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Robust measurement of thin-film photovoltaic modules exhibiting 
light-induced transients 

Michael G. Deceglie, Timothy J Silverman, Bill Marion, Sarah R. Kurtz
 

National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, USA
 

ABSTRACT 
Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) 
frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, 
light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We 
motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and 
demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. 
Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating. 
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1. INTRODUCTION 
Thin-film photovoltaic modules (here we consider CIGS and CdTe) are known to exhibit a range of transient changes in 
performance upon exposure to light.1, 2 Many such changes are metastable in that they are reversed upon storage in the 
dark. These changes pose a challenge to repeatable and relevant measurements of module power. It is useful to collect 
current-voltage (IV) curve measurements at the standard test conditions (STC) of one-sun illumination at 1000 W m−2 

and module temperature of 25◦C, which are representative of a module’s outdoor-realized electrical performance state. 
Such measurements are critical for many applications, including reliability and qualification testing. To ensure these 
measurements are relevant to outdoor performance, thin-film modules frequently undergo light exposure (often called 
light-soak) prior to measurement. The results of the STC measurement are however often dependent on conditions during 
light exposure, necessitating a well-controlled method to achieve repeatable and reproducible results. Here, we review our 
findings on conditioning modules for measurement and document our best practices. 

Though the electrical performance states realized under various conditions are not indefinitely stable, we use the term 
“stabilization” to refer to procedures designed to bring about a particular metastable state, even if only temporarily. It 
is also important to note that there is, in general, no single “light-state” of a module, and any light-induced electrical 
performance state is representative of conditions under which a module was exposed.3 This is discussed in more detail in 
Section 3.1, but raises the point that there is inherently a trade-off between repeatability and outdoor-relevancy. Since there 
is a continuum of outdoor-realized electrical performance states and no one procedure could hope to target all of these 
states, we recommend a well controlled stabilization protocol using reasonable conditions to produce an outdoor-relevant 
(but not necessarily outdoor-equivalent) state. 

Here, we document and support such a stabilization protocol. Section 2 provides an overview of our experimental 
methods. We then motivate features of the recommended stabilization procedure in Section 3 with both prior and new 
experimental results; we focus on several critical aspects of stabilization including methods for determining light-exposure 
duration, controlled conditions during exposure, and best practices for cooling the module to measurement temperature. 
In Section 4, we provide detailed documentation of our best practices for thin-film module stabilization. Before conclud­
ing, we also present results and make recommendations regarding validation protocols for possible alternative procedures 
(including procedures that do not make use of light) in Section 5. 

Further author information: Send correspondence to M.G.D., E-mail: michael.deceglie@nrel.gov 
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2. GENERAL EXPERIMENTAL METHODS
 
2.1 Simulator-based light exposure 
Indoor, simulator-based light exposures were carried out in a light-exposure chamber providing class BBA illumination.4 

one-sun illumination was supplied by an array of metal-halide lamps with closed-loop intensity control. Modules were 
actively maintained at their maximum power point except when in situ IV curves were automatically collected every five 
minutes. A temperature set-point of 50◦C was used for back-of-module temperature, maintained by closed-loop control of 
forced-air cooling using room-temperature air. Back-of-module temperature was monitored with thermocouples adhered 
in the centers of the modules. 

2.2 STC IV curves 
STC IV curves were collected with a long-pulse class AAA solar simulator.4 Back-of-module temperature was mea­
sured with a thermocouple at the center of the module. Maximum power points determined from these IV curves were 
temperature-corrected to 25◦C according to manufacturers’ recommendations. All reported power measurements were 
made at 25±2◦C. 

2.3 Bias at elevated temperature (BET) 
We tested a light-free stabilization method, namely the application of bias at elevated temperature.5 BET was carried out 
by placing modules in a dark environmental chamber and ramping the air temperature to 85◦C at a rate of at least 3◦C/min. 
Once the ramp was complete, we applied forward bias to the modules at 90% of Voc for 1.5 hours. We then ramped the 
chamber temperature down at the same rate. To aid in module cooling the chamber air temperature was ramped down to 
approximately 0◦C. The modules were removed when their temperature approached 25◦C. Finally, the modules’ STC IV 
curves were measured between 30 and 60 minutes after the chamber temperature passed through 25◦C. These bias steps 
were repeated until the STC light IV curves indicated the module’s were stable to within 2%. 

