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Abstract 

A shift towards increased levels of driving automation is generally expected to result in 
improved safety and traffic congestion outcomes. However, little empirical data exists to 
estimate the impact that automated driving could have on energy consumption and greenhouse 
gas emissions. In the absence of empirical data on differences between drive cycles from 
present day vehicles (primarily operated by humans) and future vehicles (partially or fully 
operated by computers) one approach is to model both situations over identical traffic 
conditions. Such an exercise requires traffic micro-simulation to not only accurately model 
vehicle operation under high levels of automation, but also (and potentially more challenging) 
vehicle operation under present day human drivers. 

This work seeks to quantify the ability of a commercial traffic micro-simulation program to 
accurately model real-world drive cycles in vehicles operated primarily by humans in terms of 
driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of 
freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected 
from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then 
simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. 
Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient 
behavior relative to the empirical data. Even with these differences, the synthetic and empirical 
data in this study agree well in terms of driving speed and simulated fuel economy. 

The differences in transient behavior between simulated and empirical data suggest that larger 
stochastic contributions in traffic micro-simulation (relative to those present in the traffic 
micro-simulation tool used in this study) are required to fully capture the arbitrary elements of 
human driving. Interestingly, the lack of stochastic contributions from models of human 
drivers in this study did not result in a significant discrepancy between fuel economy 
simulations based on synthetic and empirical data; a finding with implications on the potential 
energy efficiency gains of automated vehicle technology. 

Keywords: Traffic Micro-Simulation, Real-world Driving Data, Automotive Efficiency 
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Introduction 

Recent advancements in the areas of remote sensing, signal processing, data fusion, and 
machine learning have sparked growing public interest in the near-term viability of driverless 
vehicles. Several automotive companies have projected making various degrees of vehicle 
automation publically available in the next 5 to 10 years. This impending paradigm shift 
towards increased levels of automation and a marginalized role of human drivers is generally 
expected to result in improved safety and traffic congestion outcomes. However, less effort has 
been invested in estimating the impact automated driving could have on automotive energy 
consumption and greenhouse gas emissions. 

Automotive simulation tools for quantifying fuel use and emission outputs are mature and 
widely used in industry, government, and research sectors. Given the sensitive nature of 
vehicle efficiency to operating characteristics, it is necessary to input information on the 
performance envelope over which the vehicle model is being evaluated (often described by a 
time series of requested speed values known as a drive cycle). Traditionally these drive cycles 
are selected from a suite of standard regulatory cycles (such as the U.S. Environmental 
Protection Agency’s city and highway tests) or collected from on-road measurements of 
vehicle speed over specific routes. 

Given that commercial-grade automated driving technology is still in its infancy, very little 
public data are available for understanding how a computer program would operate a vehicle 
differently than a human under identical traffic conditions. Additionally, the degree to which 
high penetrations of automated vehicles could impact the driving style of human drivers and 
traffic in general is unknown. Such controlled experiments are often best addressed via a 
modeling and simulation approach that enables repeatable tests under representative conditions 
with variable inputs. 

As with automotive simulation tools, traffic simulation programs for quantifying vehicle 
operation relative to complex relationships between vehicle performance, driver behavior, 
traffic conditions, roadway geometry, and signalized control are generally mature. Traffic 
simulation tools are widely used by planning agencies to estimate how facility upgrades (such 
as additional lanes, extended turning lanes, improved signal control, etc.) will impact 
transportation efficiency as described by statistics such as travel times, queue lengths, and flow 
rates. 

Before directly linking traffic and energy simulation tools, it is important to understand the 
ability of traffic micro-simulation to generate synthetic profiles representative of real-world 
driving. Two traffic models of real-world facilities will be presented: 1) a high-speed 
controlled access freeway facility, and 2) a low-speed signalized arterial facility. Synthetic 
drive cycle outputs from both facility models will be compared to global positioning system 
(GPS) data from real-world drivers on the same facilities to quantify agreement in several 
dimensions. Additionally, real and synthetic drive cycles will be simulated in a powertrain 
efficiency model to understand the ability of traffic simulation to generate representative 
real-world drive cycles. 

