shifting, which it does 
in 2030. 

Figure 29. Differences in annual generation for the High RE scenarios, showing all High RE-
Storage Cost scenarios versus the High RE scenario in 2030 (left) and differences in High RE 0.10 

costs and High RE annual generation by year (right) 

In the high renewables scenarios, the use of storage does lead to an increase in GHG emissions in 
the 0p05 and 0p10 cost scenarios. This is on the order of 1 million metric tons increase out of a 
total 244 million metric tons. The High RE-0p50 scenario shows a slight decrease in GHG 
emissions. 
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Fractional reserves provision for all reserves under High RE assumptions is shown in Figure 30. 
Due to low installed capacity, storage provides only 1% of all reserves in the High RE-0p50 cost 
scenario. However, in the lower cost scenarios storage provides a significant amount of reserves, 
reaching over 20% by 2030 in both the High RE-0p10 and High RE-0p05 cost scenarios. This 
provides two services, predominantly a lower need for gas CT units, which are built in several 
regions solely for reserves, and also reduces the need for gas CC generation.45  

Figure 30. Reserves provision by generator type, as a fraction of all reserves provided, for the 
entire Western Interconnection, showing all High RE-Storage Cost scenarios in 2030 (left) and the 

High RE-0p10 scenario annual provision by year (right) 

Note – Here “New Storage” refers to the storage built by the model according to the scenarios 
listed above; “Storage” refers to existing storage, consisting of PHES. 

In the High RE scenarios, additional reserve sharing groups show a need for flexibility reserves 
with the higher penetrations seen in this scenario. In particular, the reserve sharing groups in 
southern California and Colorado show an increase in flexibility reserves provision, shown in 
Figure 31 for 2030. These groups in particular use storage to displace other generators providing 
reserves and show a slight increase in the total reserves provided. These slight increases enable 
increased renewables in both these regions, in particular wind in Colorado and solar in 
southern California. 

45 RPM requires generators to be operating while providing reserves, so in some cases generators will operate 
largely in order to provide reserves. 
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Figure 31. Differences in Flexibility reserves for the Colorado and southern California reserve 
sharing groups in 2030, under High RE assumptions 

Storage also provides value to the system by reducing the curtailment of variable generators, 
including wind and solar power. The use of storage reduced or left unchanged the total amount 
of curtailment in the system in the year 2030 (see Table 14). While it does not appear that 
curtailment reduction is a dominant reason for storage deployment in RPM, this use-case 
certainly increases the value of storage, adding to the firm capacity and reserve provision values, 
and enhancing basic energy arbitrage.  

Table 14. Variable Generation Curtailment in 2030 

Annual Curtailment, TWh 

Scenario Base High RE 
- 3.0 4.9 
1p00 3.1 4.9 
0p50 3.0 4.0 
0p10 1.1 3.8 
0p05 0.9 3.5 

Storage Dispatch 
The dispatch of storage technologies provides additional insight into how these technologies are 
used in RPM. This section presents dispatch results from two BAs to illustrate how storage 
dispatch can support renewables: SCE in the Base-0p10 scenario and NEVP from the High RE-
0p10 scenario. 

Figure 32 shows the dispatch of 2h storage in SCE, which is installed in the Base-0p10 scenario 
starting in 2025. (SCE also has existing pumped hydro capacity, whose dispatch is not shown.) 
In the first year of service, the 2h storage is only used for reserves to aid further wind 
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installations; however, by 2030 it is being used to shift energy from periods of low net-load, 
mostly in the middle of the day during the low dispatch period to peak hours and non-daylight 
hours, particularly as wind is ramping down. Per the full dispatch picture for this region (Figure 
33), this storage dispatch pattern adds flexibility to the system while wind and solar output are 
changing rapidly. The system chooses to use this stored energy during the non-daylight hours of 
the low dispatch period, and it keeps enough energy in storage to be available on the peak day. 
Note that the storage in this example is difficult to see, as it is only approximately 1% of the 
generation in this region. 

Figure 32. Dispatch of the 2h NaCl-Ni energy storage technology in SCE in the Base-0p10 scenario 

Due to the discontinuous nature of the dispatch periods, storage capacities are required to balance 
annually, but not necessarily within a specific dispatch period. Therefore, storage may be charged 
during the low dispatch period, and discharged during the high dispatch period as is seen here. For 
more information, see Section 3.2. 
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Figure 33. System dispatch for SCE in the Base-0p10 scenario 

Note: The generation and load in a particular BA are not required to exactly balance, since BA’s 
can import and export from adjacent regions if needed. In this example, SCE is a net importer in 
2020 and a net exporter in 2030. 

Figure 34. Dispatch of the 1h Li-ion energy storage technology in NEVP in the High 
RE-0p10 scenario 

As noted above, the High RE scenarios have a greater need for reserves, particularly flexibility 
reserves in support of the increased renewable penetration. Figure 34 shows an example of the 
resulting reserves-heavy storage dispatch in NEVP, for its 1h energy storage resource in the High 
RE-0p10 scenario. This storage technology is not installed until 2025, at which time it is used 
exclusively for reserves, particularly flexibility reserves during high solar hours. Coincident with 
this increase in storage is an increase in solar deployment (Figure 35). Despite the large increase 
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in solar in 2025, the storage is not used for energy shifting until 203046 when the storage facility 
shifts energy in the low dispatch period from the mid-day hours to the evening solar ramp-down 
time, and it also holds some storage in reserve for the peak day. 

