
Abstract
This paper presents multiple methods for predicting heavy/medium-
duty vehicle fuel consumption based on driving cycle information. A 
polynomial model, a black box artificial neural net model, a polynomial 
neural network model, and a multivariate adaptive regression splines 
(MARS) model were developed and verified using data collected from 
chassis testing performed on a parcel delivery diesel truck operating 
over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban 
Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), 
and hydraulic hybrid vehicle (HHV) drive cycles. Each model was 
trained using one of four drive cycles as a training cycle and the other 
three as testing cycles. By comparing the training and testing results, a 
representative training cycle was chosen and used to further tune each 
method. HHDDT as the training cycle gave the best predictive results, 
because HHDDT contains a variety of drive characteristics, such as 
high speed, acceleration, idling, and deceleration. Among the four 
model approaches, MARS gave the best predictive performance, with 
an average percent error of −1.84% over the four chassis dynamometer 
drive cycles. To further evaluate the accuracy of the predictive models, 
the approaches were applied to real-world data. MARS outperformed 
the other three approaches, providing an average percent error of 
−2.2% over four real-world road segments. The MARS model 
performance was then compared to powertrain modeling results over 
HHDDT, CSHVC, NYCC, and HHV drive cycles using NREL's 
Future Automotive Systems Technology Simulator (FASTSim). The 
results indicated that the MARS method achieved comparable 
predictive performance with FASTSim.

Introduction
In response to demands from end users and regulators, heavy- and 
medium-duty (HD/MD) vehicle and engine manufacturers face 
pressure to develop products that maximize fuel efficiency and 
minimize vehicle fuel consumption (FC) and greenhouse gas (GHG) 
emissions. It is valuable to develop a methodology for predicting HD/
MD vehicle FC during unknown driving cycles based on the vehicle's 
measured FC from other cycles and the properties of these cycles as 
FC is highly dependent on duty cycles. Various researchers have 

developed simulation models and tools to predict FC over different 
usage patterns. Vehicle powertrain models like the Future Automotive 
System Technology Simulator (FASTSim) [1] and Autonomie [2] 
have been used for predicting fuel economy for various types of 
vehicles. These models provide accurate results, but require detailed 
specifications, which may not be readily available. Prior studies have 
investigated FC and emissions from different driving cycles. Taylor et 
al. [3] argued that the nature of an engine or chassis dynamometer 
test cycle might affect FC and emissions through its inherent load 
history or transient operation content. Ericsson [4] investigated the 
impact of a large range of cycle properties on a vehicle's FC and 
emissions. Clark et al. [5] examined the ability to predict the 
emissions over a cycle based upon the vehicle's measured emissions 
from other cycles and properties of these cycles. The objective of this 
study was to develop a methodology for predicting HD/MD vehicle 
FC over an “unseen” driving cycle, based on second-by-second fuel 
rates from test cycles and the properties of those cycles.

Methodology
The main assumption in this modeling approach is that, for a given 
vehicle, FC depends on known driving cycle properties.

Road Load Equation
Vehicle FC depends on engine power demand, which can be 
calculated from the road load equation (Equation 1):

Equation 1

where m is vehicle mass (kg), V is vehicle speed (m/s), Cd is coefficient of 
aerodynamic drag, ρ is air density (kg/m3), μ is the coefficient of rolling 
resistance, g is acceleration due to gravity (m/sec2), and θ is grade angle. PRL 
denotes total engine power demanded to propel the vehicle, Paux denotes 
auxiliary load including engine cooling fan,  denotes vehicle 
inertia, 0.5CdρAV3 denotes aerodynamic drag, μmgV cos(θ) denotes rolling 
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resistance, mgV sin(θ) denotes grade effect, and η represents the vehicle 
powertrain efficiency. The mathematical equation of the road grade was 
calculated as the vertical rise (+) or fall (-) in meters (m) for every 100 m.

The road load equation tells us that, under constant vehicle weight, 
the FC is determined by driving cycle properties (vehicle speed, 
acceleration, and road grade).