Agreement between synthetic and empirical drive cycles in terms of driving speed, 
acceleration, and simulated fuel economy would indicate that existing traffic micro-simulation 
models of human drivers are sufficient for establishing baseline efficiency values in energy 
analysis of automated vehicle technology (in which existing driver models would be used as 
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the control and various automated driving models, which have yet to be developed, would be 
used as the experiment). Disagreement between synthetic and empirical drive cycles would 
indicate that modification to existing behavior models of human drivers are necessary in order 
to accurately establish a baseline in analysis of automated vehicle technology. 

Methodology 

A commercial traffic micro-simulator was used to generate synthetic drive cycles for a given 
mix of vehicles (light-duty passenger and heavy-duty commercial vehicles) traveling on a 
specific facility. Traffic models were built by constructing road networks based on satellite 
imagery and calibrating with raw traffic data (i.e., link speed, traffic volume) from public 
databases. Once calibrated, synthetic drive cycles from the model were compared to real-world 
cycles from GPS instrumented vehicles traversing the same facility. Comparisons are 
performed in terms of drive cycle speed/acceleration statistics and simulated fuel economy 
from a powertrain efficiency model. 

Raw traffic data used in this work was sourced from public databases. Specifically, vehicle 
drive cycle data were obtained from the National Renewable Energy Laboratory’s 
Transportation Secure Data Center (TSDC) [1], and traffic count data were sourced from the 
Information Center of the Georgia Department of Transportation (GDOT) [2]. 

Vissim 

In order to evaluate powertrain efficiency, it is necessary to model the individual dynamics of 
each vehicle under consideration. Only microscopic traffic simulation tools can provide such 

level of modeling detail. In microscopic traffic simulators, 
each simulated vehicle is controlled by car-following and 
lane-changing models which can be adjusted to 
accommodate specific traffic scenarios. PTV Group’s 
commercial traffic micro-simulator, Vissim 7.0 [3] was 
selected for this study. 

Two traffic models of real-world facilities were developed: 
1) a high-speed controlled access freeway facility, and 2) a 
low-speed signalized arterial facility. The details of the 
modeling and calibration efforts are described in the 
following sections. 

Freeway Model 

A 5-mile freeway section of I-285 through Atlanta, 
Georgia, was selected for this study (Figure 1). Model 
calibration was based on empirical traffic data from 
weekday evening rush hours (4 p.m. – 6 p.m.) during 
August 2011. The choice of this particular time frame was 
based on the availability of raw traffic data from both the 
TSDC and GDOT. Evening rush hour on this facility 
resulted in the largest number of GPS vehicle traces and the 
most accurate vehicle count in the region of interest. Figure 1 - Atlanta freeway 

model. 
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TSDC GPS vehicle speeds and travel times were used in parallel with GDOT vehicle counts to 
calibrate traffic volume and vehicle composition for the freeway model. Vissim calibration 
involved three aspects: 1) speed distribution, 2) routing and traffic volume, and 3) driving 
behavior. Distributions of desired vehicle speeds were informed by instantaneous vehicle 
speed statistics from the TSDC. Table 1 shows the speed of TSDC passenger vehicles collected 
on I-285 and from the Vissim model (the speed was compared at two locations). For 
heavy-duty vehicles, we used Vissim’s default speed distribution with an average of 55 mph. 
This choice was based on the speed limits in the field and also suggested values from U.S. 
Federal Highway Administration’s guidelines [4]. 

Table 1 - Comparison on link speed. 
 Real-world 

(location 1) 
Synthetic 
(location 1) 

Real-world 
(location 2) 

Synthetic 
(location 2) 

Mean, mph 65.0 66.5 65.3 64.7 
Median, mph 66.6 67.0 67.0 64.5 
Standard Deviation, mph 6.1 5.6 10.0 5.7 
Minimum, mph 48.6 46.8 17.7 41.6 
Maximum, mph 72.5 78.6 76.5 78.6 
Trip Count 44 4,451 39 4,849 

Routing and traffic volume were calibrated with vehicle 
count data from GDOT. Figure 2 shows a map of counting 
stations in the region with permanent stations in green and 
temporary stations in blue. Temporary stations were in place 
on this facility during the August 29–31, 2011, timeframe. 
Coincidently, several TSDC GPS traces were also collected 
during this timeframe. GDOT traffic count data were 
translated into vehicle volume and then programmed in 
Vissim. Composition between light-duty passenger and 
heavy-duty commercial vehicles was approximated using 
the “annual average daily truck traffic count” from the 
permanent counting station. 

