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Executive Summary 
Various interconnection challenges exist when connecting distributed PV into the electrical 
distribution grid in terms of safety, reliability, and stability of electric power systems. One of the 
urgent areas for additional research - as identified by inverter manufacturers, installers, and 
utilities – is the potential for transient overvoltage from PV inverters. In one stage of a 
cooperative research and development agreement, NREL is working with SolarCity to address 
two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault 
overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, 
Northern Plains Power Technologies, and the Electric Power Research Institute.  
 
This report describes testing conducted at NREL to determine the duration and magnitude of 
transient overvoltages created by several commercial PV inverters during ground fault 
conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues 
(FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test 
results were reported previously in a separate technical report. 
 
The GFO tests were completed on three commercial inverters: a single-stage, three-phase string 
inverter; a dual-stage, three-phase string inverter, and a three-phase assembly of single-phase 
microinverters. All inverters tested had transformerless topologies. The dual-stage, three-phase 
string inverter was also tested with two different transformers connected at its output: a wye-
grounded:wye-grounded transformer and a delta:wye-grounded transformer.  Each inverter was 
tested at unity power factor and at minimum leading and lagging power factors.  Results confirm 
previous theoretical analyses asserting that inverters do not drive ground-fault overvoltages in 
the same way that synchronous machines do, although they can do so to a limited extent in 
certain scenarios1.  The total voltage duration and the maximum continuous time above various 
line-neutral voltage thresholds are presented here, as well as other test parameters. We also 
present brief investigations into the effects of changing inverter overvoltage and overfrequency 
trip settings, the effect of anti-islanding controls, and the effect of delta- and wye-connected 
loads. Finally, we quantify line-line overvoltage magnitudes and durations as well, showing that 
three-phase inverters can cause low levels of line-neutral overvoltage due to power rejection 
from the faulted phase to the unfaulted phases. 

 
It is very important to note that the GFO test method used here is designed to scientifically 
investigate inverter-driven GFO, and is not designed to exactly emulate ground-fault 
conditions on a real distribution feeder.  Therefore the test procedure and test results are 
not intended for certification testing.  Also note that these tests do not attempt to investigate 
the wide range of possible load conditions and circuit configurations that may be present on a 
feeder during a ground fault. Instead, the intent is to create conditions that isolate the inverter 
ground fault response from other effects. 
  

                                                 
 
1 Inverters can drive overvoltages via other mechanisms, such as power rejection to unfaulted phases (explained 
below in this report) and load rejection overvoltage (see http://www.nrel.gov/docs/fy15osti/63510.pdf).   
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1 Introduction 
The proliferation of inverter-coupled technologies such as solar photovoltaics (PV) on electric 
distribution systems has resulted in new opportunities to optimize distribution power systems and 
has created new challenges to prevent unstable or damaging conditions. This project addresses an 
urgent utility concern: the potential for transient or temporary overvoltage (TOV) from inverter-
based generation such as solar PV. Transient or temporary overvoltage is of concern because of 
the potential to cause damage to nearby equipment and loads [1], [2]. There are two types of 
TOV that are of primary concern for inverter-coupled generation: load rejection overvoltage 
(LRO) and ground fault overvoltage (GFO) [3].  
 
This report focuses on experimental testing of GFO. LRO testing was covered separately in 
previous publications [4], [5]. GFO can occur on a three-phase distribution system following a 
single line to ground fault: voltage-source generation may enforce line-to-line voltage 
relationships resulting in an overvoltage with respect to neutral on the un-faulted phases.  
 
Some previous work has been interpreted (or misinterpreted) to recommended uniform GFO 
mitigation measures for all distributed energy resources, both machine-based and inverter-based 
[1]. However, other authors have indicated that while GFO is a concern with synchronous 
machine generation and can be mitigated through effective grounding2, the same is not 
necessarily true for inverter-based generation [3]. GFO can be a concern for inverter sources in 
some cases, but it is generally more easily mitigated and is less of a problem than GFO of 
synchronous rotating machines.  Inverters, which are best modeled as current sources from the 
grid’s perspective, do not enforce the line-to-line voltage relationship at their output terminals 
and hence should not cause GFO in the same way as synchronous machines.  Moreover, in the 
scenarios where inverters could contribute to GFO, effective grounding – as defined in IEEE 142 
[7] – is not expected to solve the problem [3].  This result has been confirmed through simulation 
but has not been previously verified experimentally.  The testing described herein is intended to 
fill that gap by experimentally evaluating in what scenarios PV inverters cause GFO, and to what 
extent. As such, the test plan used is designed to isolate the response of the PV inverter to a 
ground fault, and not to exactly simulate the wide range of ground fault conditions possible on 
real distribution feeders. The test result analysis focuses primarily on line to neutral voltages, 
which are of concern in classic GFO response, but also delves briefly into line to line voltage 
responses. Symmetrical components are plotted for selected tests to provide insight into the 
effect that removal of zero sequence components through effective grounding would have on 
ground fault responses. 
 

                                                 
 
2 Definitions of effective grounding vary.  See the IEEE C62.92 series, for example [6].  According to some 
definitions, a system is considered effectively grounded if a ground fault does not produce overvoltages above a 
certain level; in some cases inverters may inherently fulfil this definition. In practice, effective grounding 
requirements may be fulfilled by installing grounding transformers, a practice that is sometimes very useful and 
sometimes not.  Detailed definitions of effective grounding and recommendations for effective grounding solutions 
are beyond the scope of this report. 
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This report describes GFO testing of a selection of common PV inverters in accordance with a 
newly-developed test plan. An industry group known as the Forum on Inverter Grid Integration 
Issues (FIGII), which consists of members from inverter manufacturers, utilities, consultants, and 
research labs, developed the test plan through a consensus-based process. A total of three 
inverters were tested, and one of the inverters was also tested with wye-grounded:wye-grounded 
(Y:Y) and delta:wye-grounded (D:Y) transformers connected between the test inverter and the 
ground fault location. While the largest inverter tested here is rated at 20 kW, the physical effects 
tested are not functions of inverter size, so conclusions drawn from testing are representative of 
all current-controlled inverters (a category that includes the vast majority of grid-tied PV 
inverters). The testing described here serves to provide feedback to stakeholders and is being 
used to provide input to inverter model development.  An upcoming publication will further 
analyze the theory behind inverter ground fault responses and expand on the results presented 
here [8]. 
 
It is worth briefly reviewing what happens in a typical field scenario following a single line-to-
ground fault.  Distribution circuits and faults vary widely, but some elements are common to 
most single line to ground faults.  When a single line to ground fault occurs, the fault often 
causes an upstream breaker or recloser to open, isolating the faulted part of the circuit from the 
rest of the grid.  If there is distributed generation in the isolated (islanded) section, the generation 
will briefly power any load within the island until the generator’s controller recognizes the island 
and ceases power exportation.  This can result in TOV via two mechanisms, mentioned above.  
The mechanism of primary concern to this report is GFO, in which a three-wire generator can 
cause a zero-sequence voltage to appear when feeding a four-wire circuit during a single phase to 
ground fault. The second TOV mechanism, LRO, occurs if the generation to load ratio within the 
island is greater than unity.  Both of these mechanisms can occur together following a single line 
to ground fault if an island forms with more generation than load.  LRO can also occur on its 
own when an island forms in the absence of a single line to ground fault, as quantified in [4], [5].  
This report describes experiments designed to characterize inverter GFO response in isolation 
from LRO and other transient effects, to the extent possible.   
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2 Test Procedures 
The test procedure used to evaluate the behavior of inverters in ground fault scenarios is based 
on a GFO test plan written by the FIGII working group. This test plan was designed to allow the 
inverter’s ground fault response to be observed for as long as possible, and in isolation from the 
islanding event.  The specific test procedures used at NREL, which include one test version that 
adheres very closely to the FIGII procedure and another modified test version, are described 
below.  Both test versions use a resonant load to allow the inverter-load circuit to be as stable as 
possible when the ground fault is created with the grid simulator disconnected.  Briefly, the GFO 
test consists of four steps: 

1. Connect the test inverter to the test setup as shown in Figure 1.  

2. Tune the resistive-inductive-capacitive (RLC) load so that the current from the 
grid simulator (also known as the Simulated Area EPS (electric power system) 
[9]) is nearly zero and so that the load resonates at 60 Hz with a qualify factor 
(QF) of roughly unity.   

3. Remove the grid simulator from the circuit, creating an island.  Steps 1 through 3 
are very similar to the IEEE 1547.1 test for unintentional islanding [10].  

4. Create the ground fault and record voltage waveforms.   

These four steps are broken down into a detailed test procedure in the next subsection.   

Ideally the test is performed with the inverter’s anti-islanding (AI) controls disabled.  This allows 
a stable inverter-load island to form following step 3 before the ground fault is created, which in 
turn allows the ground fault behavior to persist (within the constraints of inverter protection 
settings) and to be observed in the absence of other dynamics.  

One test inverter was not able to disable AI, and another uses a type of controller that cannot 
readily form a stable island (i.e. the AI method is integral to the controls).  When testing these 
two inverters, the fault was formed immediately after the grid simulator was removed (within 
half of a 60 Hz line cycle) using an automatic relay circuit.   

Hence there are two versions of the GFO test, as shown in Table 1.  Version 1, with AI disabled, 
is the preferred version, as written by FIGII. 

Table 1: GFO Test Versions 

GFO Test 
Version 

Priority AI control 
status 

Time between island 
creation and fault 

Comments 

Version 1 Primary  Disabled   Requires ability to form stable island.   
 No separate baseline test needed. 

Version 2 Backup  Active 3-5 milliseconds  May be difficult to separate island transient 
from ground-fault behavior. 

 Requires AI testing as baseline. 
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Recall that the intent of these tests is not to replicate the range of load and circuit conditions that 
are found in the field, but rather to observe the inverter’s ground fault behavior with minimal 
interference from other phenomena.  Cases where the generation to load ratio varies from unity 
are not tested here because it would not be possible to form a stable island, and thus it would be 
difficult to clearly see the effect in the tests.  In cases where the generation to load ratio is greater 
than one when a ground fault occurs, the inverter behavior would be a combination of its ground 
fault response and the LRO response, as characterized in [4], [5].  As in [4] and [5], the duration 
of this combined response would likely be short, especially in cases of higher generation to load 
ratio. 

The detailed test procedure is described below.  Much of the language is taken directly from the 
FIGII test procedure document, which in turn borrowed some language from IEEE Std 1547.1.  

