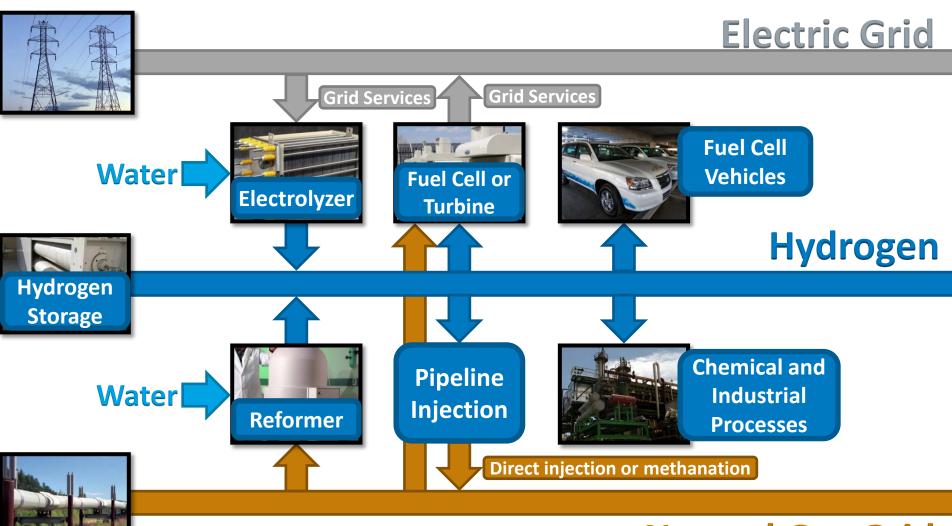


Hydrogen Energy Storage and Power-to-Gas

Establishing Criteria for Successful Business Cases

USAEE/IAEE 33rd Annual North American Conference

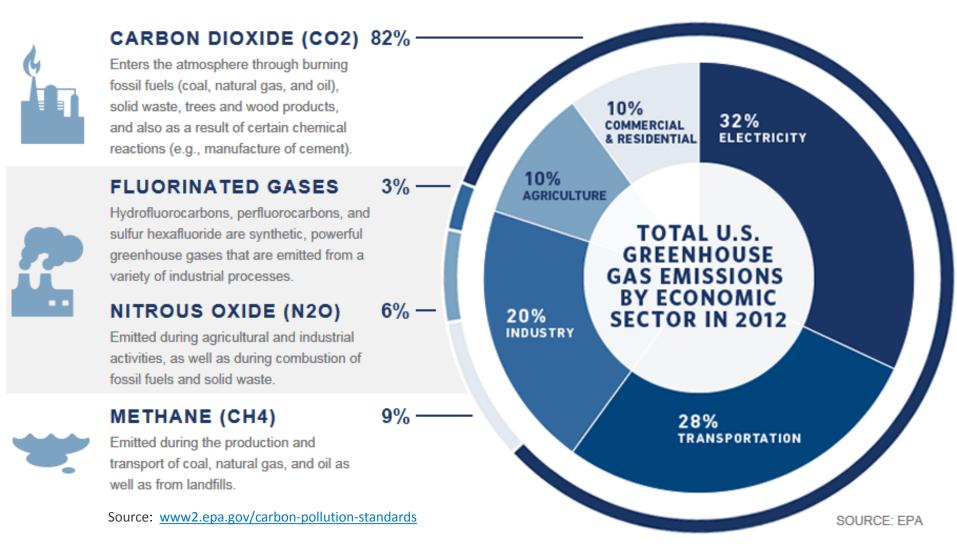

Josh Eichman, Marc Melaina

Pittsburgh, Pennsylvania 10/27/2015

Outline

- Hydrogen System Configurations
- Hydrogen Storage Opportunity
- Approach
- Cost vs. Revenue Comparison
- Conclusions

Complementary Hydrogen Systems



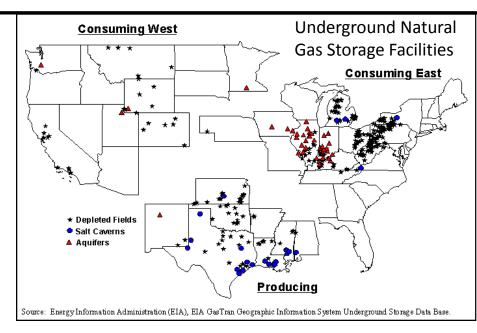
Natural Gas Grid

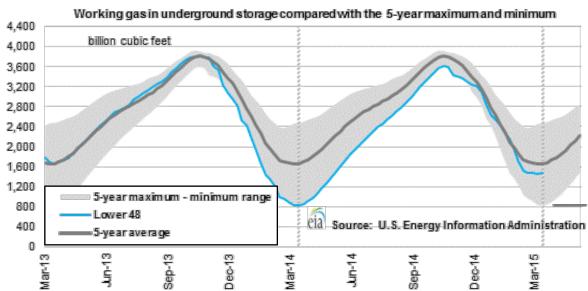
Source: (from top left by row), Warren Gretz, NREL 10926; Matt Stiveson, NREL 12508; Keith Wipke, NREL 17319; Dennis Schroeder, NREL 22794; NextEnergy Center, NREL 16129; Warren Gretz, NREL 09830; David Parsons, NREL 05050; and Bruce Green, NREL 09408