Driving behavior was controlled using the Wiedemann 99 [5] 
and Free Lane Selection models for car-following and 
lane-changing maneuvers, respectively. These two models 
are dedicated to Vissim; in fact, it is generally the driving 
behavior model that distinguishes microscopic traffics 
simulators from one to another. Parameter settings 
embedded in the selected Vissim driver model are discussed 
at greater length in the results section of this paper. 

In addition to the comparison on link speed, the model was also validated in terms of vehicle 
travel time. From TSDC GPS data, 23 unique vehicle records were found to traverse the I-285 
facility of interest during weekday rush hours in August 2011. A total of 35 trips were extracted 
from these 23 vehicle records, with each trip corresponding to a vehicle trace that traversed the 
entire 5-mile corridor. The results of the travel time analysis are shown in Table 2. 

Figure 2 - Traffic counting 
stations. 
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Table 2 - Comparison on travel time. 
 Real-world Synthetic 
Mean, sec 272.4 280.6 
Median, sec 260 277.3 
Standard Deviation, sec 41.2 19.7 
Minimum, sec 234 236.1 
Maximum, sec 420 360.9 
Trip Count 35 4,166 

Arterial Model 

An arterial network in suburban Atlanta is also considered. A 2-mile corridor on Georgia State 
Highway 34 containing five signalized intersections was replicated, as shown in Figure 3. 
Traffic conditions were calibrated to the same weekday evening hours as in the freeway model. 

 

Figure 3 - Atlanta arterial model. 

Calibration of the arterial model was based on a macroscopic traffic model provided by 
contacts at the Atlanta Regional Commission. Information on signal timing, traffic flow 
dynamics, and travel demand were ported from the macroscopic model into Vissim. To better 
model traffic during the period of interest, TSDC and GDOT databases were used to adjust 
traffic volume and vehicle speed distributions. The TSDC contained 40 unique vehicle records 
from this facility, and GDOT traffic counts were available from temporary counting stations.  

FASTSim 

Fuel economy simulations in this analysis were performed using NREL’s Future Automotive 
Systems Technology Simulator (FASTSim). FASTSim is a research-oriented, vehicle 
simulation tool developed to evaluate the impact of various technologies on vehicle 
performance, cost, and utility in conventional and advanced technology powertrains. Please 
refer to [6] for a detailed explanation of the FASTSim program. 

Light-duty speed profiles generated using Vissim were simulated in FASTSim assuming a 
mid-size sedan chassis powered by a conventional gasoline spark-ignited engine with 
parameters similar to the 2012 Ford Fusion. Relevant parameters of this powertrain model can 
be found in Table 3. 
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Table 3 – Select parameters for FASTSim model of a conventional gasoline sedan. 
Frontal Area 2.12 m2 
Coefficient of Drag 0.33 
Coefficient of Rolling Resistance 0.007 
Simulated Mass 1,644 kg 
Accessory Load 700 W 
Rated Engine Power 131 kW 
Simulated Composite EPA Fuel Economy 8.7 L/100 km (27 mpg) 

A time series plot of results from a FASTSim simulation with the sedan model run over the U.S. 
Environmental Protection Agency’s (EPA’s) highway drive cycle (Highway Fuel Economy 
Test drive cycle, or HWFET) is shown in Figure 4. Achieved vehicle speed is overlaid with 
target speed alongside friction braking power, engine power, and engine efficiency results. 

 
Figure 4 - FASTSim plot of mid-size sedan simulated over EPA HWFET. 

Results 

Traffic micro-simulation results are presented and compared with real-world GPS trajectories 
collected from corresponding regions. The results are based on drive cycles that contain 
second-by-second values of vehicle speed. First, drive cycle characteristics are compared 
alongside a discussion of the driving behavior settings in Vissim. Second, the estimated fuel 
economy is compared by applying the powertrain model of a mid-size sedan in FASTSim. 