2.1 GFO Test Procedure 
For these tests, any active voltage regulation features available in the equipment under test (EUT, 
i.e. the inverter) were disabled. Also, if any of the inverters tested as part of this work had 
required an external or separate transformer, the transformer would have been connected 
between the EUT and the load specified in Figure 1 and would have been considered part of the 
product being tested.  None of the inverters tested required external transformers, although where 
indicated some tests were performed with transformers connected between the EUT and the rest 
of the circuit to determine the impact of the transformer configuration on GFO. 
 

 
Figure 1: Generalized schematic of GFO test setup 

The test circuit was configured as shown in Figure 1. The neutral connection (grounded 
conductor) was unaffected by the operation of switch S1. The balanced load circuit shown in the 
figure was applied from each phase to neutral (wye configuration) unless otherwise indicated. 
Switch S1 was gang-operated and multi-pole. Switch S2 was applied between one phase and 
ground.  Inverters 1 and 3 are believed to have no low-impedance power connection to neutral.  
Inverter 2, however, is believed to have a power connection to neutral.   
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The test setup for tests with transformers is shown in Figure 2; it differs from Figure 1 only in 
the insertion of a three-phase transformer between the EUT and S2.  All line to neutral voltages 
on both sides of the transformer were measured.  For delta-wye transformer tests, the delta side 
faced the fault location (S2).  All transformer neutral connections were grounded. 

 

 

Figure 2: Generalized schematic of GFO test setup with transformer 

Each EUT was connected according to the instructions and specifications provided by the 
manufacturer. All EUT input source parameters were set to the nominal operating conditions for 
the EUT.  All EUT settings were set to default values unless otherwise indicated, with two 
exceptions: 1) AI controls were disabled if running test Version 1, and 2) the 300-second 
countdown timer to begin power export was disabled in order to shorten the time between tests.  

The test sequence for test Version 1 was as follows, with modifications for Version 2 shown in 
blue:  

a) Connect the EUT according to the instructions and specifications provided by the 
manufacturer.  

b) Set all EUT input source parameters to the nominal operating conditions for the EUT. 
c) Set (or verify) all EUT parameters to the nominal operating settings. Island detection 

functions were disabled for this test, if possible.  (If running Version 2, leave island 
detection functions enabled.) 

d) Set the EUT (including the input source as necessary) to provide 100% of its rated output 
power. 

e) Record all applicable settings. 
f) Set the simulated EPS to the EUT nominal voltage ± 2% and nominal frequency ± 0.1 

Hz. 
g) Adjust the islanding load circuit in Figure 1 to provide a quality factor Qf of at least 1.0 

(when Qf is equal to 1.0, the following applies: PqL = PqC = 1.0 × P). The value of Qf is 
to be determined by using the following equations as appropriate: 

EUT
Simulated 
Area EPS

S1

RLC 
Load S2

Transformer
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=   

 
or 

=  
 × 

 
where 

 
Qf is the quality factor of the parallel RLC resonant load, 
R is the effective load resistance (  
C is effective load capacitance (F), 
L is effective load inductance (H), 
PqL is the reactive power per phase consumed by the inductive load component (VARS), 
PqC is the reactive power per phase consumed by the capacitive load component (VARS), 
P is the real output power per phase of the unit (W), 

 
The inductance and capacitance are to be calculated using the following equations: 

=
2 × × × ×

 

 

=
 ×  

2 × × ×
 

where 
V is the nominal voltage across each phase of the RLC load (V) (for loads connected 
phase to phase, V is the nominal line-line voltage; for loads connected phase to neutral, V 
is the nominal phase-neutral voltage), 
f is frequency (Hz). 

 
When tuning for the current balance in this step with a non-unity output power factor 
EUT, there will be an imbalance between the L and C load components to account for the 
EUT reactive current. The EUT reactive output current shall be measured and 
algebraically added to the appropriate reactive load component when calculating Qf. 

 
h) Close switch S1 and wait until the EUT produces the desired power level. 
i) Adjust R, L, and C until the fundamental frequency current through switch S1 is less than 

2% of the rated current of the EUT on a steady-state basis in each phase. 
j) Open switch S1 and allow a stable island to form with voltage within 10% of nominal 

and frequency within 0.5% of nominal. If running Version 2 (anti-islanding enabled), do 
not wait for a stable island to form. 

k) Begin recording the voltage measurement.  
l) Close switch S2 and record the voltage until the EUT ceases to energize the RLC load or 

until voltage has stabilized. If running Version 2, close switch S2 immediately after 
opening switch S1 to maximize the island duration. 

m) Repeat the test four times for a total of five tests. 
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n) Repeat steps e) through m) with switch S2 connected to the other phases until all phases 
have been tested. 

o) Repeat steps e) through n) at the minimum power factors for the EUT, both capacitive 
and inductive.  

 
Requirements 
The EUT input sources used were capable of supplying at least 150% of the maximum input 
power rating of the EUT over the entire range of EUT input voltages.  The test and measurement 
equipment recorded each phase current and each phase-to-neutral and phase-to-phase voltage 
over the duration of the test.  A sampling frequency of at least 10 kHz was required.  Sampling 
frequencies of 50 kHz were used in most tests unless otherwise indicated.  
 
The equations for Qf are based upon an ideal parallel RLC circuit. For this reason, non-inductive 
resistors, low loss (high Q) inductors, and capacitors with low effective series resistance and 
effective series inductance were utilized in the test circuit. Power ratings of resistors were 
conservatively chosen to minimize thermally induced drift in resistance values during the course 
of the test. 
 
2.2 GFO Data Reporting  
A voltage-duration curve was created using sampled instantaneous voltage measurements during 
the complete transient time of the inverter. The number of voltage measurements above the 
voltage levels provided in Table 2 was multiplied by the sample interval, resulting in that voltage 
threshold’s total duration. The voltage-duration curve is a plot of all points (voltage, duration) 
derived from this process. Because classic GFO affects line-neutral voltages, all results reported 
herein are for line-neutral voltages unless otherwise indicated. 
 

Table 2. Overvoltage threshold levels 

Instantaneous Voltage 
(% of nominal peak) 

170 
140 
130 
120 
110 

 
The voltage levels shown in Table 2 are significantly modified from voltage levels in what is 
known as the CBEMA3 curve, or its successor the ITIC4 curve, both of which describe the 
tolerance of electronic equipment to voltage surges of varying durations.  The voltage levels 
have been modified to better characterize inverter behavior across the range of voltage levels 
expected during testing. FIGII working group members generally agreed that the CBEMA and 
                                                 
 
3 Computer Business Equipment Manufacturers Association 
4 Information Technology Industry Council 
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ITIC curves may not actually be appropriate for evaluating inverter behavior in transient 
overvoltage scenarios because they were not designed for that purpose.  However, more 
appropriate curves are not known to have been developed, and their development would require 
significant research and consensus building.  Also note that the voltage levels used here differ 
from those used in the LRO testing presented in [4] in that they are more concentrated at lower 
overvoltage levels to provide better granularity to the analysis at the expected TOV levels. 
 
In addition, the longest time that the voltage exceeded each of the limits in Table 2 continuously 
was recorded for each of the test settings. The distinction between the total voltage duration and 
the maximum continuous duration is depicted in Figure 3. For waveforms that exceed a defined 
voltage threshold during multiple parts of the cycle (either positive or negative polarity), the total 
voltage duration will always be greater than the maximum continuous time. For the example 
waveform given, the total voltage duration would be recorded as the sum of t1, t2, and t3. Since 
t2 is the longest continuous time the voltage exceeds the threshold, t2 would be recorded for the 
longest continuous duration metric.  
 

 

Figure 3: Example waveform depicting how test result data is defined 

In addition to the voltage duration metrics described, the absolute value of the maximum 
instantaneous voltage measurement recorded at any time during the transient event is reported 
(as represented by the voltage at point P in Figure 3), as well as the trip time (represented by 
ttrip). For the purposes of these tests, the trip time was defined as the time between switch S2 
closing and the EUT current dropping below a threshold and never again exceeding that 
threshold.  

2.3 Test Inverters and Test Equipment Description 
The basic specifications for the test inverters are given in Table 3. For the purposes of this report, 
the inverter manufacturer and model number are not given, and inverters are given a generic 
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name (“Inverter 1”, Inverter 2”, …). As seen in Table 3, a variety of inverter topologies and 
power levels have been selected for this study.  

When describing leading and lagging power factor throughout this report, the generator reference 
frame is used: current is defined as positive when leaving the inverter.  Hence lagging power 
factor operation corresponds to sourcing of reactive power (sometimes called overexcited 
operation in analogy to rotating machine controls), and leading power factor operation 
corresponds to sinking of reactive power (analogous to underexcited machine operation).  To 
avoid confusion, this explanation is reiterated in each section of this report. 

For Inverter 1, the minimum power factor was 0.8, both leading and lagging.  Inverter 2 can 
operate at nearly any power factor, but the minimum power factor listed in the data sheet was 0.8 
(both leading and lagging), so 0.8 was used as the minimum power factor for GFO testing 
purposes.  Inverter 3 can only operate at unity power factor. 

Table 3: Basic test inverter specifications 

 
Voltage 

Configuration 
Nameplate 

Power 
Additional 

Information 
Test 

Version 
Minimum 

Leading PF 
Minimum 

Lagging PF 
Inverter 

1 
480 V Three 

Phase 12.0 kW Dual stage, 
transformerless 

1 0.8 0.8 

Inverter 
2 

480 V Three 
Phase 20.0 kW Single stage, 

transformerless 
2 0.8 0.8 

Inverter 
3 

208 V Three 
Phase 4.5 kW 

(18) 250 W 
microinverters in a 

three-phase 
configuration 

2 NA NA 

 

Table 4 shows the configurations of the two transformers used for additional tests of Inverter 1.  
Only Inverter 1 was tested with transformers.  
 

Table 4: Transformer configurations for additional tests 

 Transformer Configuration Transformer Rated Power Turns Ratio 

Inverter 1 Wye-grounded:Wye-grounded 30 kVA 1:1 

Inverter 1 Delta:Wye-grounded  
(Wye on inverter side) 30 kVA 1:1 

 

The major test and measurement equipment used in this testing were as follows: 

 Grid Simulator: Ametek MX45 45 kVA AC power supply (bi-directional) 

 DC Input Source (central/string inverters): MagnaPower MTD1000-250 DC power 
supply 
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 DC Input Source (microinverters): TerraSAS PV supply, 14x ETS60X14C-PVF and 4x 
ETS80X10.5C-PVF modules 

 Load Banks: LoadTec 250 kVA RLC load bank, wye-connected.  Minimum load step 
sizes at 480 VAC are 50 W and 50 VARs, both capacitive and inductive. 