3. CONSIDERATIONS FOR LIGHT-BASED STABILIZATION 
Repeatable and reproducible measurements of a module’s outdoor-relevant performance require careful control of the 
stabilization procedure. In this section, we discuss our findings surrounding the importance of module temperature during 
light exposure and different methods for determining when the modules are stable. 

3.1 Importance of temperature during light exposure 
We have previously shown that module temperature during light exposure can affect the final light-stabilized state of thin-
film modules.3 An important implication of this finding is that there is no well-defined “light-state” of a thin-film module. 
Instead, there is a continuum of light-stabilized states that depend on the light-exposure conditions. Thus for repeatable and 
reproducible measurements, we must select a specific set of of exposure conditions. We have chosen a module temperature 
of 50◦C and one-sun illumination. This temperature is chosen because we have found it can be reliably achieved indoors 
in a continuous simulator while still being relevant to real-world outdoor operation. 

It is important to distinguish these recommended light-exposure conditions (RLEC) from real-world conditions. In 
practice, modules operating in the field will be exposed to variable temperatures and illuminations implying that a module’s 
metastable performance will be dependent on the particular environment in which it is deployed. Thus there is no single 
outdoor performance state. It is important to note that we do not consider the RLEC-achieved state to be equivalent to an 
outdoor state. Instead it represents a compromise between outdoor-relevancy and repeatability. 

Figure 1 illustrates the difference between RLEC- and outdoor-stabilized efficiency. It shows the relationship between 
STC power measured for four CdTe modules (two different products). Four modules were exposed outdoors, actively 
tracked at maximum power, until the infrequent measurement stability criterion described in Section 4.2 was met. The 
outdoor exposure was interrupted to measure STC IV curves for the stability criterion. The Pmp from the final STC 
measurement was taken as the resulting stabilized power. Next, we exposed the modules in a continuous simulator under 
RLEC until the stability criterion was met and once again measured the STC IV curves. The mean back-of-module 
temperature for irradiances above 500 W m−2 for one module type (red in Figure 1) during outdoor exposure was 39◦C, 
and for the other module type (blue in Figure 1) it was 42◦C. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 1. Comparison between the measured STC power of four CdTe modules after chamber (RLEC) and outdoor stabilization. A tie 
line is also shown in gray. Different colors indicate different module types. Power measurements are normalized to rated nameplate 
power. 

For one product, the discrepancy between the two stabilized efficiencies is approximately 4% as shown in Figure 1. 
This highlights the distinction between a RLEC- and outdoor-stabilized state. It also demonstrates the importance of 
using tightly-defined light-exposure conditions in order to achieve repeatable and reproducible results, thus supporting the 
narrowly defined RLEC parameters. 

3.2 Use of forward bias during cool-down 
In order to make STC IV measurements at 25◦C after a light exposure, modules must be cooled down from the light-
exposure temperature. This cool-down period introduces a challenge in that the modules’ electrical states may begin to 
relax from the light-induced state. We have previously found that the application of forward bias during this stage can aid 
in the maintenance of the light induced state.6 However, the success of this approach is product-specific. For example we 
have also observed that for some products, the bias can boost module performance over time.6 In other cases, we have 
seen no strong evidence that maintenance bias provides any benefit.5 Given the product-specific nature of the success and 
relevancy of maintenance bias during cool-down, we generally recommend against its use. However we note that it may 
be considered for internal tests after careful validation. 

3.3 Determining stability 
The timescale and character of light-induced performance changes in thin-film modules are product-specific. Therefore, it 
is useful to use a prescribed criterion on power changes, as opposed to a set exposure duration, to decide when a stabilizing 
light exposure should be ended. The light-based stabilization procedure in the existing qualification standard IEC 616467 

calls for measurements to be made every 43 kW h m−2 of insolation. In a pending update to the IEC 61215 qualification 
standard, which will incorporate thin-film module qualification and silicon qualification into a single standard, this interval 
is expected to be 20 kW h m−2 . In both cases, the stabilization criterion is based on three measurements. Note that if 
the light exposure is carried out with simulated light and temperature is controlled to within ±2◦C, the measurements 
can be made in situ during light exposure. In this section we demonstrate that frequent measurements of power made in 
situ during a light exposure under controlled conditions can establish stability with higher certainty than three infrequent 
measurements. 