Figure 35. System dispatch for NEVP in the High RE-0p10 scenario 

46 This lack of energy shifting in the first year may in part be a consequence of energy arbitrage not being lucrative 
enough to justify a capacity purchase. However, once that capacity has been installed it is operationally 
advantageous to use the storage for shifting energy.  
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6 Discussion 
Our analysis demonstrated methods for extending capacity expansion models to (1) better 
represent power system needs for flexibility and (2) ensure that the value provided by 
technologies designed to provide flexibility—namely storage and interruptible load—is factored 
into investment decisions. This was done in the context of NREL’s Resource Planning Model 
(RPM), which from its conception has been designed to accurately model investment decisions 
for variable wind and solar generation.  

Aspects added to the model for this work include an extension of the dynamic capacity value 
methodology described in Mai et al. (2015) to energy-constrained technologies, in particular 
interruptible load and utility-scale storage. Methods were also developed to better estimate 
curtailment from variable generation, both with and without storage. The development of the 
curtailment estimation methods, which are based on net load duration curves that are similar to 
our capacity value methodology, also relies on an estimate of the system-wide minimum 
generation level using regression models of production cost simulation results. The capacity 
value and curtailment methods were used to calculate tail effects for both the existing fleet and 
the next (marginal) increments of new variable generation, interruptible load, and storage 
capacity. Used in this way, they infuse the investment decision with additional flexibility 
information, including both the need for it and the ability of flexible technologies to provide it; 
these are important aspects to model when studying the possible evolution of power systems in 
high renewable energy futures. 

The interruptible load and utility-scale storage models both required that additional constraints 
be added to the RPM dispatch model, particularly because both types of options are energy-
constrained. Interruptible load is constrained in how much energy it can provide daily and 
annually, which conceptually represents capacity-focused demand response programs. Our 
storage model enforces a technology subclass-specific energy capacity, expressed in MWh/MW, 
on both the hourly and the seasonal timescales. Overall, charging and discharging is required to 
balance on an annual basis subject to subclass-specific roundtrip efficiencies. 

These models, in concert with the capacity value and minimum curtailment estimation methods 
also added for this work, were exercised in two sets of scenarios. One set of scenarios allowed 
new builds of interruptible load but not of storage; the other was formulated oppositely. Because 
this work is primarily methodological, and the cost trajectories (and in the case of interruptible 
load, the resource availability) of these technologies are highly uncertain, our scenarios were 
designed not to assess probable deployments but rather to explore possible deployment patterns 
in the Western Interconnection as a function of technology cost. That is, at what cost and for 
what reasons might flexible technologies be deployed in the western United States in the 2020-
to-2030 timeframe? 

Overall, we found capacity and reserves shortfalls to be major potential drivers of deployment 
for both flexible technologies. Exactly where these shortfalls occur is highly sensitive to 
uncertain model inputs, so our results should not be interpreted as predictions of the potentially 
most valuable geographic areas for flexible technologies. Rather, they should be interpreted as 
descriptions of a diversity of possible conditions under which any system might start to find 
flexible technologies more attractive. To this end, in regions in need of capacity, interruptible 
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load at an annual cost approaching the annualized capital costs of natural gas combustion 
turbines (approximately $83/kW-yr) was often deployed. This cost level was also supportable in 
select locations in need of reserves.  

We also found firm capacity needs to be a key driver of new storage deployment. As such, 
significant cost reductions (90% below estimated 2013 costs) were found to be required for 
storage capital costs to dip below those of natural gas combustion turbines and result in 
significant storage deployment (about 8 GW). However, since storage technologies can provide 
multiple services—including energy arbitrage and avoided curtailments—to the system and 
incurs lower variable costs compared with combustion turbines (and other conventional 
generators), some new storage capacity was found to be competitive in scenarios with higher 
costs (i.e., 50% of 2013 estimates). 

In general, this study found that it is possible to construct computationally tractable capacity 
expansion models that capture many system flexibility needs and the potential for storage and 
interruptible load to fulfill those needs. The analysis does not, however, consider the need for 
sub-hourly services or the associated value opportunities for flexibility options that could be used 
during these shorter timescales. In addition, while the methods use 8,760 hourly data, they rely 
on data from a single year (2006). A more robust assessment could include multiple years of 
data. Moreover, new energy policies that might be enacted in the future would change scenario 
results and alter the quantitative findings reported above. Finally, like many other similar 
models, RPM has certain limitations, including its system-wide approach that may not accurately 
reflect current market or institutional flexibility (or inflexibility) or the costs and value of 
flexibility from the perspective of developers, utilities, system operators, regulators, or others 
power sector participants. Nonetheless, our research demonstrates a new capability to begin to 
incorporate considerations of flexibility in large-scale capacity expansion models and provides 
initial estimates on the deployment potential for interruptible load and storage in the western 
United States. 
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Appendix A: Net Load Duration Curve Modeling for 
Variable Generation 
The use of just 96 hours of chronological dispatch in RPM means that the tails of the demand 
distribution are not adequately represented. We here present our methodology for representing 
the ability of a system to meet demand in these periods and more adequately capture system 
flexibility. The methodology uses load duration curves, or sorted system load values, to analyze 
the highest and lowest system dispatch periods and better represent system needs and constraints 
in those periods. 