Identification of Metrics
The derivation of the final models involved experimentation with 
numerous polynomial combinations of speed and acceleration levels. 
Specifically, linear, quadratic, cubic, and quartic terms of speed and 
acceleration were investigated. The final regression models included 
a combination of linear, quadratic, and cubic speed and acceleration 
and their combination terms because it gave the least number of terms 
with a relatively good fit to the National Renewable Energy 
Laboratory's (NREL's) Renewable Fuels and Lubricants (ReFUEL) 
Laboratory test data.

Driving Cycle Used
In this study, several cycles that cover a wide range of driving 
conditions were used. The Heavy Heavy-Duty Diesel Truck (HHDDT) 
schedule was originally created for the E55/59 study that represented 
real-world truck activity in California [6, 7, 8]. The HHDDT schedule 
included four modes, namely idle, creep, transient, and cruise modes. 
The creation of HHDDT has been discussed previously [6, 7, 8]. Each 
cycle has unique idle time, average speed, stop times, acceleration, and 
deceleration. The creep mode has an average speed of less than two 
miles per hour, with a distance of 0.12 miles [8]. The transient mode 
has a higher average speed of 15.34 miles per hour, with a distance of 
2.8 miles. The transient mode is the typical stop-and-go behavior for a 
HD truck in an urban area [8]. The cruise mode stands for freeway 
travel. HHDDT_s represents both the high-speed cruise that 
characterizes similar highway behavior that occurs in congested urban 
areas and south-north travel along Highway 99 and Interstate 55 [8]. 
The City Suburban Heavy Vehicle Cycle (CSHVC) is a chassis 
dynamometer test for HD vehicles developed by West Virginia 
University [9]. The basic parameters of CSHVC include a 
1,700-second duration, a 6.68 mile distance, a 14.15-mph average 
speed, and a 43.84-mph maximum speed [9]. The New York 
Composite Cycle (NYCC) is a chassis dynamometer test for HD 
vehicles representative of actual driving patterns in New York City 
[10]. The characteristics of NYCC include a 1,029-second duration, an 
8.85-mph average speed, a 36.0-mph maximum speed, and a 2.52 
miles distance [10]. The Hydraulic Hybrid Vehicle (HHV) drive cycle 
is an NREL custom cycle, which includes aggressive driving behavior 
representative of real-world parcel delivery vehicle driving behavior in 
Baltimore. Chassis dynamometer testing was performed over HHDDT, 
CSHVC, NYCC, and HHV on three parcel delivery truck powertrains 
at NREL's ReFUEL Laboratory: conventional diesel, conventional 
gasoline and hydraulic-diesel hybrid. Time-speed traces of these cycles 
are shown in Figures 1, 2, 3, 4.

Figure 1. HHDDT speed trace.

Figure 2. CSHVC speed trace.

Figure 3. NYCC speed trace.

Figure 4. HHV speed trace.



Model Development
Linear and nonlinear methods have been extensively investigated as a 
means to predict FC. The objective of this paper is to compare the 
performance of linear and nonlinear regression predictors in terms of 
their ability to predict FC as a function of the one fundamental input 
parameter-vehicle speed. A linear regression-polynomial method and 
three nonlinear regression methods-artificial neural network (ANN), 
polynomial neural network (PNN), and multivariate adaptive 
regression splines (MARS)-were used in this study to develop the 
predictive models.

Polynomial Method
The goal of the predictive method is to find a relatively simple and 
effective model. As stated in Equation 1, vehicle FC depends on 
engine power demand, which can be calculated from the road load 
equation. It follows from the structure of the road load equation that a 
logical predictive model would include a combination of vehicle 
speed- and acceleration-based terms. The calibration of the developed 
model includes selecting the most effective input parameters. The 
best model was obtained when the predictive FC is expressed as the 
real-time rate of FC that is a function of vehicle speed, vehicle 
acceleration, and combinations of these [11] (Equation 2).

Equation 2

where FCpre is the predicted FC, vehSpd is vehicle speed, and vehAcc is 
vehicle acceleration. Parameters a-i are constant coefficients that are 
estimated by performing the least squares method [12-13]. It should be 
noted that it can only be applied for a specific vehicle with all identified 
coefficients. The matrix form of the output Y is given by:

Equation 3

where Y is the dependent variable, in this case the FC rate:

Equation 4

and α is the vector of the constant coefficients.