 Yokogawa DL750E Scopecorder, calibration date 08/2014, 701260 modules for power 
measurements, 701250 modules for signal measurements.  AC voltages directly input to 
sensing modules. 

 Yokogawa DL850E Scopecorder, calibration date 08/2014, 720210/701250 modules for 
power measurements, 701267 modules for signal measurements. AC voltages directly 
input to sensing modules. 

 Hioki 9693 AC/DC current probes with 6590 transducers 

 Yokogawa 701930 current probes (10 mV/A, 150/500 A maximum) 

 Fluke 87 RMS multimeter 
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3 Test Results 
All test results for GFO testing are provided in the following sections for each of the three test 
inverters. Each section contains mean values and maximum/minimum values for each of the 
inverter/load power test settings, across a typical total of 21 tests (seven for each phase) at each 
setting. While the test procedure called for five tests per phase, in many cases seven tests were 
run. The first sections contain data about total overvoltage durations, maximum continuous 
overvoltage durations, maximum voltage measurements, and trip times, focusing on line to 
neutral voltages. Representative waveforms and waveforms of particular interest are provided in 
the subsequent section for each test inverter. Representative island transition waveforms are also 
presented, as these serve as a baseline under test Version 2. Finally, the following comparative 
analyses are presented: 

 Default voltage and frequency trip settings versus wide trip settings 

 Test Version 1 (AI disabled) versus test Version 2 (AI enabled) 

 No transformer versus Y:Y transformer versus D:Y transformer 

 Wye-connected load versus delta-connected load 

 Analysis of line to line voltages 

3.1 RLC Load Tuning 
The power and reactive power settings of the RLC load for each test category are given in Table 
5 through Table 11.  Note that these settings refer to the power of the load bank itself rather than 
the entire circuit, which contains some additional resistance, inductance, and capacitance. For 
this reason when the circuit is tuned so that inverter real power matches circuit power 
dissipation, the load bank real power is always somewhat less than the inverter output power.  
For non-unity power factor tests, the real power values are further reduced because the inverters 
curtailed active power in order to produce reactive power. Inverter 3 was not capable of 
operating at non-unity power factor. 

Also note that the exact tuning of the load is not as crucial in GFO tests as it is in unintentional 
islanding tests: in GFO tests the purpose of the island is primarily to allow the inverter to run 
without being connected to an AC voltage source.  This is true of both Version 1 (AI disabled) 
and Version 2 (AI enabled) of the GFO test.  Nevertheless, load quality factors of nearly 1.0 or 
slightly higher were used.   

Each phase of the load bank employed was individually tunable, and in many tests each phase 
was individually tuned to minimize fundamental frequency current from the grid simulator (i.e. 
to optimize the matching between load and generation).  When per-phase load values are not 
given, the load was balanced. Unless otherwise stated, the tests described below used the load 
bank settings given in the following tables, where P is the real power setting, QL is the inductive 
reactive power setting, and QC is the capacitive reactive power setting: 
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Table 5: Inverter 1 Load Settings – Unity Power Factor 

P (kW) 11.4 

QL (kVAR) 12.3 

QC (kVAR) 12.0 
 

Table 6: Inverter 1 Load Settings – Leading5 Power Factor 

P (kW) 9.3 

QL (kVAR) 8.5 

QC (kVAR) 15.5 
 

Table 7: Inverter 1 Load Settings – Lagging Power Factor 

 Phase A Phase B Phase C 

P (kW) 2.95 5.25 2.83 

QL (kVAR) 5.25 5.25 5.25 

QC (kVAR) 2.85 2.75 2.70 
 

Table 8: Inverter 2 Load Settings – Unity Power Factor 

 Phase A Phase B Phase C 

P (kW) 6.25 6.15 6.05 

QL (kVAR) 6.65 6.65 6.65 

QC (kVAR) 6.85 6.65 6.85 
 

                                                 
 
5 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Table 9: Inverter 2 Load Settings – Leading5 Power Factor 

 Phase A Phase B Phase C 

P (kW) 4.80 4.70 4.70 

QL (kVAR) 3.50 3.50 3.0 

QC (kVAR) 7.35 7.35 7.35 
 

Table 10: Inverter 2 Load Settings – Lagging5 Power Factor 

 Phase A Phase B Phase C 

P (kW) 5.00 5.00 4.80 

QL (kVAR) 7.85 7.85 7.75 

QC (kVAR) 3.50 3.50 3.50 
 

Table 11: Inverter 3 Load Settings – Unity Power Factor 

 Phase A Phase B Phase C 

P (kW) 1.35 1.35 1.35 

QL (kVAR) 1.55 1.65 1.55 

QC (kVAR) 1.50 1.55 1.50 
 

3.2 Total Time Above Voltage Thresholds 
The total overvoltage duration curves for each of the three test inverters are provided below. 
These plots display the total amount of time that the voltage at the AC terminals exceeded each 
of the voltage thresholds given in Table 2. Each measurement is inclusive of higher threshold 
limits; for example, time above the 120% threshold includes time above the 130%, 140%, and 
170% thresholds. Each measurement represents the total time that any of the three phases 
exceeded a given threshold (the sum of the three phases).  

An example overvoltage duration plot is shown in Figure 4. The legend shows each of the three 
inverter power factor settings, and a plot is given at each of these test settings for each voltage 
threshold. Each whisker plot shows the average (mean) value of the test runs, along with the 
maximum and minimum values of these tests.  
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Figure 4: Example plot of overvoltage duration as a function of voltage threshold level and power factor6 for 
a single test inverter 

The overall test data are summarized in Table 12 and Table 13, which contain all of the 
information about averages and maxima that is contained in individual inverter plots. All time 
measurements are reported in milliseconds (ms). Inverter 3 was not capable of operating at non-
unity power factor.  For the standard wye-load tests without transformers, no overvoltage levels 
reached the 170% threshold, and all overvoltage times were quite brief.  Most of the 
overvoltages above 120% were due to a very brief initial current spike through the fault rather 
than to longer time-scale effects, as will be clear from the voltage waveforms presented further 
below. 

Table 12: Maximum total time above each voltage threshold (ms) 

 Inverter 1 Inverter 2 Inverter 3 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 3.26 0.10 0.04 0.02 0.14 0.08 0.04 0.00 0.22 0.10 0.04 0.02 

0.8 leading 1.52 0.10 0.04 0.02 0.18 0.08 0.02 0.00 - - - - 

0.8 lagging 3.94 0.86 0.04 0.02 6.36 0.06 0.02 0.00 - - - - 

 
                                                 
 
6 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 

>110% >120% >130% >140%
0

0.5

1

1.5

2

2.5

3

3.5

4

Overvoltage Level (% Nominal)

To
ta

l T
im

e 
A

bo
ve

 T
hr

es
ho

ld
 (m

s)

 

 

Power Factor

1.0
0.8 Leading
0.8 Lagging

Maximum, mean, and minimum 
time above the indicated voltage 
level across all tests at the 
indicated power factor.  Here, the 
voltage level is 110% and the PF is 
0.8 lagging.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 15 

Table 13: Average total time above each voltage threshold (ms) 

 Inverter 1 Inverter 2 Inverter 3 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 2.18 0.03 0.01 0.00 0.06 0.02 0.00 0.00 0.08 0.03 0.01 0.01 
0.8 leading 1.04 0.04 0.01 0.00 0.07 0.02 0.00 0.00 - - - - 
0.8 lagging 3.10 0.42 0.01 0.00 0.51 0.01 0.00 0.00 - - - - 

 

A plot of the voltage duration ranges for Inverter 1 is shown in Figure 5. The largest measured 
overvoltage duration above 110% of nominal was under 4 ms and the largest duration above 
120% of nominal was under 1 ms. Overvoltage durations tended to be longest for lagging power 
factor and shortest for leading power factor, and this inverter had few overvoltage measurements 
above the 140% threshold. 

 
Figure 5: Cumulative overvoltage durations for Inverter 1 

A plot of the overvoltage duration ranges for Inverter 2 is shown in Figure 6. Nearly all 
overvoltage cumulative durations were below 1 ms.  The largest measured overvoltage duration 
above 110% of nominal was 6.4 ms.  This inverter spent very little time above the 120% 
threshold. Like Inverter 1, Inverter 2 also shows worst-case overvoltages with lagging power 
factor. 
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Figure 6: Cumulative overvoltage durations for Inverter 2 

A plot of the voltage duration ranges for Inverter 3 is shown in Figure 7. This inverter is not 
capable of operating at non-unity power factor, so only unity power factor results are shown. The 
largest measured overvoltage duration above 110% of nominal was under 0.25 ms. This inverter 
showed the shortest overvoltage durations of the three inverters.  

 
Figure 7: Cumulative overvoltage durations for Inverter 3.  Note vertical range extends to only 0.25 ms. 

All three inverters produced very short cumulative overvoltages, totaling below half of an AC 
line cycle in all cases shown above.  Tests with transformers and with delta-connected loads have 
not been included above and are described later. 
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3.3 Maximum Continuous Time Above Voltage Thresholds 
Summaries of the maximum and average of the maximum continuous time spent above each 
voltage threshold are shown in Table 14 and Table 15. Since no instantaneous voltage 
measurement exceeded 170% of nominal, only the 110%/120%/130%/140% thresholds are 
reported in these tables. As described earlier, the maximum continuous time variables by 
definition are less than or equal to the total time durations reported in the previous section. 
Averages and maxima are calculated from a set of tests (typically 21, seven for each phase) 
executed at each loading ratio. This data set shows the maximum continuous time that any 
individual phase voltage exceeded a given threshold. It is possible that the maximum continuous 
overvoltage occurred on different phases for different voltage thresholds. No inverter exceeded 2 
ms continuously above any threshold for any of these transformerless, wye-load tests. 

Table 14: Maximum continuous time above each voltage threshold (ms) 

 Inverter 1 Inverter 2 Inverter 3 

Inverter PF7 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.64 0.06 0.02 0.02 0.14 0.04 0.02 0.00 0.18 0.06 0.04 0.02 
0.8 leading 1.34 0.10 0.04 0.02 0.18 0.06 0.02 0.00 - - - - 
0.8 lagging 1.62 0.82 0.02 0.02 1.06 0.04 0.02 0.00 - - - - 

 

Table 15: Average of maximum continuous times above each voltage threshold (ms) 

 Inverter 1 Inverter 2 Inverter 3 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.32 0.02 0.00 0.00 0.05 0.01 0.00 0.00 0.05 0.02 0.01 0.01 
0.8 leading 0.90 0.03 0.01 0.00 0.06 0.02 0.00 0.00 - - - - 
0.8 lagging 1.30 0.40 0.01 0.00 0.13 0.01 0.00 0.00 - - - - 

 

A plot of the maximum continuous overvoltage duration ranges for Inverter 1 is shown in Figure 
8. The largest measured continuous overvoltage duration above 110% of nominal was under 1.7 
ms. Again, worst-case overvoltage durations occurred for lagging power factor operation.  