Three types of load duration curves, shown in Figure A1, are used. Each of these load duration 
curves is re-calculated every model solve year to reflect changes from the previous solve year. 
The load duration curve (LDC) is the curve created by sorting the total system load. The net load 
duration curve (NLDC) subtracts the profiles of all installed variable resources, such as solar, 
wind, and fixed-dispatch hydro, from the load, and then orders the subsequent net load curve. In 
RPM, one LDC and NLDC are created for each NERC sub-region. The incremental load 
duration curve (ILDC) represents the potential new net load curve if an incremental amount of 
variable capacity is installed in a particular renewable resource region. In particular, we 
iteratively assume that 500 MW of capacity is installed in each resource region, and subtract the 
resulting output profile for that incremental capacity addition from the NLDC of the 
corresponding NERC region. There is then one ILDC for each technology type47 and renewable 
resource region represented in RPM. We use this ILDC to calculate incremental effects on a per-
MW basis of new installed capacity. Each of these load duration curves is re-calculated each 
model solve year to update the impact of newly installed technologies. 

 
Figure A1. Sample load duration curve (LDC), net load duration curve (NLDC), and incremental 

load duration curve (ILDC) 

                                                 
47 Separate ILDCs are calculated for each wind class and separately for the two utility-PV technologies (fixed tilt 
and single-axis tracking). 
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The choice of 500 MW for the increment of potential new capacity is somewhat arbitrary but is 
loosely based on large utility-scale renewable energy projects considered today. The accuracy of 
this assumption would depend on scenario outcomes; for example, if the model decides to deploy 
much greater than 500 MW of a technology in a given region, the assumption might under-
estimate the impact to curtailment or capacity value. However, this is partially mitigated as this 
installed capacity gets rolled into the “existing” VG fleet in the next solve year. In addition, we 
tested the impact of using incremental capacities ranging from 1 MW to 1,000 MW and found 
little sensitivity in the resulting capacity value and curtailment calculations until 250 MW, and 
then an increasing sensitivity in the results for incremental capacities up to 1,000 MW.  

A.1 Capacity Value 
Variable generation sources do not contribute full capacity to system resource adequacy or 
planning reserve needs, as they are not able to control their output or increase output during 
times of high load. However, these resources can reliably contribute some fraction of their 
capacity during these hours. In order to determine this fraction, we examine the impact of 
renewable resources on the capacity needs of peak hours by calculating the reduction in net 
demand during N peak hours. Figure A2 shows the areas used for the capacity value calculation 
for both existing resources and incremental resources. This method has been shown to be a good 
approximation technique for capacity value (Madaeni, Denholm, and Sioshansi 2012). This 
methodology requires N top hours of load to be analyzed. We used 100 hours for N, which is 
within the range examined by (Madaeni, Denholm, and Sioshansi 2012). We examined the effect 
of using between 1 and 500 hours for this calculation and found that between 50 and 250 hours 
yielded stable results. Smaller numbers of hours would lead to noisy results because the analysis 
is performed with only one year of data.  

 
Figure A2. Example of capacity value calculation using the load duration curve methodology 
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The average capacity value for existing resources is calculated for each NERC region as a 
fraction of the installed capacity based on the area between the LDC and NLDC for the top N 
hours analyzed:  

𝐶𝐶𝐶𝐶 = ∑ 𝐿𝐿𝐿𝐿𝐿𝐿−𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁
𝑛𝑛=1

𝑁𝑁∗𝐿𝐿
(A1) 

where CV is the capacity value, N is the number of peak hours, LDC and NLDC are the load 
duration and net load duration curves, and C is the installed capacity of the resource. The 
marginal capacity value (MCV), or the capacity value on a per-MW basis of an incremental 
amount of potential new capacity is calculated similarly as the area between the ILDC and 
NLDC for the same top number of hours: 

𝑀𝑀𝐶𝐶𝐶𝐶 = ∑ 𝑁𝑁𝐿𝐿𝐿𝐿−𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁
𝑛𝑛=1

𝑁𝑁∗𝐿𝐿
(A2) 

where in this case C is the incremental capacity used to calculate the ILDC, 500 MW. The RPM 
model uses the marginal capacity value to better inform investment decisions. Each region and 
technology type will have a different marginal capacity value for the particular resource built; 
this capacity value is then used in the planning reserve constraint for each NERC sub-region and 
allows new variable generation to contribute capacity to the system. Regions that are capacity 
limited have an incentive to build new variable generation in regions with higher marginal 
capacity values. Figure A3 shows the range of capacity values in regions in which the model 
built capacity and in those for which it did not. Many variables contribute to the model’s 
decision to build in different regions, however it can be seen that higher capacity values are 
typically preferred by the model. 