By minimizing ||Y − Pα||2, the coefficients are estimated, which is 
given as:

Equation 5

Once the coefficients are estimated, the predicted FC rate could be 
calculated by using Equation 2. The criterion that was used to 
evaluate the model performance between the measured and predicted 
FC is the relative error (RE), which is defined in Equation 6:

Equation 6

where y and  are the experimental and estimated FC, respectively.

Artificial Neural Network
ANN modeling FC and emissions have been discussed in previous 
literature [14-15]. The ANN model utilized the generalized regression 
neural network (GRNN) [16-17] that includes a radial basis function 
(RBF) layer and a linear layer to achieve the emissions prediction. An 
RBF neuron with R inputs is shown in Figure 5. The vector distance 
||dist|| is the dot products of the input vector X and the input weight 
matrix. The input to the transfer function is the sum of weighted 
inputs and the scalar bias b [18]. The input to the ith neuron can be 
expressed by Equation 7 [16].

Equation 7

where wi is the weight of the linear output neuron, xi is the center 
vector for neuron i, ρ is the basis function, which is described by 
||dist||, the distance between input vector x and training pattern xi, and 
bi is the bias. Correspondingly, the output to the transfer function for 
a radial basis neuron is shown in Equation 8 [16].

Equation 8

Figure 5. The RBF neuron architecture.

Figure 6. The GRNN architecture [18].

In MATLAB, the syntax of GRNN is given by equation 9[18]:

Equation 9



where P is input vector, T is target vectors, and spread is the spread of 
RBF. All the input and target vectors were normalized before the 
training work. Consequently, the prediction data were also 
normalized and need to be de-normalized back. The normalization in 
this study was defined by equation 10:

Equation 10

where y is the normalized inputs and targets, which all fall in the 
interval [−1, 1]. The value of spread was varied during model 
development, with 0.2 providing the best match with target values.

Polynomial Neural Network
The PNN algorithm is developed based on the Group Method of Data 
Handling (GMDH) [19] and utilizes a class of polynomial functions. 
The algorithm builds the network layer by layer using training data 
while the structure and number of layers of the network are controlled 
by either the regularity criterion [20] or Akaike's information criterion 
[21]. The analysis and design of PNN have been discussed previously 
[22]. The algorithm's parameters include the maximum number of 
inputs of each neuron, degree of polynomials in the neurons, and the 
number of neurons in a layer. The PNN toolbox used in this study 
was downloaded from ARESLab [23].

Multivariate Adaptive Regression Splines
MARS is an adaptive piece-wise regression approach that builds a 
response function in terms of nonlinear component functions and 
their products. It has the ability to model complex and high-
dimensional data dependencies and has been used for diverse 
applications in predicting and data mining in recent years [24-25]. 
Additional information on the use of MARS is to predict engine 
emissions illustrated by Chen [26].

The MARS constructs models using a special set of spline functions 
called hinge functions or “hockey stick” functions [27]. The hinge 
functions are expressed in equation 11:

Equation 11

where c is the knot of the basis function.

MARS uses the combination of basis functions to build the model, 
shown in Equation 12:

Equation 12

where Bi(x) is the ith basis function, which is either a constant or a hinge 
function from Equation 11 or a product of two or more hinge functions.

MARS builds a model in two steps: forward selection and backward 
deletion. MARS starts with selecting a pair of basis functions that fit 
the model best at the current stage and then repeatedly adds basis 
function in pairs to the model. To prevent the final model from being 
overfitted, the backward model prunes the model. It removes the least 
effective term at each step until it finds the best fitted model.

Results and Discussion
The data used to evaluate the predictive models were collected from 
conventional diesel parcel delivery truck chassis dynamometer testing 
on the HHDDT, CSHVC, NYCC, and HHV driving cycles (no grades 
on the chassis dynamometer data).

Linear (Polynomial) Method Results
Among the four chassis dynamometer test cycles, each cycle was 
considered as a training cycle and the other three as testing cycles. 
Equation 2 was applied to build the model. By comparing the training 
and testing results, a representative training cycle can be chosen. 
Table 1 shows the summary of training and testing performance for 
FC. Measured Ave. FR is defined as measured average fuel rate, and 
Predicted Ave. FR is defined as predicted average fuel rate. The 
results indicate that HHDDT as a training cycle gives the best 
performance. This is likely because the HHDDT contains a variety of 
driving characteristics, such as idling, accelerating, cruise, and 
decelerating. In the following nonlinear study (ANN, PNN and 
MARS), the HHDDT was chosen as the training cycle and the other 
three were used as the testing cycles.