                                                 
 
7 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Figure 8: Maximum continuous overvoltage durations for Inverter 1 

A plot of the maximum continuous overvoltage duration ranges for Inverter 2 is shown in Figure 
9. The largest measured continuous overvoltage duration above 110% of nominal was under 1.2 
ms. Again, worst-case overvoltage duration came at lagging power factor.  

 
Figure 9: Maximum continuous overvoltage duration times for Inverter 2 
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A plot of the maximum continuous overvoltage duration ranges for Inverter 3 is shown in Figure 
10. The largest measured continuous overvoltage duration above 110% of nominal was under 2 
ms. This inverter had consistently short continuous overvoltage times.  

 
Figure 10: Maximum continuous overvoltage duration times for Inverter 3 

3.4 Maximum Instantaneous Overvoltage 
This section presents data on the maximum instantaneous overvoltage measurement recorded at 
any point during the fault transient event. Averages and maximums across (typically) 21 
different tests at each power factor are provided in Table 16 and Table 17. The plots in this 
section and the next display the parameter of interest as a function of inverter power factor. Each 
plot shows the average across all tests at a given power factor (red “X”) as well as the individual 
test data points (blue circles). As discussed below with the voltage waveforms, the peak 
overvoltage is typically due to the very brief fault transient (rather than to a quasi-steady-state 
sinusoidal overvoltage typically associated with GFO) and is highly dependent on where in the 
sinusoid the fault occurs.  

Table 16: Maxima of maximum instantaneous voltage measurements (% of nominal peak) 

Inverter PF8 Inverter 1 Inverter 2 Inverter 3 

1.0 142 138 156 
0.8 leading 143 133 - 
0.8 lagging 151 132 - 

                                                 
 
8 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 

>110% >120% >130% >140%
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Overvoltage Level (% Nominal)

M
ax

im
um

 C
on

tin
uo

us
 T

im
e 

A
bo

ve
 T

hr
es

ho
ld

 (m
s)

 

 Power Factor

1.0

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 20 

Table 17: Average of maximum instantaneous voltage measurements (% of nominal peak) 

Inverter PF Inverter 1 Inverter 2 Inverter 3 

1.0 125 115 129 
0.8 leading 127 116 - 
0.8 lagging 132 115 - 

 
The maximum instantaneous overvoltages measured as a function of power factor for Inverter 1 
are found in Figure 11. Peak overvoltages fell in a wide range starting as low as 113% above 
nominal, and going as high as 151% of nominal. (Note: this could also be phrased as 51% above 
nominal.) As with overvoltage durations, maximum voltage levels tend to be somewhat worse at 
lagging power factor.  

 
Figure 11: Maximum instantaneous overvoltage vs. power factor for Inverter 1 

The maximum instantaneous overvoltages measured as a function of power factor for Inverter 2 
are found in Figure 12. Peak voltages cover a wide range starting well within ANSI Range A and 
going as high as 138% of nominal. Inverter 2 tended to have slightly lower instantaneous 
overvoltage levels compared to the other two inverters. For this inverter, lagging power factor 
tests did not show higher overvoltage levels, though they did show somewhat longer overvoltage 
durations.   
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Figure 12: Maximum instantaneous overvoltage vs. power factor for Inverter 2 

The maximum instantaneous overvoltages measured for Inverter 3 are found in Figure 13. The 
maximum voltage measured during any of the tests of Inverter 3 was 156% of nominal, and the 
lowest maximum voltage was very near to the nominal voltage. Recall, as mentioned previously 
and shown in Figure 10, that the higher overvoltages had very short durations; the highest peak 
overvoltages lasted only one sample cycle (0.02 ms).   

 
Figure 13: Maximum instantaneous overvoltage vs. power factor for Inverter 3 

  

1.0 0.8 Leading 0.8 Lagging
100

110

120

130

140

Inverter Power Factor

M
ax

im
um

 O
ve

rv
ol

ta
ge

 (%
 n

om
in

al
)

 

 
Test Data
Averages

1.0
100

110

120

130

140

150

160

Inverter Power Factor

M
ax

im
um

 O
ve

rv
ol

ta
ge

 (%
 n

om
in

al
)

 

 
Test Data
Averages

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 22 

3.5 Trip Time / Time to Disconnect 
This section shows data about the trip time (also called time to disconnect or run-on time) for 
each test inverter as a function of power factor. For the purposes of this testing, the trip time was 
defined as the time from switch S2 closing (see Figure 1) until the time that each phase current 
ceased to exceed a threshold of 3 A peak.  This threshold was chosen empirically as the optimal 
level to detect inverter turn-off given signal noise and offset. Maxima and averages across 
typically 21 different tests at each power factor are provided in Table 18 and Table 19. Inverters 
1 and 3 tended to disconnect after two AC line cycles.  Inverter 2 displayed a binary behavior, 
sometimes disconnecting in under one cycle but sometimes running for roughly ten cycles at 
near-nominal line-neutral voltage magnitude. 

Table 18: Maximum time to disconnect for all inverters (ms) 

Inverter PF9 Inverter 1 Inverter 2 Inverter 3 

1.0 34.9 180.0 32.7 
0.8 leading 35.3 191.5 - 
0.8 lagging 32.6 184.3 - 

Table 19: Average time to disconnect for all inverters (ms) 

Inverter PF Inverter 1 Inverter 2 Inverter 3 

1.0 29.4 51.7 18.9 
0.8 leading 29.2 105.5 - 
0.8 lagging 27.8 128.5 - 

 
Individual plots of all test points and average trip times as a function of power factor are shown 
in Figure 14 through Figure 16. The binary behavior of Inverter 2 is evident: it has both the 
longest and the shortest trips times of the three inverters.  Its behavior depends on the magnitude 
of the initial voltage spike due to the fault current, with large voltage spikes producing rapid 
shutdown and smaller spikes often leading to longer run-on time.  Note that the longer run-on 
times would likely not occur in real-world scenarios without the balanced load:generation ratio 
required by the test plan.  Nevertheless these run-on times are all under 12 line cycles and are not 
concerning given the near-nominal voltage levels.  The trip times of Inverters 1 and 3 were more 
predictable and were always under 3 line cycles. 

                                                 
 
9 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Figure 14: Trip time as a function of power factor for Inverter 1 

 
Figure 15: Trip time as a function of power factor for Inverter 2 
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Figure 16: Trip time as a function of power factor for Inverter 3 

3.6 Waveforms of Interest 
This section shows a selection of waveforms showing inverter behavior during the ground fault 
event for each of the test inverters. Each inverter had unique responses to the fault event, but the 
responses can be grouped into similar and repeatable response types. This section contains some 
waveforms that are considered typical inverter responses, along with others that had a unique or 
outlying response. This section is not meant to be an exhaustive report on all waveform 
characteristics, but instead is meant to provide insights into the differences between inverter 
responses. In general, GFO test results were much more consistent and contained fewer outliers 
than LRO test results presented in [4].  This section also presents plots of symmetrical 
component for selected tests to provide insight into the effect grounding transformers would 
have on the inverter ground fault responses. 

Each waveform plot shows the AC terminal voltages, inverter current, DC bus voltage, and the 
auxiliary contact signal (labeled “Aux”) showing when switch S2 closed, creating the fault (see 
Figure 1). The closing of switch S2 actually occurs 2-4 ms after Aux goes low, as is clear from 
the abrupt change in the faulted phase voltage in many plots.  Note that trip times presented 
above are measured from the actual fault time rather than from the time the Aux signal goes low. 
Each plot also has horizontal lines showing the 110%, 120%, and 130% voltage threshold levels 
(when necessary). The interval of time where the maximum continuous overvoltage at each 
voltage threshold occurs is highlighted in each waveform. The alphanumeric name given in 
parentheses in each waveform caption corresponds to the raw data file name.  

This section also presents unintentional islanding test waveforms for Inverters 2 and 3, which 
were primarily tested using test Version 2.  These AI tests serve as baselines for the GFO tests 
under Version 2, which initiates the ground fault immediately following the creation of the 
island. 
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Inverter 1 Waveforms 

Figure 17 shows a typical response of Inverter 1 with annotations to point out salient features. 
For this test the inverter was operating at unity power factor and the fault occurred on phase C.  
At the time of the fault (just after 2.3 s), the faulted phase voltage, which was negative, went 
immediately to near zero, and the other two phase voltages rose by nearly the same amount.  
This created a significant but very brief overvoltage on phase B, which was near its peak. After 
the brief spike, all three inverter currents returned to nearly nominal-magnitude sinusoids with 
noticeable harmonics, and the two unfaulted phase voltages continued on sinusoidal trajectories 
with noticeable unbalance.  This unbalance led to some overvoltage on phase A at the 110% 
level, but only on the positive half of the sinusoid.  There was no overvoltage on the other phase.  
After about two AC cycles, the inverter stopped gating, evidenced by the abrupt cutoff of current 
around 2.33 s.  The unfaulted phase voltages displayed a decaying resonance at 60 Hz after the 
inverter stopped exporting current.  This resonance was driven by the RLC load, and as expected 
for a circuit with quality factor near unity, the resonance lasts about one line cycle. 

 
Figure 17: Inverter 1 waveform at unity power factor (test SC0005) 

Figure 18 shows the symmetrical component magnitudes of the voltage waveforms in Figure 17.  
The positive sequence component drops from 1.0 pu (per unit) before the fault to about 0.7 pu 
for the two line cycles following the fault before the inverter disconnects.  During those two line 
cycles, both the negative and the zero sequence components rise from near zero to about 0.35 pu.  
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In the “traditional” GFOV mechanism normally associated with synchronous machines (derived 
neutral point shift), nearly all of the unbalanced voltage would appear in the zero sequence.  The 
split between negative and zero sequences seen in Figure 18 indicates that this unbalance is not 
caused by a derived neutral point shift.  

 
Figure 18: Symmetrical components of Inverter 1 voltage waveforms at unity power factor (test SC0005) 

Both the waveforms and the symmetrical components in this response were fairly typical for this 
inverter regardless of power factor and faulted phase.  The magnitude of the brief overvoltage 
spike at the time of the fault varied depending on the voltages of the faulted and unfaulted phases 
at the time of the fault, and the exact shape of the voltage waveforms varied as well.  