Drive Cycle Characteristics 

With an overarching focus on powertrain efficiency, drive cycle metrics derived from the 
energy equation of vehicle motion are employed to evaluate agreement between synthetic and 
empirical drive cycles. Two metrics to quantify the similarity between vehicle drive cycles are 
considered: characteristic acceleration and aerodynamic speed. Characteristic acceleration 
measures the acceleration and grade intensity of a drive cycle as the positive part of inertial 
work to accelerate and/or raise the vehicle per unit mass and per unit distance over a drive cycle. 
Aerodynamic speed measures the average cubic speed to the average speed of a drive cycle, 
reflecting the impact of aerodynamics on vehicle fuel usage. These metrics are employed in 
this analysis as surrogates for vehicle efficiency sensitivity to drive cycle characteristics. 
Please refer to [7] for a detailed derivation of these metrics. 
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Freeway Model 

Figure 5 shows characteristics of the real and simulated drive cycles from the I-285 freeway 
facility of interest. Real drive cycles collected via GPS are shown in Figure 5a with the drive 
cycles collected in the evening rush hour colored in red; these were the cycles used to calibrate 
the Vissim model. In order to better compare the result, we expanded the sample size by 
relaxing time and space constraints and included additional drive cycles in Figure 5a as blue 
markers. Relaxed constraints for the real drive cycles included allowing TSDC data from any 
time of the day on the same 5-mile corridor of I-285 and expanding the corridor to include the 
northeast side of I-285 in Atlanta. The samples with relaxed constraints include a total of 544 
GPS drive cycles retrieved from the TSDC. Figure 5b shows the result of 2,000 simulated drive 
cycles, with the samples color-coded based on frequency of a two-dimensional histogram. 

 
Figure 5a (left) - Speed vs. acceleration metrics for real-world freeway GPS drive cycles. 

Figure 5b (right) - Speed vs. acceleration metrics for synthetic freeway drive cycles. 

Comparing the real-world drive cycles during rush hours (only the red samples in Figure 5a) 
with their simulated counterparts, we found that there is generally good agreement in terms of 
aerodynamic speed; however, the characteristic acceleration of simulated cycles scatters in a 
wider range. In Figure 6, the histograms on aerodynamic speed shows that both the real-world 
and synthetic drive cycles followed a similar normal distribution. However, there was a 
significant difference in the frequency distribution of characteristic acceleration. 

 
Figure 6a (left) - Histogram of aerodynamic speed for real-world freeway drive cycles. 
Figure 6b (right) - Histogram of aerodynamic speed for synthetic freeway drive cycles. 
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Figure 6c (left) - Histogram of characteristic acceleration for real-world freeway cycles. 
Figure 6d (right) - Histogram of characteristic acceleration for synthetic freeway cycles. 

Although the number of samples from the TSDC is limited, the results in Figures 6c and 6d 
point toward a discrepancy in the driving model in Vissim. Traffic simulation tools usually 
focus on evaluating traffic flow (i.e., link speed, traffic volume, etc.) and consequently may 
lack the necessary resolution to simulate acceleration rates at the level of detail explored in this 
study. Further examination of this dimension of the driver model is warranted. 

To explore the potential tendency in real-world drive cycles, we compared the expanded results 
(samples in blue from Figure 5a) with the synthetic results, and came away with two 
observations: 1) real-world drivers tended to have higher rates of acceleration at lower speeds, 
and 2) the large percentage of vehicles with little to no acceleration in the simulation was not 
observed in real-world drive cycles. These observations suggest that acceleration behavior in 
the simulated driving environment do not yet reflect the real-world vehicle operation. For 
example, in a free-flow traffic scenario, real-world drivers seem to make small accelerations as 
vehicle speed oscillates around some target; however, the simulated driving environment 
seems to make an over-simplification of neglecting these accelerations. 

Discussion on Driving Behavior Settings 

Vissim provides two modified versions of Wiedemann’s car-following model (Wiedemann 74 
and 99). The Wiedemann model mimics both physical and psychological driving behavior; it 
defines the driver perception thresholds and the regimes formed by these thresholds. We used 
the Wiedemann 99 car-following model, in which more thresholds are adjustable by the user. 

A few researchers have reported general methods for calibrating freeway models [8, 9]. We 
calibrated our model according to the Vissim manual [10] and the Highway Capacity Manual 
[11]. Given the complexity of traffic situations, users are asked to use their engineering 
judgment to calibrate parameters. Existing works usually focus on calibrating vehicle speed 
and link capacity with little attention paid to driver acceleration and deceleration behavior. A 
reference for systematically calibrating driver acceleration and deceleration behavior in the 
Wiedemann models could not be located. In lieu of a procedural approach, driver parameters in 
this study were calibrated in an iterative fashion. 

