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Illustration Credit: Jon Leather, Castrol (left) and NREL (right) 
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Photo by HC Sorensen, Middelgrunden Wind Turbine Cooperative, 
NREL  17856 Photo by Iberdrola Renewables, Inc., NREL 16706  

Source: GWEC [1] 
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Reliability of Turbine Subassemblies: Old Statistics [2, 3]  
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Failure/turbine/year and downtime from two large surveys of land-based European wind turbines over 13 years 

• The Wissenschaftliches Mess-und Evaluierungsprogramm (WMEP) database was 
accomplished from 1989 to 2006 and contains failure statistics from 1,500 wind turbines.  

• Failure statistics published by Landwirtschaftskammer Schleswig-Holstein (LWK) from 
1993 to 2006 contain failure data from more than 650 wind turbines.  
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 Downtime caused by premature component/subsystem 
failures, led by gearboxes, challenging the wind industry 
and resulting in increased cost of energy for wind power     
 

- Mechanical: Yaw Systems, Mechanical 
Brakes, Hydraulic Systems, Rotor Hubs, 
Drivetrain 

- Electrical: Sensors, Electrics, Control 
Systems 
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Wind Plant O&M 
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 O&M research needs:  
• The majority of the wind 

turbines (~370 gigawatts [GW]) 
installed worldwide are out of 
warranty  

• A 1% performance 
improvement: ~$1.2 billion 
additional revenue (assumed: 
30% capacity factor, 
$120/megawatt-hour [MWh] 
electricity rate) 

• Extremely high replacement 
costs for most subsystems [5]. 

 O&M cost reduction and 
business opportunities:  
• ~21% of life cycle cost for 

offshore plants and ~11% 
for land-based plants [6] 

• Further reductions 
achievable by improved 
O&M practices 

• Global O&M market likely 
to reach $20.6 billion by 
2023. [7] 

 Actions to improve 
performance, reliability,  
and availability more 
critical for offshore wind. 
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Prognostics and Health Management 

8 

 One definition of 
prognostics and health 
management [8]: an 
approach to system 
life-cycle support that 
seeks to reduce or 
eliminate inspections 
and time-based 
maintenance through 
accurate monitoring, 
incipient fault 
detection, and 
prediction of impending 
faults. 

 

One Architecture for Prognostics and Health 
Management Process [9] 
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Prognostics and Health Management (Cont.) 
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 Benefits [10]: 
• Increased productivity 
• Reduced downtime 
• Reduced number and 

severity of failures, 
particularly 
unanticipated failures  

• Optimized operating 
performance 

• Extended operating 
periods between 
maintenance 

 

• Reduced 
unnecessary planned 
maintenance 

• Reduced life-cycle 
cost. 

 Applications: 
• Fuel cell systems 
• Nuclear power 

plants 
• Aviation 
• Electronics  
• Wind. 

 



10 

Current Status of Prognostics and Health Management in the Wind Industry 

 Focuses 
 Typical Practices  

• Performance Monitoring  
• Condition Monitoring. 

 

Photo by Gary Norton/DOE, NREL  27358 
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Focuses 
 Subsystems on drivetrain: main shaft bearing, 

gearbox, and generator   
 Layers 1 to 4: sensing, signal processing, fault 

detection, and diagnostics 

 Illustration Source: [9] 
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Performance Monitoring Using SCADA Data 
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SCADA: Supervisory Control and Data Acquisition   Illustration Source: [5] 
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Performance Monitoring 
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 Classification of Measured Parameters [11]:  
• Wind parameters: e.g., speed, deviation  
• Performance parameters: e.g., power output, rotor speed, blade 

pitch angle  
• Vibration parameters: e.g., tower acceleration, drivetrain 

acceleration   
• Temperature parameters: e.g., bearing and gearbox temperature.   

 Grouping of Control System Status Report [12]: 
• Status codes: e.g., error, warning 
• Operating states: e.g., brake, start, yaw, pitch.  

 Analysis:  
• Correlate different groups of parameters (e.g., power and wind),  

develop models for normal operational states, and use these 
models to identify abnormal scenarios  

• Conduct statistical analysis of events (e.g., status codes) 
experienced by turbines at a wind plant. 
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Performance Monitoring [5, 14]  
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 Benefits:  
• Readily available and no need of investment in dedicated 

condition monitoring instrumentation 
• Helpful for identifying outliers that may need further 

inspection by looking at key performance parameters or 
status codes.   

 
 Drawbacks:  

• May not be straightforward in pinpointing exact damaged 
subsystems/components (e.g., bearings or gears inside 
gearboxes)  

• Many false alarms caused by varying loads experienced by 
turbines  

• Does not meet full turbine condition monitoring needs, such 
as fault diagnosis.  
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Example: Main Shaft Bearing [15] 
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Main Shaft Bearing 
Fault 
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Condition Monitoring [5, 13] 
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 Typical Techniques:  
• Acoustic emission (e.g., 

stress wave) or 
vibration analysis  

• Oil.  