Note that all of the highest overvoltages recorded in the sections above (for all three inverters) 
were due to the brief initial spike at the time of the fault, and not to sinusoidal overvoltages 
typically associated with GFO.  In a real feeder ground fault scenario the grid source is still 
present during the initial ground fault, so this spike would typically be driven by a combination 
of grid-sourced current and current sourced by any inverters connected to the feeder.  The 
longest duration overvoltages are due to sinusoidal overvoltage, but the magnitudes of sinusoidal 
overvoltage are consistently low. 

It is worthwhile to examine the fault voltage spike briefly.  Figure 19 shows a zoomed in view of 
the spike. When phase C was shorted, its voltage rose nearly 200 V in one sample period (20 µs).  
Phases A and B both rose by roughly 100 V in the same time.  This indicates that a large ground 
fault current flowing through the very small neutral-to-ground impedance caused a very brief 
drop in the neutral voltage of roughly 100 V – the neutral point essentially met phase C halfway, 
ending up 100 V below ground potential, temporarily.  So, while the voltages relative to earth 
ground on phases A and B likely changed very little, the phase-neutral voltages VAN and VBN, 
which are what was measured, both changed by 100 V.  In the case of phase A, which was 
already negative, VAN simply became less negative.  But in the case of phase B, which was 
positive and near its peak, the voltage VBN suddenly spiked by 100 V.  This spike died out fairly 
quickly (with some ringing) as the fault current decayed.   
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It is worth noting that in this experimental setup only a few meters of cable separated the inverter 
from the fault location, so the impedance between the fault and the inverter is very low.  In a 
typical field ground fault, there would be higher impedance between the inverter and the fault 
(and the grid itself would also typically still be connected during the fault).  So the fault voltage 
spikes recorded here should not be taken to be representative of field conditions, which would 
likely see lower fault current contributions from the inverter. 
 
This is significant because it shows that the initial spike is partially attributable to the fault itself, 
rather than to the inverter, though the inverter does source some of the fault current, with the rest 
coming from the resonant load itself.  The fact that some of the fault current comes from the load 
explains why lagging power factor tests tended to have higher voltage spikes: at lagging power 
factor the parallel RLC load contains more inductance and less capacitance, and hence has higher 
impedance at very high frequencies.  This higher impedance leads to a larger voltage difference 
between the unfaulted phases and neutral. 
 
The current sensors used here were limited in bandwidth to 15 kHz and hence did not register 
most of the higher-frequency fault current spike. 

 
Figure 19: A close-up of the waveforms in Figure 17 at the time of the fault 
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Figure 20 shows the test with the longest overvoltages at each threshold of the tests summarized 
above. The inverter was at lagging power factor10 and the fault was on phase A.  If the brief 
current spikes at the time of the fault are excluded, this was the worst-case test result of Inverter 
1 (excluding delta load tests and D:Y transformer tests).  Figure 21 shows the symmetrical 
components of the voltage for the same test.  As in Figure 18 above, both negative and zero 
sequences appear after the fault, peaking around 0.35 pu.   

It was not uncommon to see almost no overvoltage at all, as seen in Figure 22, where the initial 
voltage spike did not produce an overvoltage because the faulted phase was near its zero-
crossing at the time of the fault.  This test was at leading power factor and phase B was faulted.  
Phase C does exceed the 110% threshold for about 1 ms.  Considering that the waveforms shown 
in Figure 20 and Figure 22 represent the worst-case and the best case respectively and yet are 
themselves very similar, it is clear that this inverter’s GFO behavior was quite repeatable.  

 

Figure 20: Inverter 1 test with longest cumulative overvoltage (SAO0003) 

                                                 
 
10 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 

2.25 2.3 2.35 2.4
-600

-400

-200

0

200

400

Time (sec)

V
ol

ta
ge

 (V
) o

r C
ur

re
nt

 (A
)

 

 
VinvA
IinvA
VinvB
IinvB
VinvC
IinvC
Aux
Vdc
110%
120%
130%
110%
120%
130%

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 29 

 

Figure 21: Symmetrical components of the voltage for Inverter 1 test with longest cumulative overvoltage 
(SAO0003) 

 

 
Figure 22: One of the mildest overvoltages produced by Inverter 1 (SBU0005) 

Voltage source-like generators such as synchronous machines cause GFO by maintaining line to 
line voltages following a ground fault.  Hence another way of confirming that an inverter is not 
acting like a voltage source (or a voltage source behind an impedance) is to plot line to line 
voltages.  Figure 23 shows the line to line voltages of a typical Inverter 1 one waveform with 
phase C shorted.  VAB maintains a near nominal magnitude, while the voltages that include the 
faulted phase, VBC and VCA, drop in magnitude to approximately the nominal line-neutral 
voltage, as expected for a current source generator.  This is another way of demonstrating that 
this inverter is not causing a neutral-shift GFO.  Further analysis of line to line voltages is 
presented near the end of this report, where is it shown that Inverter 1’s ground fault response 
contains a low-level line to line transient overvoltage in many scenarios. 
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Figure 23: Typical line to line voltages of Inverter 1 (SCO0005) 

Inverter 2 Waveforms 

Because Inverter 2 used test Version 2, where the fault is created immediately after the island, 
several baseline tests were run where the island was created but no fault was created.  Figure 24 
shows one such test, which was typical of the islanding tests for this inverter.  The grid simulator 
disconnected when the Aux signal went low, and the inverter disconnected less than two seconds 
later, as required.  Figure 25 shows a close-up of the waveforms just before and after the grid 
disconnected during the same test.  The islanding response was very stable, indicating that test 
Version 2 should give a good idea of this inverter’s ground fault behavior without interference 
from any islanding transient. 

 
Figure 24: Inverter 2 baseline islanding test (EI_0007) 
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Figure 25: Close-up of island transient in Inverter 2 baseline islanding test (EI_0007) 

As mentioned above, Inverter 2 showed two types of ground fault responses. In one type, it 
stopped exporting very quickly following a relatively larger voltage spike (possible tripping on 
overvoltage or on dv/dt).  In the other type, the initial voltage spike tended to be smaller and the 
inverter continued to operate for about 10 cycles at near nominal voltage on the unfaulted phases, 
and with near-nominal current on all phases.  Figure 26 shows a typical response of the fast 
disconnect type.  This was a unity power factor test with a fault on phase B.  Figure 27 shows a 
typical waveform of the longer run-on variety.  The fault was on phase C and the power factor 
was 0.8 lagging.  As with most of these longer run-on tests, there is no overvoltage at any level, 
even during the initial spike. Note that the current remains at very near nominal amplitude 
following the initial, brief fault transient.  However, the current phase angles are significantly 
unbalanced and shift significantly over the course of the test.  The current on the faulted phase 
has noticeably greater high-frequency harmonics for the ten cycles after the fault. 
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Figure 26: Inverter 2 waveforms showing fast output shutdown (EB_0003) 

 
Figure 27: Inverter 2 waveforms showing longer run-on (EC+_0003) 

Figure 28 shows the symmetrical components of the voltages for the typical longer run-on test 
shown in Figure 27.  The voltage magnitudes are similar to those of Inverter 1, with the positive 
sequence dropping to about 0.7 pu while the negative and zero sequences rise to about 0.35 pu 
for the duration of the test following the fault.  Note that the negative sequence increases slightly 
and the zero sequence decreases slightly as the phase angles of the unfaulted phases drift in the 
absence of a grid reference.  This effect is interesting but not concerning given that no 
overvoltage occurs.  This test is typical of Inverter 2 tests with longer run-on. 
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Figure 28: Symmetrical voltage components for Inverter 2 test with longer run-on (EC+_0003) 

Figure 29 shows the waveform with the longest overvoltage (both continuous and cumulative).  
This test was at lagging power factor and phase C was faulted.  The waveforms demonstrate that 
the overvoltage was due to phase imbalance rather than neutral shift: only one of the two 
unfaulted phases was above nominal, and the other was below.  Also note that the phase angles 
of the voltages and currents were very unbalanced and shifting following the fault. Figure 30 
shows the symmetrical components of the voltage in the same test.  As expected, the zero 
sequence is higher when the two unfaulted phases are nearly in phase and falls when the phase 
angles begin to correct themselves.  The negative sequence component is the dominant 
component of the voltage for most of the test, so a grounding transformer would have little 
impact on the overvoltage in this case.   

 
Figure 29: Inverter 2 waveforms showing the longest overvoltage at the 110% level (EC+_0001) 
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Figure 30: Symmetrical components of Inverter 2 voltages for the test with longest overvoltage at the 110% 

level (EC+_0001) 

Figure 31 shows the waveforms with the worst-case peak overvoltage. This was a unity power 
factor test with the fault on phase B.  The overvoltage was due to the initial fault spike, and its 
magnitude was due to the timing of the fault: phase B was relatively high (causing a large spike), 
and phase A was opposite in polarity (causing the spike to increase the absolute magnitude of 
VAN) and nearly at its negative peak (meaning the fault starts from a relatively large base).  Also, 
recall that this initial spike is likely exaggerated somewhat by the low impedance between the 
inverter output filter elements and the fault, as explained above.  Following the brief spike, the 
inverter shut down almost immediately.   

 
Figure 31: Inverter 2 waveforms with the maximum instantaneous overvoltage (EB_0005) 

Figure 32 shows the line to line voltages from the typical test shown in Figure 27.  Figure 33 
shows the line to line voltages from the worst-case test shown in Figure 29.  In both cases the 
line to line voltages that include the faulted phase (phase C) fell to approximately the line to 
neutral magnitude after the fault.  Interestingly, in Figure 33 VAB dropped to nearly zero 
following the fault and then ramped back up to the nominal line to line voltage over the course of 
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the test.  This was due to a fault-induced shift in the phase angle of phase B which brought it into 
phase with phase A briefly, as seen in Figure 29. The angle of phase B then returned to normal 
over the following 0.1 s, bringing VAB back to nearly its nominal value.  Like Inverter 1, this 
inverter did not cause neutral shift in response to a ground fault. 

 
Figure 32: Inverter 2 line to line voltages during a typical test (EC+_0003) 

 
Figure 33: Inverter 2 line to line waveforms for the test with the longest cumulative overvoltage (EC+_0001) 

Inverter 3 Waveforms 

Because Inverter 3 used test Version 2, where the fault was created immediately after the island, 
several baseline tests were run where the island was created but no fault was created.  Figure 34 
shows one such test.  The grid simulator disconnected when the Aux signal goes low, and the 
inverter disconnected less than two seconds later, as required.  Figure 35 shows a close-up of the 
waveforms just before and after the grid disconnected.  The islanding response is very stable, 

2.25 2.3 2.35 2.4 2.45 2.5 2.55

-600

-400

-200

0

200

400

600

Time (sec)

V
ol

ta
ge

 (V
) o

r C
ur

re
nt

 (A
)

 

 
VAB

IinvA
VBC

IinvB
VCA

IinvC
Aux
Vdc

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
-800

-600

-400

-200

0

200

400

600

800

Time (sec)

V
ol

ta
ge

 (V
) o

r C
ur

re
nt

 (A
)

 

 
VAB

IinvA
VBC

IinvB
VCA

IinvC
Aux
Vdc

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 36 

indicating that test Version 2 should give a good idea of this inverter’s ground fault behavior 
without interference from any islanding transient. 