Figure A3. Marginal capacity values of utility-scale solar and wind for regions in which the model 
built new capacity and did not build new capacity for each of the model solve years 

The existing and marginal capacity values typically decrease as additional capacity is installed, 
as is seen in Figure 5 of the main paper. The exact changes in capacity values are influenced by 
both the amount of installed capacity and also the types and locations of installed capacity. The 
interplay between different technology types, particularly wind and solar, and their impact on 
each other’s capacity value is not straightforward and can in some cases lead to an increasing 
marginal capacity value over time for technology options in a given region. The use of load 
duration curves allows the RPM model to account for these complicated relationships and how 
they change from year to year in the model, and informs investment decisions for the specific 
capacity mix of the system. 
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The planning reserves constraint is implemented in RPM as 

∑ (𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑣𝑣𝑐𝑐(𝑞𝑞) + 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁 ∗ 𝑐𝑐𝑣𝑣𝑁𝑁(𝑞𝑞,𝑛𝑛))𝑞𝑞 >  𝑃𝑃(1 + 𝑅𝑅𝑀𝑀) (A3) 

where capacityO is the current installed capacity in the system, capacityN is a decision variable 
for the model to build new capacity, cvO is the existing capacity value for each technology type 
(for dispatchable resources this value is 1), cvN is the marginal capacity value by technology and 
region, P is the peak demand of the system, and RM is the reserve margin. 

A.2 Renewable Curtailment 
Curtailment of renewable generation necessitates the use of higher-variable-cost generators to 
replace the curtailed energy. Correctly representing curtailment in RPM leads to more accurate 
representation of system operations and costs. One reason for renewable curtailment includes the 
inability of thermal generators to reduce output due to generator inflexibility or operating reserve 
constraints. In other cases, transmission constraints can prevent low variable cost energy to be 
exported and used elsewhere. Typically, curtailment occurs during the lowest net load hours of 
the year, represented by the lower tail of the NLDC. We have used a similar method to the 
capacity value method described above to determine the amount of curtailment that would be 
expected throughout the year from the RPM model, and created a constraint to adequately 
represent this curtailment in the model.  

This methodology uses an effective minimum generation point of the system, the “Effective 
Min-Gen”. This min-gen level represents the lower bound on the system flexibility and is 
assumed to be constant throughout the year. This level depends on the penetration of the system 
and unit commitment decisions of the various generator types. The ability to turn down or even 
turn off generators will reduce the effective min-gen of a system. If the NLDC falls below the 
effective min-gen level, the system would not be able to reduce dispatchable generation and still 
meet system reserve and stability requirements, such that any renewable energy below this point 
would need to be curtailed. Additionally, the area between the NLDC, ILDC, and effective min-
gen level represents the marginal curtailment of new variable generators. Figure A5 shows an 
example of the effective min-gen level and the areas representing curtailed energy.  

 
Figure A5. Example of load duration curve, net load duration curve, and incremental load duration 

curve and the effective minimum generation level used to calculate curtailment 
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The curtailment parameter for the existing fleet is represented as a fraction of the available 
energy from renewable energy that is below this system min-gen level: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 =  ∑(𝑀𝑀−𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿)
𝐸𝐸

        𝑠𝑠. 𝑐𝑐.   𝑁𝑁𝐿𝐿𝐿𝐿𝐶𝐶 < 𝑀𝑀 (A4) 

where Curt is the total curtailment of existing resources per MWh, M is the effective minimum 
generation line, and E is the total available annual energy from existing variable sources. The 
summation is over all hours of the year. Similarly, the marginal curtailment (MCurt) of new 
resources is calculated per MWh of incremental energy from variable generation as 

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 =  ∑(𝑀𝑀−𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿−𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿)
𝐸𝐸

        𝑠𝑠. 𝑐𝑐.   𝐼𝐼𝐿𝐿𝐿𝐿𝐶𝐶 < 𝑀𝑀 (A5) 

The existing curtailment is calculated for each NERC sub-region based on all variable generation 
technologies installed at the beginning of each solve year, except for distributed generation 
sources (e.g., Rooftop PV). It is assumed that these are unable to be controlled by the dispatch 
process, and therefore are unable to be curtailed. Marginal curtailment is calculated for each 
individual variable generation technology type and region, as in the capacity value calculation. 
The marginal curtailment is then multiplied by the supplied energy from new generators, such 
that new generators are curtailed at a specific rate for each type and region, regardless of the 
capacity installed.  