 Real-time continuous  
or offline periodic  

 One or a 
combination of a 
few.  
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Condition Monitoring with the Drivetrain as a Focus  
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 Raw Signal Examples:  
• Accelerations, acoustic emissions  
• Oil debris counts, oil cleanliness measurements. 

 Feature (Condition Indicator) Examples:  
• Preprocessing: filtering 
• Time-domain statistical parameters: peak, root mean square 
• Frequency domain: gear meshing frequencies and 

sidebands, bearing fault frequencies, and their statistical 
values.   

 Typical Diagnosis:  
• Trending or rate of changes of features or condition 

indicators  
• Appearance of frequency components corresponding to 

certain faults or abnormal modulation of signal spectra  
• Violating thresholds set for certain features.  
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Condition Monitoring  
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 Benefits:  
• Capturing high-frequency dynamics normally not achievable 

with a typical SCADA system  
• Identifying more failure modes occurred to turbine 

subsystems or components  
• Pinpointing exact damaged locations/components  
• Enabling condition or reliability-based maintenance, 

prognostics, and health management. 

 
 Drawbacks:  

• Additional investment required for instrumentation and 
monitoring service 

• Dedicated resources on data analysis and interpreting 
results.  
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Case Study: A 750-Kilowatt Test Gearbox  
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1. Completed dynamometer run-in test 
2. Sent for field test: experienced two oil losses  
3. Stopped field test  
4. Retested using the dynamometer under controlled 

conditions. 

High-speed-stage gear damage 
Photo by Lee Jay Fingersh, NREL 16913 Photo by Robert Errichello, NREL 19599 
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Gearboxes: Vibration Analysis [16]   
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 Intermediate-speed-shaft 
sensor 

 Dynamometer test of the 
healthy test gearbox (left) 
indicated normal gearbox 
behavior. 

 Dynamometer retest of the 
damaged gearbox (right) 
indicated abnormal behavior   
• More side band frequencies 
• Elevated gear-meshing 

frequency amplitudes. 

 Various condition 
indicators can be 
defined to ease the 
fault diagnostics 
process.  
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Test Gearbox Lubrication Diagram [17]  
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Wind Farm/Photo by Iberdrola Renewables, Inc., NREL 16707 
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Gearbox: Oil Debris Monitoring by K1 [17] 
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 Particle generation rates: 
• Damaged test gearbox: 70 particles/hour on 9/16/2010 
• Healthy reference gearbox: 11 particles over a period of 4 hours. 
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Gearbox: Oil Debris Monitoring by K1~K3 [17] 
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• Similar trends  
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Gearbox: Oil Cleanliness by K4 [17] 
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Gearbox: Oil Cleanliness by K4 (Cont.) [17] 
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Gearbox: Oil Sample Analysis [17]  
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 Results: dynamometer test of the reference gearbox 
• Particle counts: important to identify particle types. 

Analysis Results Reference Limits 

• Element identification 
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Summary: Typical Practices 
 Most performance monitoring data analysis techniques 

can identify abnormal behaviors and be used for initial 
screening of potential turbine issues. 
• Readily available measured parameters and status codes  
• Limited when carrying out a full condition monitoring of wind 

turbine subsystems/components. 
 

 Temperature may be used as a reliable indicator for the 
condition monitoring of main bearings, generator 
bearings, or gearbox high-speed stage bearings, but may 
not provide enough lead time to save the monitored 
component. 

 
 Most condition monitoring data analysis techniques can 

help pinpoint specific subsystems/components with 
faults and enable prognostics and health management. 

.  
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Summary: Typical Practices (Cont.) 
 Vibration analysis appears to be the most widely 

investigated and reported technique. It can monitor 
the health of most drivetrain, and even turbine, 
subsystems/components. 
 May have challenges with low-speed-stage 

subsystems/components. 
  

 Results from counting oil debris are easier to interpret 
and provide unique information on gearboxes 
(typically the only oil-lubricated subsystem in a wind 
turbine) because damaged gearboxes release particles 
at increased rates. 
• Effective for monitoring gearbox component damage, and 

similar trends can be obtained between main and kidney 
filtration loops. 

• Not effective for pinpointing damage locations.   
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Summary: Typical Practices (Cont.) 

 Measurements of oil cleanliness levels can be used 
to monitor and control the run-in of wind turbine 
gearboxes. 
• Transient events appear more damaging.  

 
 When obtaining particle counts through oil-sample 

analysis, attention should be given to identifying 
particle types. 

 
 Periodic oil-sample analysis may help pinpoint failed 

components and root-causes.  
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Summary: Typical Practices (Cont.) 
 Dedicated condition monitoring 

systems require additional 
investment for instrumentation 
and resources for data analysis or 
results interpretation. 