 
Figure 34: Inverter 3 baseline islanding test (NILD0000) 

 
Figure 35: Close-up of island transient in Inverter 3 baseline islanding test (NILD0000) 
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Figure 36 shows a typical GFO test response for Inverter 3.  In this test, phase C was faulted and 
the inverter was operating at unity power factor.  Following an initial current spike, the 
microinverters operated for about one line cycle at below-nominal voltage and current before 
shutting down. Recall that this EUT consists of 18 single-phase microinverters connected in delta 
(six between each pair of lines). All 12 of the microinverters connected to the faulted phase shut 
down nearly immediately after the fault, as evidenced by the lack of current on the faulted phase 
and the reduced voltage and current magnitudes on the remaining phases. Also note that the 
resonant RLC load itself contributed significant but decaying current – hence the decay in the 
voltage and current during the one line cycle of inverter operation following the fault.   

The run-on time for the test seen in Figure 36 was recorded as 32.7 ms (about two line cycles) 
rather than the one line cycle seen in the figure.  This was due to a small current bump that 
occurs at time 2.336 s (barely visible in the figure), which was registered as the last inverter 
operation.  The inverters may have been discharging output capacitors or performing other 
shutdown actions.  This behavior is typical of all tests of this inverter and is not at all concerning.  
It is mentioned simply to explain the apparent discrepancy between the recorded disconnection 
time and the current waveforms seen in the figure. 
 

 
Figure 36: Typical Inverter 3 waveform (NC_0003) 

Figure 37 shows a common variation on the Inverter 3 ground fault response, with phase B 
faulted.  It differs from the waveform in Figure 36 in that the current from the inverters 
connected across the unfaulted phases lasted only half of a line cycle.  Otherwise it is very 
similar. There was little variation in the Inverter 3 GFO response from test to test.  Figure 38 
shows the test with the worst-case peak overvoltage, which was again due to the fault occurring 
near the peak of a waveform opposite in sign to the faulted phase (phase C).  Finally, Figure 39 
shows a test displaying no overvoltage at all because the fault occurred near the zero-crossing of 
the faulted phase (phase C), as happened about 25% of the time with this inverter.  The limited 
variation between worst-case (Figure 38) and best-case (Figure 39) demonstrates the high 
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predictability of this inverter’s ground-fault response.  Inverter 3 never produced any overvoltage 
beyond the initial spike due to the fault. 
 

 
Figure 37: A variation of the typical Inverter 3 waveform (NB_0002) 

 
Figure 38: Inverter 3 worst-case peak overvoltage (NA_0006) 
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Figure 39: Inverter 3 showing no overvoltage at all (NC_0004) 

Figure 40 shows the line to line voltages of Inverter 3 during the typical test shown in Figure 36.  
Because most of the microinverters making up the EUT shut down almost immediately after the 
fault, all three line to line voltages were well below nominal magnitude. No symmetrical 
component plots are shown for this inverter because it did not produce any fundamental-
frequency overvoltage. Like the other two inverters, Inverter 3 did not cause neutral shift GFO. 

 
Figure 40: Inverter 3 line to line voltages during a typical test (NC_0003) 
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frequency ride-through (LVRT/HVRT/LFRT/HFRT) on GFO.  These effects are important 
because ride-through is beginning to be required in an increasing number of electrical systems to 
help ensure grid stability with high PV penetrations. However, because these tests fall outside the 
official scope of the CRADA, only limited tests were performed. 

The tests described in the sections above were performed using the inverter’s default voltage and 
frequency trip settings for both magnitude and time (shown in Table 20 for Inverter 1), which are 
compliant with IEEE Std 1547-2003 [9] and hence are representative of nearly all distribution 
connected inverters in the U.S..  This section compares those test results to the results of 25 
additional tests of Inverter 1 with expanded voltage and frequency trip settings (shown in Table 
21).   

Table 20: Inverter 1 default voltage and frequency trip settings (IEEE 1547-2003) 

  Magnitude Time 

Frequency Trip 
Settings 

Overfrequency 60.5 160 ms 
Underfrequency 59.3 160 ms 

Voltage Trip 
Settings 

Fast Overvoltage 120% 160 ms 
Slow Overvoltage 110% 1 s 
Slow Undervoltage 88% 2 s 
Fast Undervoltage 50% 16 ms 

Table 21: Inverter 1 widened voltage and frequency trip settings  

  Magnitude Time 

Frequency Trip 
Settings 

Overfrequency 65 10 s 
Underfrequency 57 10 s 

Voltage Trip 
Settings 

Overvoltage 120% 10 s 
Undervoltage 50% 10 s 

 

Using the widened trip settings in Table 21, 15 tests were performed at unity power factor, five 
at 0.8 leading, and five at 0.8 lagging.11  Figure 41 shows a summary plot comparing the tests 
with default settings to the tests with widened settings.  Comparing the cumulative overvoltage 
times at each level, it is evident that the wider settings had little impact on GFO responses for 
this inverter.  The mild discrepancies between results with the two types of trip settings are 
attributable to the smaller number of tests with wide settings, rather than to differences in 
inverter behavior.   

                                                 
 
11 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Figure 41: Examining the dependence of GFO response on voltage and frequency trip settings for Inverter 1 

Figure 42 compares peak instantaneous overvoltages for the two trip setting configurations.  
Again, no significant differences are present, aside from differences attributable to the lower 
number of tests with wide settings. Figure 43 compares trip times for the two trip setting 
configurations, again finding no significant difference.  

 

 
Figure 42: Examining the dependence of peak overvoltage on trip settings for Inverter 1 
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Figure 43: Examining the dependence of ground-fault disconnection time on trip settings for Inverter 1 
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Figure 44: Baseline anti-islanding test for Inverter 1 (SA1A0001) 

 
Figure 45: Anti-islanding test with AI controls disabled for Inverter 1 (ILND0000) 
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The unbalance seen in Figure 44 is large enough that it is difficult to separate the islanding 
behavior from the ground fault behavior for Inverter 1, so test Version 2 would not be 
particularly appropriate for this inverter.  Nevertheless, Figure 46 and Figure 47 compare GFO 
test results for Version 1 (“Islanded”) and Version 2 (“Immediate”). The overvoltage durations 
are slightly higher using Version 2 because of the contribution of the AI controls to voltage 
imbalance, which can be seen in Figure 44: the slight overvoltage due to the AI controls 
combined with the slight overvoltage due to the fault result in a slightly higher overvoltage than 
that due to either the island controls or the fault alone.  This effect is minor and specific to 
Inverter 1, and it and does not change the overall conclusion made later in this report that having 
AI on mitigates the worst-case overvoltages.  

 

  
Figure 46: Comparison of GFO test results for Inverter 1 using test Version 1 (Islanded) and Version 2 

(Immediate). 

 

 
Figure 47: Comparison of GFO test maximum overvoltage and trip time for Inverter 1 using test Version 1 

(Islanded) and Version 2 (Immediate). 
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Figure 48 shows a typical GFO test of Inverter 1 using test Version 2 (AI enabled). Qualitatively 
the waveforms are very similar to tests of the same inverter using Version 1 (e.g. Figure 17), as 
were all Version 2 tests.  The minor differences between the two test versions for this inverter are 
not apparent from visual comparison, but show up in statistical analysis, as seen in Figure 46 and 
Figure 47.   

Figure 48: GFO test of Inverter 1 using test Version 2 (AI enabled) (SA1A0003). 
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Table 22 and Table 23 summarize the maximum and average total times above each of the 
voltage thresholds for the three power factor12 settings in the three transformer-related cases.13  
The Y:Y transformer actually reduced the times spent at each overvoltage level slightly, likely 
because its impedance reduced the fault current during the initial spike.  This effect aside, the 
Y:Y transformer had negligible impact on total overvoltage durations.  The D:Y transformer on 
the other hand greatly increased total overvoltage durations, especially at unity and lagging 
power factors, as seen in Figure 49.  This is as expected given that the transformer delta blocks 
the zero-sequence components of the faulted-side voltage, partially masking the fault and the 
overvoltage from the inverter, as seen in waveform plots later in this section.  Note that 
overvoltage durations on the inverter side of the transformer, which are not included in the table 
or the figure, were very small in all cases (typically zero, and always below 2 ms).  As expected, 
with the relaying presently included, the inverter did not react to the overvoltages occurring on 
the other side of the D:Y transformer.   

Table 22: Maximum total time (ms) above each voltage threshold – transformers 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 3.26 0.10 0.04 0.02 0.10 0.02 0 0 165 52.5 0.08 0.02 
0.8 leading 1.52 0.10 0.04 0.04 0.10 0.06 0.02 0 6.6 0.2 0.05 0 
0.8 lagging 3.94 0.86 0.04 0.02 0.02 0.02 0 0 162 44.6 0.04 0 

 

Table 23: Average total time (ms) above each voltage threshold – transformers 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 2.15 0.03 0.01 0 0.05 0.01 0 0 156 40.3 0.02 0 
0.8 leading 0.94 0.04 0.01 0 0.06 0.02 0 0 3.63 0.05 0.01 0 
0.8 lagging 3.10 0.48 0.01 0 0.01 0.01 0 0 143 23.4 0.01 0 

 

                                                 
 
12 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
13 Note that, for Inverter 1, the table data for tests without transformers shown in this section differs slightly from the 
table data given in the above sections because in this section, tests with wide trip limits and tests with default trip 
limits are combined into one dataset that includes all tests without transformers, whereas in the above sections tests 
with wide trip limits and tests with default trip limits were shown separately. 
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Figure 49: Cumulative overvoltage durations for tests with and without transformers 

Table 24 and Table 25 summarize the maximum and average continuous times above each of the 
voltage thresholds for the three power factor settings in the three transformer-related cases. 
Again, the Y:Y transformer reduced the times spent at each overvoltage level slightly, likely by 
reducing fault current during the initial voltage spike.  This effect aside, the Y:Y transformer had 
negligible impact on total overvoltage durations.  The D:Y transformer increased maximum 
continuous overvoltage durations, especially at unity and lagging power factors, but not nearly to 
the same degree that it increased the cumulative overvoltage times.  All continuous overvoltage 
durations here remained in the single-digit milliseconds or below.  Figure 50 displays these 
effects visually.   