Table 1. Predictive results of chassis dynamometer data using the polynomial 
method.



Nonlinear Methods Results
Table 2 summarizes the results of estimation using the ANN, PNN, 
and MARS approaches. Among these three nonlinear approaches, 
MARS outperforms ANN and PNN predictive performance with an 
average percent error of −1.84% (−5.78% to 4.79% range).

Table 2. Predictive results of chassis dynamometer data using ANN, PNN and 
MARS approaches.

Application to Real-World Drive Cycles
In order to further evaluate the accuracy of the proposed FC 
prediction model, real world data were applied to these models. The 
real-world data used were collected by Penske Truck Rental 
Company on four different road segments. Figure 7 shows the vehicle 
speed trace on the four road segments, as well as the road elevation 
information. Segment 3 was taken as a training cycle and the other 
three segments as testing cycles. The predictive results of real world 
data using polynomial, ANN, PNN, and MARS approaches are 
summarized in Table 3. As was observed from the chassis 
dynamometer testing comparisons, MARS gave the best predictive 
performance with an average percent error of −2.2% (−6.83% to 
3.73% range). It should be noted that the grades were not included 
due to the lack of grade information, which might be one of the 
reasons why segment 4 with uphill had the largest underestimation 
error. The model performance should be improved if accurate grade 
information was accessible.

Figure 7. Real world road altitude and road speed trace.

Table 3. Predictive results of real world data using polynomial, ANN, PNN 
and MARS approaches.

Comparison with FASTSim
FASTSim is a vehicle powertrain simulation tool developed by NREL 
[1] that is used to evaluate the impact of technology improvements on 
efficiency, performance, cost, and battery life in conventional 
vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, 
and all-electric vehicles. A FASTSim conventional diesel truck model 
(the truck information is presented in Table 4) was developed and run 



over the HHDDT, CSHVC, NYCC, and HHV cycles, and then the 
results were compared with that of the MARS model, summarized in 
Table 5.

Table 4. Information on the conventional diesel truck model.

Table 5. Predictive results of FASTSim and MARS approaches.

The comparison shows that for this situation (where FASTSim relies 
on generalized component efficiency maps in the absence of 
vehicle-specific component details) that the simplified MARS 
approach achieves comparable predictive results.

Summary
This paper proposed a FC predictive model taking instantaneous 
vehicle speed and acceleration as input variables. Four modeling 
algorithms-polynomial, ANN, PNN, and MARS-were developed and 
verified using chassis dynamometer testing on diesel parcel delivery 
trucks operating on HHDDT, CSHVC, NYCC, and HHV driving 
cycles at the ReFUEL Laboratory. MARS gave the best predictive 
performance with an average percent error of −1.84% for the four 
chassis dynamometer test cycles. The models were also applied to 
real world data for further evaluation of the accuracy. MARS gave 
the best predictive results with an average percent error of −2.2%. 
Ultimately, the performance of the MARS approach was compared 
with that of FASTSim; the results showed that the MARS approach 
achieved an accuracy comparable to FASTSim.

The models presented in this paper can be incorporated with traffic 
simulation models. They can also be applied directly to estimate 
vehicle FC and emissions using recorded global positioning system, 

speed, and road grade information (e.g., to predict individualized fuel 
consumption in a fleet considering purchase of a vehicle for which 
such a simplified model has been developed).
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Definitions/Abbreviations
ANN - artificial neural network

CSHVC - City Suburban Heavy Vehicle Cycle

FASTSim - Future Automotive Systems Technology Simulator

FC - fuel consumption

GHG - greenhouse gas

GMDH - Group Method of Data Handling

GRNN - generalized regression neural network

HD - heavy-duty vehicle

HHDDT - Heavy Heavy-Duty Diesel Truck

HHV - hydraulic hybrid vehicle

MARS - multivariate adaptive regression splines

MD - medium-duty

NREL - National Renewable Energy Laboratory

NYCC - New York Composite Cycle

PNN - polynomial neural network

RBG - radial basis function

ReFUEL - Renewable Fuels and Lubricants
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