Two steps were taken to calibrate the model in this study. First, threshold values were 
determined based on link speed and traffic volume observed in the field. Second, each 
threshold was adjusted in the car-following and lane-changing model with impacts on 
characteristic acceleration statistics observed and recorded. Thresholds were initially set to the 
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default values provided by Vissim and then iteratively adjusted to match empirical data on 
characteristic acceleration. In the Wiedemann 99 car-following model, standstill distance, 
headway time, and following variation dominate link capacity. No independent threshold was 
found to have a significant effect (i.e., either condense or expand the range of the scatter graph) 
on the distribution of the characteristic acceleration. However, changing the parameters of the 
Wiedemann model and vehicle acceleration capability was only tested independently; it is 
possible that the combination of a few parameters could yield a more fruitful result. 

Lane-changing behavior in Vissim was based on Sparmann’s model [12]. There are two types 
of lane changes: necessary and free lane change. The necessary lane change refers to lane 
changes that are required to reach the next road segment (e.g., making a left turn from the 
right-most lane). The free lane change is applied when vehicles are trying to reach a higher 
speed or longer headway. In both of these scenarios, the trailing vehicle will always slow down 
to let the other vehicle merge to its lane. 

In the lane changing model, no individual parameter was found to have an impact on 
characteristic acceleration. Because Vissim uses a “slow down, let pass” model to simulate 
merging and lane changing behavior, it only gives control to deceleration. Low end 
deceleration was selected with the intent of reducing the speed difference between each lane 
change to mimic the submissive driving behavior in freeway driving. 

Arterial Model 

Construction of the arterial model was hindered by an inability to identify a significant number 
of real-world drive cycles that traversed the entire length of the facility. Although GPS traces 
were available from 40 different vehicles during a two-week period, only three drive cycles 
were found to consecutively travel through all five modeled intersections. To generalize the 
driving behavior of vehicles in this region, drivers were assumed to behave similarly in the 
arterial road during the rush hours. With this assumption, results were aggregated for each 
vehicle as follows: first, for each drive cycle retrieved from the TSDC, as long as it traveled 
through one intersection, sub-cycles were truncated within the region of interest and 
characteristics of the sub-cycle were calculated. Second, vehicle characteristics were 
aggregated by taking an average of the sub-cycles. 

Figure 7 shows the resultant drive cycle characteristics of the arterial model. The simulated 
results were calculated from cycles that traversed the entire section. Although the real-world 
results scattered in a larger area, both the aerodynamic speed and characteristic accelerations 
were generally comparable. It might be counter-intuitive that the arterial model achieved a 
better match than the freeway model, as one might expect the driving behavior on the freeway 
to be easier to model than those in the arterial scenarios. However, both the freeway and arterial 
model had a good match in terms of the aerodynamic speed; the main difference was on the 
characteristic acceleration. In the freeway model, most of the accelerations were caused by lane 
changes whereas in the arterial model, most of the accelerations were related to the traffic 
lights. In the freeway scenario, there was more involvement of the driving behavior model, 
which led to a larger mismatch in terms of characteristic acceleration. Further analytical study 
is required to confirm this hypothesis. 
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Figure 7a - Speed vs. acceleration metrics for real-world arterial cycles. 

Figure 7b - Speed vs. acceleration metrics for synthetic arterial drive cycles. 

Fuel Economy Simulations 

After studying the drive cycle characteristics, real-world and simulated drive cycles were 
compared in terms of simulated fuel economy. FASTSim was used in this study. Drive cycles 
were input to FASTSim, and fuel economy was calculated according to the powertrain model. 
For simplicity, the same mid-size sedan powertrain model (similar to the 2012 Ford Fusion) 
was applied to all drive cycles. Table 4 shows the simulation results from both sets of drive 
cycles relative to freeway driving. 