Table 24: Maximum continuous time (ms) above each voltage threshold with and without transformers 
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1.0 1.64 0.06 0.02 0.02 0.1 0.02 0 0 2.62 1.82 0.08 0.02 
0.8 leading 1.34 0.10 0.04 0.02 0.1 0.06 0.02 0 1.8 0.1 0.05 0 
0.8 lagging 1.62 0.82 0.02 0.02 0.02 0.02 0 0 2.52 1.74 0.04 0 

 

Table 25: Average continuous time (ms) above each voltage threshold with and without transformers 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.27 0.02 0.01 0 0.05 0.01 0 0 2.56 1.71 0.02 0 
0.8 leading 0.81 0.03 0.01 0 0.06 0.02 0 0 1.47 0.04 0.01 0 
0.8 lagging 1.30 0.45 0.01 0 0.01 0.01 0 0 2.23 1.05 0.01 0 
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Figure 50: Continuous overvoltage durations for tests with and without transformers  
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Figure 51: Peak overvoltages for tests with and without transformers 
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under 10 seconds in the leading power factor case.  Recall that the inverter had anti-islanding 
controls disabled; this 10-second run-on time was reduced to just 30-40 ms in additional tests run 
with AI enabled, as it is in all grid-connected systems.  In addition, the 10-second run-on itself is 
dictated by the widened frequency disconnection time, which was set to 10 seconds. 
 

 
Figure 52: Trip times for tests with and without transformers 
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Figure 53: Typical unity power factor test with Y:Y transformer (SA_Y0002) 

 
Figure 54 shows the symmetrical components of the voltage on both sides of the transformer.  In 
both locations there is no zero sequence component, reflecting the fact that the two unfaulted 
phases are held nearly 180 degrees apart by the inverter controls following the fault, as seen in 
Figure 53.  The positive and negative sequences both peak between 0.55 and 0.6 pu following 
the fault.   
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Figure 54: Symmetrical components of a typical unity power factor test with Y:Y transformer (SA_Y0002) 

 
A test with lagging power factor and D:Y transformer is shown in Figure 55.  On the grid side of 
the transformer, the two unfaulted phases (B and C) ran at above-nominal voltages (roughly 
105% and 120%, respectively) for about 650 ms.  On the inverter side, the two phases that were 
transformer-coupled to the faulted line ran at about two thirds of nominal voltage, while the third 
phase, phase C, ran at nearly 120% above nominal.  Further investigation would be needed to 
determine why the inverter shut down consistently around 650 ms.  The symmetrical components 
of the voltage from the same test are shown in Figure 56.  On the grid side of the transformer, 
both negative and zero sequence components arise following the fault and hold relatively steady 
around 0.38 pu until the inverter disconnects, while the positive sequence falls to roughly 0.75 
pu.  The symmetrical components have roughly the same magnitudes on the inverter side except 
that the zero sequence component is not present because the transformer used in this experiment 
is acting as a grounding transformer on that side.  This result was typical of D:Y tests with both 
lagging and unity power factors.   
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Figure 55: Typical lagging power factor test with D:Y transformer (SAOD0000) 
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Figure 56: Symmetrical voltage components for a typical lagging power factor test with D:Y transformer 

(SAOD0000) 
 

Figure 55 shows that there is a similar level of overvoltage on the transformer secondary as on 
the primary, in spite of the fact that this transformer acts as a grounding transformer to the circuit 
on its secondary side.  This is because of the impact of the negative sequence component on the 
overvoltage, and the fact that the grounding transformer has no impact on the negative sequence 
voltage.  Also, additional results described below indicate that simply enabling the inverter’s 
anti-islanding controls significantly reduces the duration of any overvoltage in tests such as this. 
 
A test with leading power factor and D:Y transformer is shown in Figure 57, and Figure 58 
shows a close-up of the time near the fault in the same test.  On the grid side of the transformer, 
the two unfaulted phases (A and C) ran at near-nominal voltages for just under 10 seconds, one 
just above nominal magnitude and the other just below.  On the inverter side, the two phases that 
were transformer-coupled to the faulted line ran at about two thirds of nominal voltage, while the 
third phase, phase A, ran close to nominal voltage.  This result was typical of D:Y tests with 
leading power factors.  The symmetrical voltage components for this test, which are not shown 
here, are similar to those in Figure 56 but with slightly lower magnitudes.   
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Figure 57: Typical leading power factor test with D:Y transformer (SBUD0001) 
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Figure 58: Typical leading power factor test with D:Y transformer, zoomed in (SBUD0001) 

 
The D:Y tests at unity and lagging power factor described above could be interpreted as violating 
the ITIC curve at the 120% level.  As noted above, it is not clear that the ITIC curve is the 
appropriate criteria, and this test was not intended as a certification test.  Nevertheless, this result 
could raise concerns for some stakeholders.  To alleviate possible concerns, additional tests with 
anti-islanding controls enabled were conducted using test Version 2. Those tests produced much-
reduced overvoltage durations. Table 26 and Table 27 compare the total durations above each 
voltage threshold for D:Y transformer tests with and without AI controls enabled.  Figure 59 
compares the total overvoltage times and maximum continuous overvoltage times for tests with 
AI disabled and test with AI enabled. 
 

Table 26: Maximum total time (ms) above each voltage threshold with D:Y transformer – AI off and AI on 

 AI off AI on 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 165 52.5 0.08 0.02 14.32 6.32 0.9 0.02 
0.8 leading 6.6 0.20 0.05 0 0.14 0.1 0.04 0 
0.8 lagging 162 44.6 0.04 0 10.18 6.84 3.94 0 
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Table 27: Average maximum total time (ms) above each voltage threshold with D:Y transformer – AI off and 
AI on 

 AI off AI on 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 156 40.3 0.02 0.00 5.89 1.29 0.14 0.00 
0.8 leading 3.63 0.05 0.01 0 0.07 0.04 0.01 0 
0.8 lagging 143 23.4 0.01 0 4.41 2.44 0.94 0 

 

 
Figure 59: Comparison of overvoltage durations with AI disabled and enabled, with D:Y transformer 

 
Figure 60 compares peak overvoltage levels and trip times with AI disabled versus AI enabled 
with the D:Y transformer.  AI had little effect on peak overvoltages but significantly reduced the 
longest trip times. 

 

 
Figure 60: Comparison of peak overvoltages and trip times with AI disabled and enabled, with D:Y 

transformer 
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and Figure 62.  In Figure 61, the inverter exported current for about three cycles after the fault 
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the inverter continued to operate for over 600 ms, similarly to the tests with AI disabled except 
with a lower voltage magnitude. The response shown in Figure 62 was less common, occurring 
only twice out of 11 tests. 

 
Figure 61: Typical unity power factor test with D:Y transformer and AI enabled (AY1D0011) 
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Figure 62: A less common response type for unity power factor tests with D:Y transformer and AI enabled 

(AY1D0008) 
 
The waveform shown in Figure 63 is typical of both leading and lagging power factor tests with 
D:Y transformer and AI enabled.  Phase B was shorted.  On the grid side, phase A began to grow 
in magnitude, producing overvoltages approaching 130%, while phase C began to decrease until 
the inverter disconnected after about 2 cycles.  On the inverter side the phases were unbalanced 
and shifting in magnitude.   
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Figure 63: A typical lagging power factor test with D:Y transformer and AI enabled (ADOD0006) 

 
The symmetrical components of voltage for tests with anti-islanding enabled are qualitatively 
similar to those shown for tests with anti-islanding disabled, and are not shown here. 
 
3.10  Tests with Delta-connected Load 
GFO is typically of concern with wye-connected loads because those are the loads that can be 
damaged by sustained neutral shift, which exposes them to line-line voltages.  However, typical 
feeders contain some delta-connected loads as well, and systems including delta loads are more 
prone to neutral shift in ground fault situations.  Whereas a current source connected to a wye 
load is not expected to produce significant GFO in the case of a ground fault, a current source 
connected to a delta load would indeed produce a neutral shift GFO.  While a delta load itself is 
rated for the full line-line voltage and hence would not be damaged by a neutral shift GFO, a 
wye-connected load on the same system could be damaged.  At the same time, the wye-
connected load would likely reduce the magnitude of a GFO.  A full analysis of ground fault 
response on a feeder containing significant current-source generation as well as both wye and 
delta loads is beyond the scope of this report.  However, we do present some limited test results 
with delta-connected loads in this section.  For these tests, the resonant RLC load was re-tuned 
for each combination of transformer type and inverter power factor, following the test procedure 
specified above, maintaining a circuit quality factor near to unity and minimizing the 
fundamental frequency current from the grid simulator, as in all tests.   
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All delta load tests were performed with Inverter 1 using the wide voltage and frequency trip 
settings shown in Table 21.  We first present results using test Version 1 (AI disabled), many of 
which resulted in high overvoltages and long run-on times.  We then present results from test 
Version 2 (AI enabled) to demonstrate the effect of normal AI controls on the ground fault 
response.  Note that with a delta-connected load, island tuning is more difficult because changing 
the R, L, or C value on any phase also affects the other phases.  In many cases the resulting 
island, while stable, had significant variation in voltage magnitude between phases. 
 
Maximum and average total times above each voltage threshold for delta load tests are shown in 
Table 28 and Table 29, respectively.   No tests were conducted with Y:Y transformer at lagging 
power factor and delta load due to time limitations.  For tests with D:Y transformer and delta 

phases on the delta side of the transformer and no overvoltage on the inverter side (though it is 
important to recall that AI controls were disabled). 
 

Table 28: Maximum total time (ms) above each voltage threshold with delta load, with AI disabled 

 No transformer Y:Y D:Y 

Inverter PF14 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 2.48 2.16 1.74 1.34 0.48 0.22 0.18 0.12 continuous continuous continuous continuous 
0.8 leading 3.06 2.38 1.82 1.10 0.62 0.20 0.16 0.12 continuous continuous continuous continuous 
0.8 lagging 4.72 3.38 1.62 1.18 na na Na na continuous continuous continuous continuous 

 

Table 29: Average total time (ms) above each voltage threshold with delta load, with AI disabled 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.53 1.30 1.06 0.82 0.25 0.13 0.08 0.06 continuous continuous continuous continuous 
0.8 leading 1.98 1.64 1.33 0.98 0.26 0.15 0.11 0.06 continuous continuous continuous continuous 
0.8 lagging 3.34 2.37 0.96 0.51 na na na na continuous continuous continuous continuous 

 
Maxima and averages of the maximum continuous time above each voltage threshold across 
several tests with delta load are shown in Table 30 and Table 31, respectively. As mentioned 
above, the inverter ran continuously in delta load tests with the D:Y transformer, so the 
maximum continuous time at each threshold for those tests simply represents the maximum in 
the recorded window, as shown in the waveform plots below. 

