The Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

Bryan Palmintier, PhD.
Senior Research Engineer, NREL

Team: Elaine Hale, Tim Hansen, Bri-Mathias Hodge, Hongyu Wu, Dave Biagioni, Wes Jones, Kyri Baker, Julieta Giraldez, Monte Lunacek

HPC in Power Systems Planning Panel
IEEE PES General Meeting
July 28, 2015
The Emerging, Integrated Grid

- Natural Gas Generators
- Nuclear Power Plants
- Hydro power plants
- Transmission System
- Distributed storage
- Distributed wind
- Rooftop Solar
- Wind Farms
- Solar Farms
- T + D...
- Energy Efficiency
- PHEV
- Home Energy Storage
- Commercial Customers
- Solar Farms
- Wind Farms
- Distributed storage
- Smart Meters
- Distributed Generation
- Wireless Networks
- Time of Use
- PMU
- Dynamic Pricing
- Fault Restoration
- AMI
- Smart Appliances
- Home Area Network
- Outage Management
NREL’s Integrated T&D Grid Modeling System (IGMS)

Summary:
A next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources.

End-to-End T&D Modeling Capability
• detailed multi-period wholesale markets (including LMPs)
• generator/reserve dispatch (AGC)
• AC Powerflow (bulk transmission)
• Full unbalanced 3-ph power flow for 100s-1000s of distribution feeders
• Physics based end-use models of buildings and end-use loads.

Example Applications
• **Current**: Analyze distributed PV support for grid operations
• **Future**:
 • Simulate smart grid storage, PV, and demand response
 • Simulate alternative market and service architectures
 • Co-simulation with Hardware via PHIL
 • Connect to Advanced DMS/EMS systems

Status
• **Successful Medium Scale Run(s)**: 118 Transmission buses, 743 Distribution Feeders (PNNL taxonomy), >1M total buses, >600k homes
• **FY15 Development to Date**:
 • Automated output processing and visuals (pull from 1000s of files)
 • Semi-Automated data import from PLEXOS, SynerGEE, & CyME
 • Comparison of IGMS to stand-alone tools
• **Next Steps**: Scale-testing (run time for 10-1000+ feeders), High-Pen PV Scenario development, DGPV for Grid Operations Research
• Day-Ahead Commitment
• Real-time Commitment
• Real-time Dispatch
• AGC reserves
• AC Powerflow (pos-seq, balanced)
• Nodal:
 - Prices
 - Services
 - Voltage

• Return:
 - Power
 - Reactive
 - (Bids)
• 3-ph unbalanced powerflow
• Physics:
 o DERs
 o Load
Often the simulation itself is the “easy” part, compared to set-up and output analysis.
IGMS-Input Data Conversion

Distribution: SynerGEE and CYME to GridLAB-D

1. SynerGEE objects collected
2. Operated via syntax or mathematical conversions
3. Create GridLAB-D text element
4. Create “.glm” GridLAB-D file

POC: Julieta Giraldez

Transmission: PLEXOS to FESTIV – with RPM
IGMS-Populating Feeders with Houses & PV

Scenario
- sim start: 4/16/2020
- sim duration: 1 d
- sim timestep: 1 min

Transmission
- FESTIV case
- IGMS-FESTIV model rules and configuration
- Startup .mat file

Distribution
- Assign feeder models to nodes
- glmgen options for populating GridLAB-D
- LHS sampling

Core feeder processing built on evolved form of Open Modeling Framework
IGMS-Output Processing

Load and Voltage

The nodes in the graph are colored by their maximum change in voltage, where darker colors have a greater change.
Current Research Questions

• Can ISO-level visibility of DGPV reduce required bulk system reserve requirements while maintaining reliability standards? How does this change with PV penetration?

• To what extent can high penetration DGPV with advanced inverters contribute to bulk system reactive power and voltage support? How does this change with PV penetration?

• What are the bulk operational impacts of advanced distributed energy scheduling?

• …
Other HPC for planning efforts at NREL

- Time domain parallelization of (very) large PLEXOS production cost—nodal EI: 60k (Clayton Barrows and Aaron Townsend)
- Distributed Energy Scheduler—control framework simulations in IGMS (Emiliano Dall'Anese)
- Energy+ and PLEXOS for DR (Elaine Hale)
Integrated Energy Systems Model (IESM)

- Distribution (GridLAB-D) co-simulation with many home energy management systems (HEMS)
- Retail tariff/market evaluation
- Hardware-in-the-loop
- (Proposed) link to IGMS
Future directions for T+D

• IGMS + IESM = “Prosumer as price maker”
• Enhance economic analysis in IGMS
 o Retail-Wholesale market interactions
 o Customer and utility accounting
• T+D+... Comms, Loads, Markets, etc.
• Large-scale simulations for Power Hardware-in-the-Loop
Questions

Thanks!

Bryan.Palmintier@nrel.gov