We exposed a CdTe module in the light-exposure chamber with a back-of-module temperature of 47 ± 0.6◦C and 
measured IV curves at five-minute intervals. We then compared the power change over 40 kW h m−2 intervals calculated 
in two different ways (both described in Section 4.2). First with the standard method of three infrequent Pmp values from 
IV curves collected every 20 kW h m−2, and second with a regression of all the Pmp values from IV curves on the same 
40 kW h m−2 interval. We repeated both calculations for 48 different 40 kW h m−2 intervals, beginning between 17 and 
21 kW h m−2 of insolation. An example is shown in Figure 2. In this case, the change calculated with regression was 
0.36% over the 40 kW h m−2 interval, while that calculated with infrequent measurements was 0.71%. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 2. Comparison between the regression and infrequent measurement methods for determining stability during light exposure of 
a CdTe module. The gray points are Pmpvalues calculated from IV curves taken at 5-minute intervals during exposure. The red points 
indicate three points, separated by 20 kW h m−2 (starting at 20.6 kW h m−2 total insolation). The black line shows the linear regression 
to all the Pmp values (gray points) on that same interval. The regression indicates a change in power of 0.36% over the 40 kW h m−2 

interval, while that calculated with infrequent measurements was 0.71%. This illustrates how noise in a few infrequent measurements 
can obscure the underlying trend. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Calculated power change (%)

C
um
ul
at
iv
e
pr
ob
ab
ili
ty

Figure 3. Cumulative distribution functions of the power change over various 40 kW h m−2 intervals calculated with three infrequent 
measurements (blue) and with regression of frequent measurements (red) for the light exposure shown in Figure 2. The results are shown 
for 48 different intervals beginning between between 17 and 21 kW h m−2 of insolation. The results show that regression of frequent 
measurements provides a more precise way to determine stability. 

We find that the regression method gives a more precise result than the infrequent measurements. The cumulative 
distribution functions for power change calculated with the two methods are shown in Figure 3. While both methods 
indicate that the module is stable (<2% change) for all of the considered 40 kW h m−2 intervals, the regression method 
gives a more precise result. Thus we recommend that the regression method for determining stability be used when 
possible. 

4. RECOMMENDED STABILIZATION PROCEDURE 
Here we present a detailed light-based procedure for the stabilization of thin-film modules. 

4.1 Procedure 
1. Light exposure 

(a) Expose the module to simulated sunlight under the following recommended light-exposure conditions (RLEC): 

i. Irradiance between 800–1000 W m−2 

ii. Back-of-module temperature of 50±2◦C. 
iii. Class CCC or better simulator as per IEC 60904.4 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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iv.	 Either fixed-resistance load or active maximum power tracking can be used. Fixed-resistance load should 
be selected so that the module voltage at 1000 W m−2 is within ±5% of the nominal maximum power 
voltage. Active maximum power tracking should have an uncertainty in the maximum power voltage of 
±5% or better. 

(b) Determine when this exposure is complete according to either of the “methods for determining stabilization” 
detailed below. 

(c) Additional exposure of up to 100 kW h m−2 is permitted to enable parallel testing of multiple modules or 
accommodate scheduling constraints. 

2. Cool the module to measurement temperature 

(a) Cool the module to a back-of-module temperature of 24.5–25.5◦C. 

(b) This step must take 0.5–1 h. 

3. Measure the final IV curve 

(a) Must be completed within 0.5–1 h after the end of the final light exposure 

(b) Module temperature must be 24.5◦C–25.5◦C. 

(c) Measure an IV curve with class AAA illumination4 

(d) Measure, record, and report: 

i. Full IV curve points 
ii.	 Pmp, Isc, Voc, FF 

iii. Module temperature 
iv.	 Date and time of curve 

4.2 Methods for determining stabilization 
1. Regression of in situ measurements 

(a) This method is applicable only if the simulator used for stabilization is class BBA or better. 

(b) Obtain a measurement of Pmp at least once every five minutes, either through active tracking or from an IV 
curve. If measurements from active tracking are used the associated uncertainty should not exceed ±2%. 

(c) Compute the total insolation (Q) from points measured when irradiance and back-of-module temperature are 
in the specified range (irradiance: 800–1000 W m−2, module temperature: 50±2◦C): 

N 

Q = ∑ Eiti (1) 
i=1 

where N is the number of observations meeting the specified criteria, Ei is the it h measurement of irradiance 
and the ti is interval between the measurement and those immediately preceding and following it. Q should be 
calculated for each measurement of Pmp to enable regression. 