Importantly for this method, the effective min-gen line M must be calculated based on the system 
capabilities and will change as the system changes. In order to calculate the effective min-gen 
line M, we created a regression based on data from PLEXOS production cost modeling results 
for the Western Interconnection. Data is utilized from the Western Wind and Solar Integration 
Study Phase 2 (Lew et al. 2013) and the Low Carbon Grid Study (Brinkman et al. 2015). Each 
study has multiple scenarios with different solar and wind penetrations. For each scenario, we 
modified the solar and wind profiles in the RPM model to match the solar penetration, wind 
penetration, and fixed-dispatch hydro penetration of these scenarios. With these profiles, we 
calculated the min-gen level that produced the same amount of curtailment as is seen in WWSIS 
or LCGS. From these results we created a regression for the effective min-gen lines that 
calculated the correct curtailment according to the PLEXOS studies. The regression took the 
form of  

𝑀𝑀𝑖𝑖 =  𝑐𝑐𝑖𝑖 ∗ (𝑆𝑆 +  𝑊𝑊 +  𝐻𝐻) + 𝑏𝑏i (A6) 

where Mi is the effective min-gen fraction, S is the solar penetration, W  is the wind penetration, 
H is the fixed-dispatch hydro penetration, and ai and bi are coefficients of the regression for each 
NERC region i. Figure A6 shows the regression results for each of the four NERC sub-regions in 
the Western Interconnection. The regression model is computed on a normalized basis, with Mi 
calculated as the effective minimum generation level divided by the dispatchable capacity of the 
system. 
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Figure A6. Effective minimum generation regression for each NERC region based on the 

penetration of variable generation sources 

This regression is then tested against data from flexibility studies in California (Paul Denholm et 
al. 2015) and the Colorado Test System (Palchak and Denholm 2014) in order to ensure the 
regressions yield realistic results for other systems. The validated effective min-gen regression is 
then used with data for each model year to predict the effective minimum generation level for 
that particular system. This min-gen level will change as RPM installs higher penetrations of 
renewable sources, and is used to calculate the existing and marginal curtailment from 
renewables on the system.  

These curtailment values are then incorporated into the RPM model as constraints on the 
optimization problem. RPM requires that the total curtailment from all existing renewable 
sources be greater than the calculated existing curtailment, and also requires that the curtailment 
from new renewable sources be greater than the calculated marginal value of curtailment. These 
constraints are represented in RPM as: 

� 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ, 𝑛𝑛, 𝑞𝑞)
ℎ,𝑎𝑎,𝑞𝑞

≥  𝐸𝐸𝑂𝑂 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 + ���𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ)
ℎ

� ∗ 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐(𝑞𝑞,𝑛𝑛)
𝑞𝑞,𝑎𝑎

 

�𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ, 𝑛𝑛, 𝑞𝑞)
ℎ

≥ ��𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ)
ℎ

� ∗ 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐(𝑞𝑞, 𝑛𝑛)  

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ,𝑛𝑛, 𝑞𝑞) ≤ 𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ) 

where Curtailment is the total curtailed energy in the model, EO is the total available energy 
from existing variable generation sources, EN is the available energy from potential new variable 
generation sources, Curt is the existing curtailment fraction, MCurt is the marginal curtailment 
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fraction, h is a particular hour of dispatch, n is a particular resource region, and q is a particular 
technology type. These equations require the model to satisfy both the overall curtailment 
constraint throughout the model and the increased curtailment from building new generation 
sources in a particular area. 

The curtailment constraints do not specify any time constraints on the curtailment; they only 
specify the yearly total curtailment. As such, the model is allowed to optimize when curtailment 
occurs throughout the year. However, the curtailment for any hour, region, and technology must 
be less than the available energy for that particular hour, region and technology. Figure A8 
shows how the model distributed the curtailment in one case with 30% penetration. 

 
Figure A8. Hourly curtailment for WECC 

The curtailment constraints influence model decision making by reducing the amount of energy 
that a particular resource may provide. This will influence the effective cost of these resources, 
potentially making one resource more expensive to the model. Figure A9 shows the marginal 
curtailment values for regions in which the model chose and did not choose to build new 
capacity. RPM does not include a cost to curtailment, so higher marginal curtailment values only 
impact the optimization decisions in terms of the total energy that a particular resource would be 
able to provide. 
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Figure A9. Marginal curtailment fractions of utility-scale solar and wind for regions in which the 
model built new capacity and did not build new capacity for each of the model solve years 

This approach to modeling curtailment has several drawbacks, including an indirect modeling of 
transmission and a static regression. Typically the ability to export excess energy during periods 
of high renewable generation allows for reduction in curtailment from regions with high wind or 
solar penetration. While the aggregate imports and exports in WECC are captured within the 
regression model, this static method only accounts for imports and exports as modeled in these 
studies. Additionally, the impact of additional transmission capacity or installation of variable 
generation in regions not modeled in WWSIS-2 or LCGS would not be captured in this 
regression.  

A regression model is required because RPM does not explicitly model unit commitment, so is 
unable to determine its own minimum generation levels based on integer commitment constraints 
of the generators. Additionally, the regression is based on static capacity. The retirement of base-
load generators or the installation of new flexible technologies would impact the regression 
model; however, the regression model does not take these impacts into account, nor does the 
regression model change with time. However, the studies used to create the regression model 
represent a variety of regions and renewable penetrations such that we believe the regression 
adequately models potential future outcomes. This is, however, an area for future research. 
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Appendix B: Net Load Duration Curve Modeling for 
Flexibility Investments 
B.1 Interruptible Load Methodology
Interruptible load technologies affect the NLDC and ILDC predominantly at the peak due to their
operational pattern of reducing load during periods of high demand. As such, the only flexibility
method related to these technologies is the calculation of capacity value, no curtailment impacts
are modeled.