Environmental Challenges

U.S. GREENHOUSE GAS POLLUTION INCLUDES:

Opportunities for Power-to-gas


Natural Gas System


- 305,000 miles of transmission pipelines
- 400 underground natural gas storage facilities
- 3.9 Bcf underground storage working gas capacity

Source: www.eia.gov/pub/oil gas/natural gas/analysis publications/mgpipeline/index.html

 ~60days of NG use across the U.S.

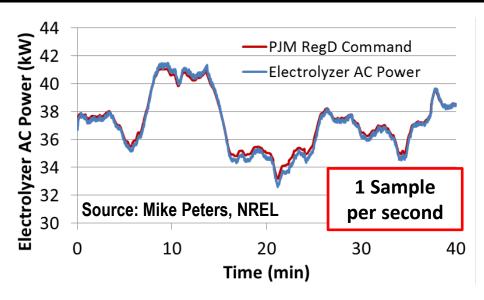
Impacts with high renewables

Challenges

- Increased ramping needs
- Risk of overgeneration
- Maintain sufficient system capacity

Opportunity

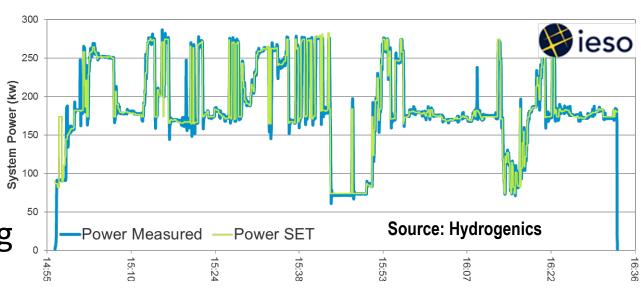
- Provide flexibility
- Utilize low or negative energy prices
- Variety of products (e.g., transportation fuel, industrial gas)



Source: www.caiso.com/Documents/FlexibleResourcesHelpRenewables FastFacts.pdf

Electrolyzer Response

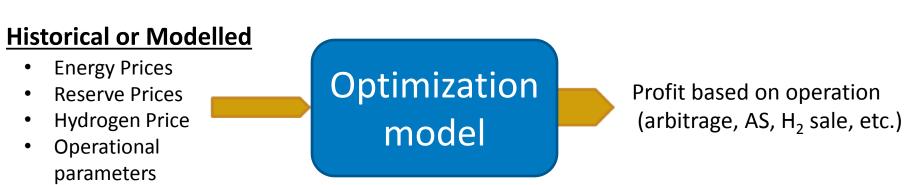
- Very fast response
- Sufficient to participate in energy and ancillary service markets



Regulation

Spinning Reserve

Nonspinning Reserve


Quantify the value

 Operations optimization model (price-taker) can perform time-resolved co-optimization of energy, ancillary service and hydrogen products quickly

Assumptions

- Sufficient capacity is available in all markets
- Objects don't impact market outcome
 (i.e., small compared to market size, and early market)
- Capacity is valued at \$150/kW-year

Source: Pfeifenberger, J.P.; Spees, K.; Newell, S.A. 2012. Resource Adequacy in California. The Brattle Group

Approach – Assumptions for Price-taker

Properties	Pumped Hydro	Lithium Ion Battery	Stationary Fuel Cell	Electrolyzer	Steam Methane Reformer
Rated Power Capacity (MW)	1.0	1.0	1.0	1.0	500 kg/day
Energy Capacity (hours)	8	4	8	8	8
Capital Cost (\$/kW)	1500¹ - 2347²	3850¹ - 4100¹	1500³ - 5918²	430 ³ - 2121 ⁶	427 – 569 \$/kg/day ⁴
Fixed O&M (\$/kW-year)	8¹ - 14.27²	25¹ - 50¹	350 ²	424	4.07 – 4.50 % of Capital ⁴
Hydrogen Storage Cost (\$/kg)	-	-	623 ⁵	623 ⁵	623 ⁵
Installation cost multiplier	1.24	1.24	1.24	1.24	1.924
Lifetime (years)	30	12 ¹ (4500cycles)	20	204	204
Discount Rate	10%	10%	10%	10%	10%
Efficiency	80% AC/AC ¹	90% AC/AC ¹	40% LHV	70% LHV	0.156 MMBTU/kg ⁴ 0.6 kWh/kg ⁴
Minimum Part-load	30%7	1%	10%	10%	100%