(d) Temperature- and irradiance-correct each measurement of Pmp according to: 

1000 1
Pr = P	 (2)

E	 1 + γ(T − Tr) 

where P (W) is the module power measured at irradiance E (W m−2) and temperature T , γ (1/◦C) is the 
fractional power temperature coefficient, Pr (W) is the power at reference temperature Tr (typically 25◦C) and 
reference irradiance (1000 W m−2). 

(e) Perform a least-squares linear regression on Pr vs. Q for any interval ≥40 kW h m−2 . 

(f) Measure, record, and report: 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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i. Start and end time and date 
ii. All in situ Pmp measurements, irradiance, back-of-module temperature (single-point, center of module), 

and time and date of measurement (data collected at least once every five minutes) 
iii. Report the start and end date and time of the interval over which the data was regressed along with the 

slope of the linear fit. 

2. Infrequent measurements 

(a) At intervals of no less than 20 kW h m−2 of insolation, measure the module’s IV curve under repeatable condi­
tions, within the specifications below, to determine if Pmp is stable. Compute the total insolation (Q) according 
to Equation 1 from points measured when the irradiance and back-of-module temperature are in the specified 
range (irradiance: 800–1000 W m−2, module temperature: 50±2◦C). 

(b) These power measurements must be done with a solar simulator, class BBA or better at an illumination intensity 
of between (700–1100) W m−2 . 

(c) The IV curve can be collected at any convenient back-of-module temperature between 25–50◦C, but this tem­
perature must be repeated within 2◦C for consecutive measurements. 

(d) the Pmp calculated from this IV curve should be corrected for irradiance and temperature according to Equa­
tion 2 

(e) The light exposure can either be interrupted for measurement or an in situ measurement can be made. If the 
exposure is interrupted, the IV measurement must be made 0.5–1 h after the interruption and the light exposure 
must be restarted as soon as possible and within 2 h of the original interruption. 

(f) The light exposure is considered complete after three consecutive measurement of Pmp, separated by at least 
20 kW h m−2 of insolation satisfy Pmax−Pmin ≤ 0.02 where Pmax, Pmin, and Pave are the extreme and average Pave 

values of the three consecutive power measurements separated by at least 20 kW h m−2 . 

(g) Measure, record, and report 

i. Start and end time and date 
ii. Whether the measurements are made in situ, or the exposure in interrupted 

iii. all Pmp measurements including date and time of measurement 
iv.	 Irradiance and back-of-module temperature (single-point, center of module), and time and date of mea­

surement (data collected at least once every five minutes) 

5. VALIDATION OF ALTERNATIVE PROCEDURES 
For some products it may be appropriate to use an alternative to the procedure described in Section 4. For example 
it has been suggested that the application of forward bias at elevated temperature (BET) can be used to stabilize CdTe 
modules.5 Such procedures may be advantageous in that they provide a way to put modules into an outdoor-relevant 
electrical performance state more quickly and less expensively than a controlled light exposure. However, before such 
alternative procedures are used with any product, we recommend that they be validated to prove they produce an electrical 
performance state that is light-stable under the RLEC described in Section 4. 

The importance of validation is highlighted by Figure 4. Which shows the change in measured power during several 
steps of BET followed by exposure in the light soak chamber. In agreement with previous results,5 we find that the state 
produced by BET is not stable under illumination at a module temperature of 50◦C for two different types of CdTe modules. 

A simple validation procedure to screen alternative stabilizations is to: 

1. Perform the alternative stabilization 

2. Measure the STC IV curve 

3. Perform the light-based stabilization as described in Section 4 

4. Measure the STC IV curve 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

6



Insolation (kW h m-2)!Bias step!
N

or
m

al
iz

ed
 p

ow
er
!

0 1 2 3 4

0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 50 100 150

0.88
0.90
0.92
0.94
0.96
0.98
1.00

Figure 4. Change in power during application of BET intervals (bias steps, left) and subsequent light exposure (right). The BET 
measurements were taken at STC and the light-exposure measurements were made in situ. The BET measurements are normalized to 
the final bias step measurement and the light-exposure measurements are normalized to the start of the exposure. The results indicate 
that BET is successful in affecting a transient change in power, but that this change is partially relaxed upon exposure to light. 