 
 Given the diverse and complex 

failure modes seen in wind turbine 
drivetrains, an integration 
approach is recommended. 
 

 Start with an initial digest of 
SCADA data and then fuse several 
dedicated techniques by 
considering their advantages and 
disadvantages.  
 
 
 
 
 

Scuffing 

Spalling 
Photo Credits: Andy Milburn, Milburn Engineering 
(top); and Ryan Evans, Timken (bottom) 
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R&D Activities  
 Efforts not widely practiced by the wind industry.  
 All layers within the following prognostics and health 

management architecture  
• Sensing: L1  
• Signal Processing and Modeling: L2-L5   
• O&M: L6-L7. 

 

 Illustration Source: [9] 
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Sensing [14, 18] 
 Strain measurements: external 

nondestructive  
 Ultrasonic: nondestructive evaluation  
 Shock-pulse method: low-speed components  
 Filter-element analysis: complementary to 

oil-sample analysis  
 Electric-signature analysis: only verified at 

test rig or small-scale wind turbines  
 Oil-condition measurements: oil property 

deterioration over age; long-term study is 
needed. 

Photo by Jonathan Keller, NREL 27895 
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Signal Processing and Modeling  
 Time-Frequency Analysis [5] 

• Wavelet transform and Wigner-Ville distribution: 
nonstationary not nonlinear  

• Empirical mode decomposition: nonstationary and 
nonlinear, desired frequency range identification not 
flexible.   

 Data-Driven Modeling [5, 19] 
• Neural network: efficient but hard to train  
• Genetic programming: mathematically simulate complex 

problem but hard to understand physical meaning  
• Regression analysis based on normal conditions and 

discrepancy evaluations: SCADA data mining and modeling 
not meeting complete prognostics and health 
management requirements. 

 Physics-Based Modeling [20] 
• Bearing life model and miner’s rule: component-specific 

may become complex for a turbine.  
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O&M 
 Not many activities for land-based wind plants [21, 22] 

• Partially observed Markov decision process for optimal repair 
strategies of wind turbines to minimize cost under stochastic 
weather conditions 

• Cost-benefit-risk model for evaluation of wait-to-maintain option 
with assumed remaining useful life and a prognostic indication. 

 Active for offshore wind plants [23, 24] 
• Time domain Monte-Carlo simulation to find out the most cost-

effective approach to allocate O&M resources considering  
environmental conditions, transportation systems, failures, and 
repairs 

• Bayesian theory for optimal planning of inspections and 
maintenance based on a single wind turbine and a single 
component considering inspections, repairs, and loss of 
production. 
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R&D Activities  
 Sensing  

• Need to justify the added cost to be widely accepted by the industry  
• Has potential especially for those complementary to the popular 

vibration and oil analysis such as shock-pulse, filter-element, and 
electric-signature analysis.  

 Signal Processing and Modeling  
• Academically very attractive but oftentimes computationally expensive 

and hard to implement in the field  
• Modeling work faces validation challenges as it normally needs long-

term data collection, which is very difficult within the wind industry. 
 O&M 

• Less attractive to owners and operators of land-based wind power 
plants, as they may face parts and technician availability challenges 

• More attractive to offshore wind plant owners and operators because of 
the high value proposition mainly caused by even less accessibility and 
additional logistics and scheduling complexities. 
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Concluding Remarks 

 Summary  

 Future R&D Opportunities 

 Offshore wind turbine. Photo by Eric Nelson, NREL 21965 
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Summary 
 Prognostics and health management in the wind industry has been 

focusing on the first four layers, and gaps with the other few layers 
need to be filled to maximize the benefits of prognostics and health 
management to wind.  

 Illustration Source: [9] 
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Future R&D Opportunities  
 O&M  

• Fusion of various data streams to optimize O&M 
practices, reduce loads, and extend life of turbine 
subsystems/components  

• Automate data interpretation to deliver actionable 
maintenance recommendations. 

 Signal Processing and Modeling  
• Research on improved use of SCADA data 
• Improve accuracy and reliability of diagnostic 

decisions, including level of severity evaluation  
• Develop reliable and accurate prognostic 

techniques to enable remaining useful life 
estimation of turbine components/subsystems.  
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Future R&D Opportunities 
 Sensing 

• Complementary or superior to solutions currently adopted 
by the wind industry  

• New technologies targeting next critical 
subsystem/component in wind turbines  

 Uncertainty representation and interpretation, 
quantification, propagation, and management  [25] 

 Perspective shift from individual turbine to entire plant 
• Research plant-level or fleet-wide condition monitoring and 

asset management technologies  
• Big data analytics and Internet of Things  

 Field application feasibility study and cost effectiveness 
justification for any prognostics and health management 
solutions to impact the industry in a big way.  

Challenging, yet rewarding. 
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