The capacity value of interruptible load is determined by a similar method to variable generation. 
Interruptible load resources have constraints that limit their ability to be used on demand, which 
reduces the resources’ abilities to contribute their full capacity to the system. As such, these 
technologies are subject to capacity reductions similarly to variable generation sources. We 
assume annual and daily energy budgets for these resources, thereby constraining their capacity 
values. The top 100 hours of the year are used to determine the degree to which these resources 
are able to reduce capacity needs during peak hours. However, interruptible load resources do 
not have weather-determined output profiles as do variable generation resources. Before 
implementing the capacity value method, we create an example profile. When creating this 
profile, we assume these resources will be used within the full extent of their availability and that 
grid operators will call these resources during the times of highest demand. The created profiles 
do not inform model decisions; they are only example profiles for how the resources could be 
used by system operators.  

Once these profiles are created, the same methodology is applied to the profiles as is done with 
variable resources to calculate a capacity value. A key difference however is that the assumed 
profile is subtracted from the NLDC rather than the LDC to account for the ability of these 
resources to mitigate variability from non-dispatchable sources. The capacity values found for 
interruptible resources varied greatly based on their annual and daily energy budgets and the 
fraction of the top hours in which they are able to participate, with the maximum capacity value 
of interruptible load resources with 50 hours of annual storage being only 0.5, and reduced 
capacity values for resources with lower daily energy limits. Figure A4 shows the marginal 
capacity value of the technologies that were and were not built by the model. 
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Figure B1. Marginal capacity values of interruptible load resources for resources deployed and 
not deployed for each of the model solve years 

B.2 Storage Methodology
Storage technologies allow for additional system flexibility by shifting energy from periods of
low demand to high demand. This flexibility can be captured by calculating the capacity value
and the reduction in curtailment a storage technology can provide. We use similar methods to
those described in sections A.1 and A.2 to determine the additional flexibility provided by
storage facilities. Similar to interruptible loads, storage technologies do not have a fixed profile
of available energy, but do have constraints on their ability to provide energy at peak times. We
use a similar methodology to create an example profile for each storage technology, taking into
account the constraints on energy storage capacity for each technology, including total storage
capacity and upper and lower boundaries on storage levels. We assume that these systems would
be operated to maximize their use, storing energy during periods of low demand and dispatching
this energy during periods of high demand while cycling with a period of 𝑒𝑒(1 + 1/𝜂𝜂). While this
profile does not indicate how the storage facility would be used within the RPM model, it
represents an example of how the system might be operated in a manner to provide both high
capacity value and high curtailment reduction. We ensure that the sample profile obeys all
temporal constraints of the storage facilities.

This sample storage profile is then subtracted from the NLDC to create a new storage load 
duration curve (SLDC), which typically impacts both the highest and lowest hours of the NLDC. 
This is done for each storage technology and each NERC region. A sample SLDC can be seen in 
Figure A10. The SLDC is used to compute the average capacity value of all storage technologies 
installed in a solve year. When storage technologies of various energy capacities are installed, 
the SLDC is created by ordering the storage technologies from lowest energy capacity to highest 
energy capacity, such that fast cycling storage technologies are first used to smooth variability, 
followed by longer cycling storage technologies. 
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Figure B2. Example of load duration curve impacts from storage technologies on the capacity 

value and curtailment 

New storage capacities are also investigated with the creation of an incremental storage load 
duration curve (iSLDC). This curve uses an incremental capacity of 500 MW and is created 
similarly to the SLDC based on constraints on the storage facilities. The storage capacity is 
defined for each class of storage technology and an iSLDC is calculated for each potential new 
storage technology and NERC region. We assume that the value of storage will be more closely 
related to the load duration curves of a particular NERC region than node, and assign the same 
iSLDC to each node within a NERC region. The capacity value calculated for each iSLDC 
informs the ability of new storage facilities to contribute to the capacity requirements of each 
region. 

The curtailment reduction from adding storage to a system is computed in a similar manner to 
that described in section A.2, using the SLDC rather than the NLDC. The effective minimum 
generation line is assumed to be fixed from the analysis of existing and marginal curtailment, and 
that the storage facility would only increase the values relative to the NLDC such that 
curtailment would be reduced. Figure A11 shows an example SLDC and its impact on 
curtailment. 

 
Figure B3. Example of storage impacts on the net load duration curve, and the curtailment fallout 
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Marginal curtailment from an incremental amount of storage is calculated as a potential 
reduction in curtailment when storage is added, based on the difference in the SLDC and iSLDC. 
Figure A12 shows the incremental reduction from curtailment. 