If the power determined from the IV curves in steps 2 and 4 differ by less than 2%, then the alternate procedure is accepted, 
otherwise it is rejected. We note that this should be applied on a product-by-product basis, as some procedures may be 
appropriate for certain modules but not others. 

We demonstrated this validation procedure on four CdTe modules (two each of two different products) which were 
first subjected to BET and then light exposure as shown in Figure 4. We interrupted the light exposure at several points 
to measure STC IV curves. This allowed us to attempt validation on two different alternative procedures: BET only and 
BET followed by 53 hours of light exposure (BET+light). BET+light could be useful as the BET phase quickly saturates 
large changes (which could take much longer with light alone) while the final light exposure ensures the resulting state is 
light-stable. 

The variation between STC IV curves (steps 2 and 4) for the two procedures are shown in Table 1. Based on these 
results, BET only is rejected for these modules, but BET+light is successfully validated. Figure 5 provides a visualization 
of the validation on one of the modules, and shows that the STC-measured power reflects the trends observed from in situ 
IV curves during light exposure. 

Table 1. Relative variation in STC power between alternatively-stabilized and subsequently light-stabilized measurements. BET is 
rejected for these modules based on the observed variation ≥2%, while BET+light is successfully validated. 

Variation (%) 
Module BET BET+Light 

A1 2.2 0.1 
A2 3.8 0.7 
B1 3.1 1.0 
B2 3.3 1.0 

6. CONCLUSION 
We have motivated and described our best practices for the stabilization of transient performance changes in CIGS and 
CdTe PV modules prior to STC measurement. Because a module’s performance is sensitive to the exact light-exposure 
conditions, it is important to have a tightly defined stabilization procedure such as that documented here, to achieve re­
peatability and reproducibility. We also emphasize that alternate procedures may be useful for some products, but that they 
must be carefully validated to ensure they produce a light-stable condition under reasonable conditions. 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 5. Example validation of BET (a) and BET+light (b) on module B2. Red points indicate STC measurements and gray points 
indicate in situ measurements during light exposure. Insolation is calculated from the end of the alternate procedure, and both the STC 
and in situ powers are normalized to the beginning of the validating light exposure. Dashed lines indicate the criterion for accepting the 
alternate procedure. Here, BET+light is validated and BET only is not. 

ACKNOWLEDGMENTS 
We thank Steve Rummel, Allan Anderberg, Kent Terwilliger, and Greg Perrin for help with measurements. This work 
was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable 
Energy Laboratory. Some of the data in this report were obtained using equipment at the Energy Systems Integration 
Facility (a national user facility sponsored by the U.S. DOE Office of Energy Efficiency and Renewable Energy) located 
at the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article 
for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to 
publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. 

REFERENCES 
[1] Gostein, M. and Dunn, L., “Light soaking effects on photovoltaic modules: Overview and literature review,” 2011 

37th IEEE PVSC , 003126–003131 (June 2011). 
[2] Dirnberger, D., “Uncertainty in PV Module Measurement—Part II: Verification of Rated Power and Stability Prob­

lems,” IEEE Journal of Photovoltaics 4, 991–1007 (May 2014). 
[3] Deceglie, M. G., Silverman, T. J., Marion, B., and Kurtz, S. R., “Temperature-dependent light stabilized states in 

thin-film PV modules,” Proceedings of the IEEE Photovoltaics Specialists Conference (2015). 
[4] “IEC 60904-9: Photovoltaic devices – Part 9: Solar simulator performance requirments,” (2007). 
[5] Silverman, T. J., Deceglie, M. G., Marion, B., and Kurtz, S. R., “Performance stabilization of CdTe PV modules using 

bias and light,” IEEE Journal of Photovoltaics 5(1), 344–349 (2015). 
[6] Deline, C., Stokes, A., Silverman, T. J., Rummel, S., Jordan, D., and Kurtz, S., “Electrical bias as an alternate method 

for reproducible measurement of copper indium gallium diselenide (CIGS) photovoltaic modules,” Proceedings of 
SPIE 8472, 84720G (2012). 

[7] “IEC 61646: Thin-film photovoltaic (PV) modules – Design qualification and type approval,” (2008). 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

8