Table 4 - Comparison on fuel economy of the freeway model. 
  Real-World Cycles Synthetic Cycles 
Mean, mpg 34.5 34.7 
Median, mpg 34.3 34.5 
Standard Deviation, mpg 3.4 3.8 
Minimum, mpg 28.9 24.6 
Maximum, mpg 43.8 42.9 
Vehicle Count 34 2,000 

The descriptive statistics show a good match on fuel economy. In terms of simulated miles per 
gallon of gasoline, the difference of mean, median, and standard deviation between real-world 
and synthetic drive cycles were in the decimal digit. We observed that the mismatch on 
acceleration behavior did not create a significant deviation in fuel economy between the two 
sets. This might be mainly caused by the small number of accelerations in the free-flow traffic 
(i.e., the absolute value of characteristic accelerations were relatively small) and by the fact that 
tire rolling resistance and aerodynamic drag tend to dominate vehicle power requirements at 
highway speeds. 

Figure 8 shows the graphical distribution of the simulated fuel economy results. This plot 
confirms the observation that simulated fuel economy from the freeway facility drive cycles 
was generally comparable. Given a small real-world data set, we achieved a good match 
between the real-world and synthetic results. 
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Figure 8a - Simulated fuel economy in the freeway model from real-world drive cycles. 
Figure 8b - Simulated fuel economy in the freeway model from synthetic drive cycles. 

Given the small number of real-world drive cycles that consecutively traveled the entire arterial 
facility, the real-world results in Table 5 and Figure 9 were averaged by vehicle on cycles 
collected in this region. Descriptive statistics in Table 5 for the arterial model also show a good 
match in terms of fuel economy. Although the difference of simulated fuel economy results 
between the real-world and synthetic drive cycles are small, in the histograms shown in Figure 
9 reveal a larger variance in the real-world results.  

Table 5 - Comparison on fuel economy of the arterial model. 
  Real-World Cycles Synthetic Cycles 
Mean, mpg 28.3 28.7 
Median, mpg 28.0 28.4 
Standard Deviation, mpg 4.2 2.5 
Minimum, mpg 21.6 21.3 
Maximum, mpg 43.7 36.4 
Vehicle Count 40 1,000 

 

Figure 9a - Simulated fuel economy in the arterial model from real-world drive cycles. 
Figure 9b - Simulated fuel economy in the arterial model from synthetic drive cycles. 

Summary 

Methods for generating synthetic drive cycles for freeway and arterial facilities have been 
demonstrated through application of traffic micro-simulation. The ability of these methods to 
generate drive cycles with metrics comparable to real-world data has been quantified relative to 
empirical vehicle speed profiles in terms of travel time, aerodynamic speed, and characteristic 
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acceleration. Traffic models discussed in this paper were found to produce synthetic drive 
cycles with lower levels of vehicle speed and acceleration variability than observed in 
equivalent empirical data. However, when applying synthetic and real-world cycles to a 
vehicle powertrain efficiency model, drive cycle differences become less evident in terms of 
simulated fuel economy. 

The fact that the absence of stochastic contributions in the model of human driving behavior 
did not significantly impact agreement between synthetic and empirical drive cycles in terms of 
simulated fuel economy has implications on the potential energy efficiency gains of automated 
vehicle technology. For instance, the lack of transient operation on the freeway facility in the 
synthetic drive cycles likely did not create disagreement with the empirical data in terms of 
simulated fuel economy due to the fact that aerodynamic and tire rolling resistance loads 
generally dominate powertrain efficiency at high speeds. For the arterial facility, frequency of 
start/stop events (which are dictated primarily by signalized control and not driver behavior) 
was likely the most important attribute in terms of simulated fuel economy; consequently, a 
lack of stochastic behavior in the synthetic drive cycles did not create significant discrepancies. 

Based on these findings, it may seem reasonable to conclude that highly accurate traffic 
micro-simulation models of human and automated driving behavior could reveal negligible 
energy efficiency differences. While acknowledging the physical realities this analysis has 
highlighted regarding potential for drive cycle smoothing on freeway and arterial facilities, it 
must be reiterated that this was not a dedicated study of automated driving energy efficiency 
potential. As such, this analysis did not consider a number of avenues by which automated 
driving technology could enable energy efficiency gains, including: reduced inertial loads 
associated with decreased take-off acceleration rates, decreased aerodynamic drag resulting 
from platooning, and improved traffic flow related to decreases in following distances enabled 
by vehicle-to-vehicle communication (such as cooperative adaptive cruise control). 

Future work in this area could include refining traffic models to better reflect real-world 
vehicle operation (including addition of stochastic elements in driver models of human 
behavior) and implementing models for connected and autonomous vehicle technology to 
estimate energy/emission impacts. 
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