 
Figure B4. Example of load duration curve from an incremental amount of storage and the impact 

new storage technologies can have on curtailment 

When storage is included in the model, Equation A7 is modified as: 

� 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ,𝑛𝑛, 𝑞𝑞)
ℎ,𝑎𝑎,𝑞𝑞

≥  𝐸𝐸𝑂𝑂 ∗ (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 − 𝑀𝑀𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 ∗ 𝑆𝑆𝑁𝑁) + ���𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ)
ℎ

� ∗ 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐(𝑞𝑞,𝑛𝑛)
𝑞𝑞,𝑎𝑎

 

�𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ, 𝑛𝑛, 𝑞𝑞)
ℎ

≥ ��𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ)
ℎ

� ∗ 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐(𝑞𝑞, 𝑛𝑛)  

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐(ℎ, 𝑛𝑛, 𝑞𝑞) ≤ 𝐸𝐸𝑁𝑁(𝑞𝑞,𝑛𝑛,ℎ) (A8) 

where SCurt is the curtailment calculated with the SLDC instead of the NLDC, MSCurt is the 
marginal curtailment reduction from an incremental amount of storage capacity, SN is the amount 
of new storage capacity installed, and all other terms are as Equation. A7. This equation 
incentivizes the model to install additional storage technologies based on their ability to reduce 
curtailment from renewable sources. 

We do not calculate an interaction term between incremental storage capacity and incremental 
renewable capacity, which theoretically could be used to determine the degree to which 
additional storage facilities could reduce curtailment of new renewable facilities. However, this 
term would lead to non-linearities in the model so is not included. The effect such an interaction 
would have is assumed to be small however, and once new technology is installed, its impacts 
are fully incorporated in the next model solve year. 
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Appendix C: Detailed Equation Listings 
C.1  Interruptible Load Model 
The investment decisions and dispatch of interruptible load are subject to the following 
constraints in the optimization portion of the model. First, nodal capacity of technology sub-class 
c, 𝐶𝐶𝑎𝑎,𝑐𝑐, is determined by the BA capacity, 𝐶𝐶𝑏𝑏,𝑐𝑐, multiplied by the node’s load participation factor, 
𝑝𝑝𝑎𝑎; and generation P, which is a function of the model hour (𝑑𝑑,ℎ) defined by dispatch period d 
and hour h, is similarly distributed: 

𝐶𝐶𝑎𝑎,𝑐𝑐 = 𝐶𝐶𝑏𝑏,𝑐𝑐 ∙ 𝑝𝑝𝑎𝑎, ∀𝑏𝑏, 𝑐𝑐,∀𝑛𝑛 ∈ 𝑁𝑁𝑏𝑏 

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ = 𝑝𝑝𝑎𝑎 ∙ � 𝑃𝑃𝑎𝑎′,𝑐𝑐,𝑑𝑑,ℎ
𝑎𝑎′∈𝑁𝑁𝑏𝑏

,   ∀𝑏𝑏, 𝑐𝑐, 𝑑𝑑,ℎ                                    (C.2) 

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,ℎ = 𝑝𝑝𝑎𝑎 ∙ � 𝑃𝑃𝑎𝑎′,𝑐𝑐,𝑎𝑎,𝑑𝑑,ℎ
𝑎𝑎′∈𝑁𝑁𝑏𝑏

,   ∀𝑏𝑏, 𝑐𝑐, 𝐶𝐶,𝑑𝑑,ℎ                             (C.3) 

Note that Eqn. C.2 specifies generation for new sources of interruptible load, while Eqn. C.3 
specifies generation for existing sources of interruptible load, which have been assigned a unit 
number, u, for tracking. The sum of new and old capacity (𝑐𝑐𝑏𝑏,𝑐𝑐,𝑎𝑎, a parameter) is restricted to be 
less than a fraction 𝐶𝐶𝑐𝑐 of peak load, by BA 

𝐶𝐶𝑏𝑏,𝑐𝑐 + �𝑐𝑐𝑏𝑏,𝑐𝑐,𝑎𝑎
𝑎𝑎

≤ 𝐶𝐶𝑐𝑐 max
𝑠𝑠
𝐶𝐶𝑏𝑏,𝑠𝑠,  ∀𝑏𝑏, 𝑐𝑐 

where 𝐶𝐶𝑏𝑏,𝑠𝑠 is the 8,760 load time series for BA b. And then we model energy limitations at two 
timescales—one constraint on the amount of energy available per day a found in our 96 hour 
model of dispatch: 

� 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ
(𝑑𝑑,ℎ)∈𝐿𝐿𝑎𝑎

≤ 𝐶𝐶𝑎𝑎,𝑐𝑐 ∙ 𝑒𝑒𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑, ∀𝑐𝑐, 𝑛𝑛, 𝑐𝑐 

� 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,ℎ
(𝑑𝑑,ℎ)∈𝐿𝐿𝑎𝑎

≤ 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 ∙ 𝑒𝑒𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑,   ∀𝑐𝑐,𝑛𝑛, 𝑐𝑐,𝐶𝐶 

and another for the entire year, where 𝑠𝑠𝑑𝑑 is the number of hours in the year represented by model 
hour (𝑑𝑑,ℎ): 

�𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ ∙ 𝑠𝑠𝑑𝑑
𝑑𝑑,ℎ

≤ 𝐶𝐶𝑎𝑎,𝑐𝑐 ∙ 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , ∀𝑛𝑛, 𝑐𝑐 

�𝑃𝑃𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,ℎ ∙ 𝑠𝑠𝑑𝑑
𝑑𝑑,ℎ

≤ 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 ∙ 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .  ∀𝑛𝑛, 𝑐𝑐,𝐶𝐶 
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C.2  Storage Model 
The dispatch portion of the optimization model imposes the following constraints on storage 
operation. Storage level is modeled by letting the model choose the starting storage level for each 
dispatch period, 𝐿𝐿𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 (further indexed below by node n and storage sub-class c), and then 
calculating changes to that level based on generation 𝑃𝑃𝑑𝑑,ℎ

𝑔𝑔𝑔𝑔𝑎𝑎, charging 𝑃𝑃𝑑𝑑,ℎ
𝑐𝑐ℎ𝑔𝑔, and use for flexibility 

and regulation reserves (𝑅𝑅𝑑𝑑,ℎ
𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 and 𝑅𝑅𝑑𝑑,ℎ

𝑠𝑠𝑔𝑔𝑔𝑔, respectively). In particular, for new resources, we have 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,1 = 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,1

𝑔𝑔𝑔𝑔𝑎𝑎 + 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,1
𝑐𝑐ℎ𝑔𝑔 ∙ 𝜂𝜂𝑐𝑐 − 0.25�𝑅𝑅𝑎𝑎,𝑐𝑐,𝑑𝑑,1

𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 + 𝑅𝑅𝑎𝑎,𝑐𝑐,𝑑𝑑,1
𝑠𝑠𝑔𝑔𝑔𝑔 �(1− 𝜂𝜂𝑐𝑐)  ∀𝑛𝑛, 𝑐𝑐,𝑑𝑑 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ = 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ−1 − 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ
𝑔𝑔𝑔𝑔𝑎𝑎 + 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ

𝑐𝑐ℎ𝑔𝑔 ∙ 𝜂𝜂𝑐𝑐 − 0.25�𝑅𝑅𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ
𝑓𝑓𝑎𝑎𝑔𝑔𝑓𝑓 + 𝑅𝑅𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ

𝑠𝑠𝑔𝑔𝑔𝑔 �(1 − 𝜂𝜂𝑐𝑐) ∀𝑛𝑛, 𝑐𝑐,𝑑𝑑,∀ℎ > 1 

and the constraints for existing resources are identical except that they are further indexed by a 
unit u. The roundtrip efficiency for sub-class c is 𝜂𝜂𝑐𝑐. Explanatory detail is given in Section 3.2.  

The storage level is constrained to stay within its sub-class specific energy constraint 𝑒𝑒𝑐𝑐 both on 
an hourly, and a seasonal basis. The hourly constraints for new resources are: 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 ≤ 𝐶𝐶𝑎𝑎,𝑐𝑐 ∙ 𝑒𝑒𝑐𝑐, ∀𝑛𝑛, 𝑐𝑐, 𝑑𝑑 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,ℎ ≤ 𝐶𝐶𝑎𝑎,𝑐𝑐 ∙ 𝑒𝑒𝑐𝑐, ∀𝑛𝑛, 𝑐𝑐,𝑑𝑑,ℎ, 

and the ones for existing resources are nearly identical: 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 ≤ 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 ∙ 𝑒𝑒𝑐𝑐, ∀𝑛𝑛, 𝑐𝑐,𝐶𝐶,𝑑𝑑 

𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,ℎ ≤ 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 ∙ 𝑒𝑒𝑐𝑐, ∀𝑛𝑛, 𝑐𝑐,𝐶𝐶,𝑑𝑑,ℎ, 

except that 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 is not a variable (as is 𝐶𝐶𝑎𝑎,𝑐𝑐), but rather a parameter that represents the total 
amount of existing capacity of sub-class c at node n and assigned to unit u. The seasonal energy 
constraint is necessary because we allow imbalances over individual dispatch periods, and only 
require full balancing on an annual basis. Mathematically, these two constraints are expressed as 

�𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,24 − 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠� ∙ 𝑠𝑠𝑑𝑑 ≤ 𝐶𝐶𝑎𝑎,𝑐𝑐 ∙ 𝑒𝑒𝑐𝑐,∀𝑛𝑛, 𝑐𝑐,𝑑𝑑 

��𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑,24 − 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠� ∙ 𝑠𝑠𝑑𝑑

𝑑𝑑

= 0,∀𝑛𝑛, 𝑐𝑐 

for new capacity and as  

�𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,24 − 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 � ∙ 𝑠𝑠𝑑𝑑 ≤ 𝑐𝑐𝑎𝑎,𝑐𝑐,𝑎𝑎 ∙ 𝑒𝑒𝑐𝑐,∀𝑛𝑛, 𝑐𝑐,𝐶𝐶,𝑑𝑑 

��𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑,24 − 𝐿𝐿𝑎𝑎,𝑐𝑐,𝑎𝑎,𝑑𝑑
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 � ∙ 𝑠𝑠𝑑𝑑

𝑑𝑑

= 0,∀𝑛𝑛, 𝑐𝑐,𝐶𝐶 

for existing capacity, where 𝑠𝑠𝑑𝑑 is the number of hours in the year represented by each hour in d. 
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