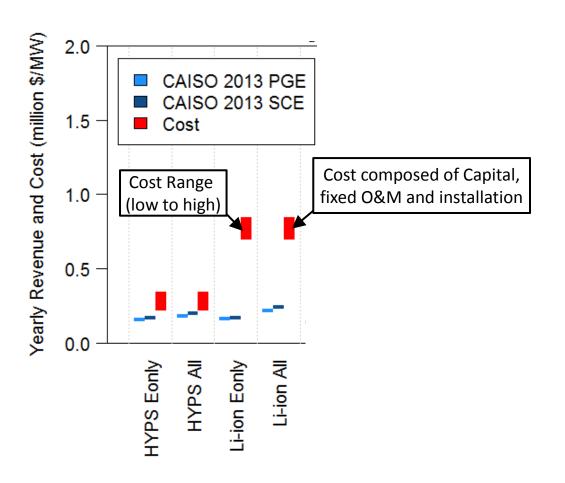
Source: ¹EPRI 2010, Electricity Energy Storage Technology Options, 1020676

²EIA 2012, Annual Energy Outlook

³DOE 2011, DOE Hydrogen and Fuel Cells Program Plan

⁴H2A Model version 3.0

⁵NREL 2009, NREL/TP-560-46719 (only purchase once if using FC&EY system)

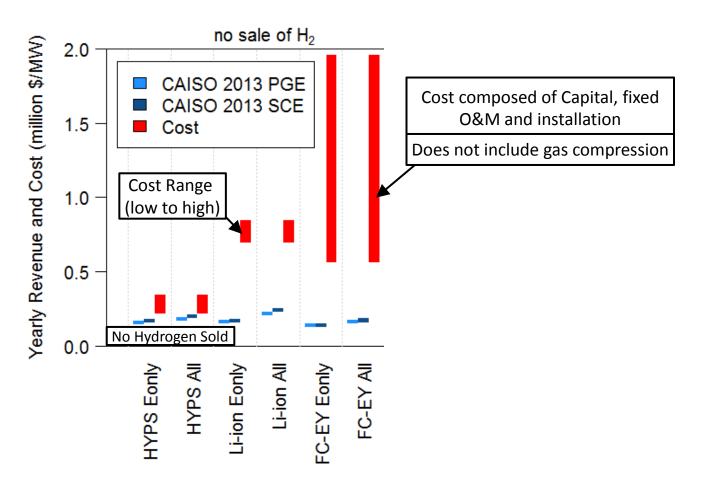

⁶NREL 2008, NREL/TP-550-44103

⁷Levine, Jonah 2003, Michigan Technological University (MS Thesis)

Price-Taker Results with historical prices

Conventional storage technologies are often not competitive based on direct market revenue

Comparison of yearly revenue and cost


Name	Technology
HYPS	Pumped Hydro
Li-lon	Lithium-lon
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer

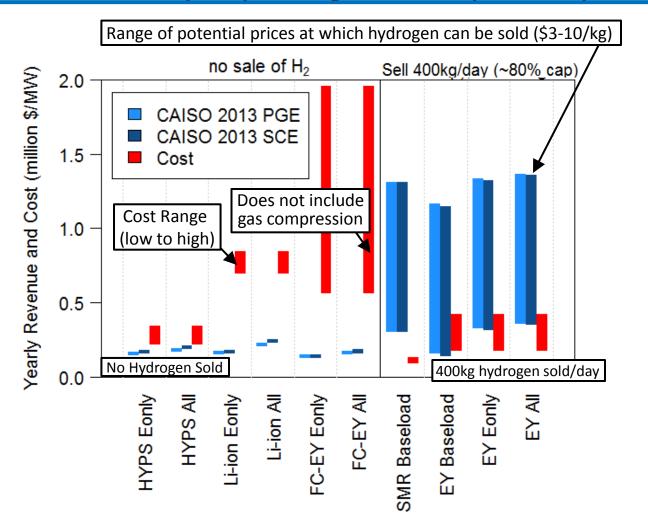
Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation

Price-Taker Results with historical prices

For electricity-in, electricity-out storage, system costs must be reduced to improve competitiveness

Comparison of yearly revenue and cost

Name	Technology
HYPS	Pumped Hydro
Li-lon	Lithium-Ion
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer


Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation

Price-Taker Results with historical prices

Selling hydrogen increases competitiveness

Providing ancillary services > Energy only > Baseload

Electrolyzers providing demand response are promising opportunity

Name	Technology
HYPS	Pumped Hydro
Li-lon	Lithium-Ion
FC	Fuel Cell
EY	Electrolyzer
SMR	Steam Methane Reformer

Name	Services
All	All Ancillary Services
Eonly	Energy Arbitrage only
Baseload	"Flat" operation

Conclusions

Economic Viability

- 1. Sell Hydrogen: Systems providing strictly storage are less competitive than systems that sell hydrogen
- Revenue w/ ancillary service > energy only > baseload
- 3. Electrolyzers operating as a "demand response" devices are particularly favorable

Questions?