                                                 
 
14 The generator reference frame is used in this report: lagging power factor corresponds to ourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Table 30: Maximum continuous time (ms) above each voltage threshold with delta load, with AI disabled 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.78 1.50 1.24 0.86 0.32 0.22 0.18 0.12 4.70 4.30 3.88 3.42 
0.8 leading 2.02 1.72 1.44 1.10 0.38 0.20 0.16 0.12 4.65 4.25 3.75 3.25 
0.8 lagging 2.40 1.74 1.12 0.86 na na Na na 4.80 4.40 4.00 3.54 

 

Table 31: Average maximum continuous time (ms) above each voltage threshold with delta load, with AI 
disabled 

 No transformer Y:Y D:Y 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 1.41 1.21 1.00 0.73 0.19 0.13 0.08 0.06 4.69 4.30 3.88 3.42 
0.8 leading 1.80 1.51 1.23 0.90 0.22 0.15 0.11 0.06 4.65 4.25 3.75 3.25 
0.8 lagging 2.07 1.45 0.83 0.47 na na na na 4.80 4.40 3.99 3.53 

 

Figure 64 shows a typical delta load test with D:Y transformer, and Figure 65 shows the region 
immediately before and after the fault in the same test.  On the delta side of the transformer, the 
two unfaulted line-neutral voltages ran in steady state near the line-line voltage magnitude 
following the fault, as expected.  Also note the significant imbalance in voltage magnitudes on 
the delta side of the transformer prior to the fault.  As mentioned above, this imbalance is 
characteristic of inverter-load islands with delta load, partially due to small imbalances between 
load phases (though the load is nominally tuned the same on all phases in this test) and partially 
due to the lack of a strong neutral reference for the system, which is only connected to neutral 
through the inverter.  Hence maximum recorded line to neutral overvoltages are partially due to 
this pre-existing imbalance rather than to the inverter’s ground fault response.  We were not able 
to remove this imbalance by adjusting load tuning, though attempts to do so were not exhaustive.  
This inherent imbalance makes it somewhat difficult to create a stable island with a delta load.  
Note that on the inverter side of the transformer all three voltages remained at their nominal 
settings both before and after the fault, with no transient effects.  This test was run at unity power 
factor, but was typical of all delta load, D:Y transformer tests regardless of power factor.   
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Figure 64: A typical test with D:Y transformer and delta load, with AI disabled (S_DD0001) 
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Figure 65: A typical test with D:Y transformer and delta load, with AI disabled (S_DD0001) 

 

Figure 66 shows the symmetrical components for the test shown above.  As expected, the delta-
side voltages show a large zero sequence component, which is indicative of the “traditional” 
derived neutral shift GFOV mechanism.  There is a negligible negative sequence component on 
the delta side because the three-phase load is well-balanced, and thus there ends up being only a 
positive sequence component on the Yg side. 
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Figure 66: Symmetrical components during a typical test with D:Y transformer and delta load, with AI 

disabled (S_DD0001) 
 
A typical test with no transformer and delta load is shown in Figure 67. Immediately after the 
fault, the two unfaulted phases began to shift towards high overvoltage levels immediately 
following the fault, but the inverter shut down almost immediately, as evidenced by the current 
turn-off immediately after the fault.  With no D:Y transformer to block the zero sequence and 
mask the neutral shift, the inverter responded to the overvoltage by turning off.  Most of the 
measured time at overvoltage actually occurred after the inverter had disconnected: stored energy 
in the RLC circuit resonated briefly even after the inverter had ceased to export power.  Also 
note that, as in the D:Y test shown above, the voltage magnitudes were significantly unbalanced 
in the steady-state island preceding the fault.   
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Figure 67: A typical test with no transformer and delta load, with AI disabled (S1U_0003) 

 
Additional tests were conducted with the D:Y transformer and delta-connected load, but with AI 
controls enabled.  As expected, with AI enabled the inverter no longer ran continuously 
following the fault.  However, it did still produce significant total overvoltage durations.  While 
some of the overvoltage durations found in these tests with AI on, delta load, and D:Y 
transformer may still appear concerning, it is important to recall that these tests involved a 
combination of two scenarios that are both fairly unusual: a resonant RLC load with high quality 
factor, and an island consisting of only delta-connected load.  The probability of both of these 
things occurring on a feeder simultaneously followed by a ground fault and grid disconnection 
that does not disturb the island balance is low.  However it is worth investigating in future work 
whether a combination of delta- and wye-connected loads could lead to potentially damaging 
overvoltages. 
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0.8 lagging continuous continuous continuous continuous 62 52 42 36 
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Table 33: Average total time (ms) above each voltage threshold with D:Y transformer and delta load – AI off 
and AI on 

 AI off AI on 

Inverter PF 110% 120% 130% 140% 110% 120% 130% 140% 

1.0 Continuous continuous continuous continuous 223 199 178 157 
0.8 leading Continuous continuous continuous continuous 34 27 21 17 
0.8 lagging Continuous continuous continuous continuous 39 33 27 21 

 
3.11 Line to Line Voltage Analysis 
The preceding results focus on line to neutral voltages, which are classically of concern in three-
phase, four-wire ground fault scenarios.  This section analyzes an additional overvoltage 
mechanism that can occur in such scenarios when they include a three-phase current-controlled 
inverter with an outer power control loop. The vast majority of grid-interactive PV inverters and 
many storage inverters fall into this category.  The overvoltage mechanism, which will be 
explained and analyzed in detail in an upcoming publication [8], is this: after the fault, the 
voltage on the faulted phase is nearly zero, so the power on that phase is also near zero.  Most 
three-phase inverters will attempt to maintain relatively constant total AC power output during 
the fault, so they will increase their output phase currents to compensate for the loss of power 
export on the faulted phase.  This increase in phase currents results in increasing the output 
power on the unfaulted phases, leading to some degree of transient overvoltage.  This TOV will 
appear in both the line to neutral and the line to line voltages, in contrast to classic GFO.  
Because this TOV is due to the formation of an inverter-load island where the inverter power 
exceeds the available load power, it is in fact a subset of LRO.  This section analyzes the line to 
line voltages in several of the scenarios tested above. 
 
Figure 68 shows the total line-line overvoltage durations for all wye-load tests of Inverter 1 
without transformers.  In unity power factor and lagging15 power factor tests, brief overvoltages 
totaling up to about 2.5 ms at the 110% level were typical, with no overvoltage at higher levels, 
and no overvoltage for tests at leading power factor.  Because Inverter 1 is a fairly typical three-
phase inverter, this result is expected.  Figure 68 also demonstrates that the use of wide voltage 
and current trip settings did not exacerbate line to line overvoltages; the overvoltage durations 
are determined by the time it takes the inverter to recognize the fault condition and disconnect, 
rather than by the voltage and frequency trip settings.  Notably, the brief voltage spike at the time 
of the fault does not show up in line to line voltages, as expected given than it results from a 
sharp spike in line to neutral current during the fault.  The line to line overvoltages were smaller 
in magnitude than the line to neutral overvoltages, largely due to the absence of this brief voltage 
spike.   

                                                 
 
15 The generator reference frame is used in this report: lagging power factor corresponds to sourcing reactive power, 
and leading power factor corresponds to sinking reactive power. 
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Figure 68: Line to line overvoltages for Inverter 1, with and without voltage and frequency ride-through 

 
It is also worth noting that line to neutral overvoltages in the same test series (seen in Figure 41) 
can be partially explained as the cumulative effect of  

 overvoltages due to power rejection from the unfaulted phases, as visible in line-line 
voltages (Figure 68). 

 overvoltages due to the initial voltage spike.   
The remaining portion of overvoltage that is not explained by these two effects appears to be due 
to unbalance between the phases and distortion of the voltage waveform due to the fault 
transient, rather than due to the classic GFO behavior typical of voltage sources. 
 
Figure 69 shows typical line-line voltage waveforms for Inverter 1.  Note that because the 
inverter only operates for about two cycles following the fault, and because the voltage 
waveforms are distorted due to the fault, it is difficult to perceive the quasi-steady-state line to 
line overvoltage that would be expected to occur if the inverter’s controls did not cease power 
exportation.   
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Figure 69: Line-line voltages in a typical test with no transformer (SCO0005). 

Figure 70 shows another fairly typical test of Inverter 1, with voltage and current shown on 
separate scales, and both line to line and line to neutral voltages shown.  On this scale it is 
possible to see that the current magnitude is beginning to increase on all three phases, leading to 
slight overvoltages on the unfaulted phases (and between the unfaulted lines) for the two cycles 
before the inverter shuts down, though distortion of the waveforms makes the effect difficult to 
see.  This demonstrates the mechanism of power rejection to the unfaulted phases. 
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Figure 70: Line-line voltages showing slightly increasing voltage and current magnitudes (SCO0003) 

 

In contrast to Inverter 1, Inverter 2 is not a typical three-phase inverter, but rather consists of 
three somewhat-independently controlled single-phase inverters in the same enclosure, 
connected in wye.  Hence we would not necessarily expect this inverter to maintain constant 
output power following a single-phase fault by increasing current on the unfaulted phases. In 
addition, this unit can also source negative and zero-sequence current.  This does indeed turn out 
to be the case: in the majority of tests the inverter did not show any line to line overvoltage, as 
seen in Figure 71.  Line to line voltage waveforms from a typical test are shown in Figure 72.  
However in two tests (out of 63 total), brief line to line overvoltages did appear.  These two tests 
skew the averages shown in Figure 71; all other tests showed no line to line overvoltage.  These 
overvoltages were not due to power rejection from the faulted phase, but rather to fault-induced 
phase shifts between the voltage waveforms lasting for a few line cycles.  An example of this 
type of phase-shift-induced line to line overvoltage was shown previously in Figure 33, and 
Figure 29 showed the line to neutral voltages for the same test.  In addition, Figure 30 showed 
the symmetrical components, which included significant negative and zero sequence 
components.   
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Figure 71: Line to line overvoltages for Inverter 2 

 

 
Figure 72: Line-line voltages for a typical test of Inverter 2 (EC_0005).  Note that currents and voltages 

remain near-nominal, in contrast to those of Inverter 1.  Also note that DC current falls and acquires a strong 
120 Hz component after the fault because one of the phases (phase C) is no longer exporting power. 

 
In summary, all overvoltages from Inverter 2 were due either to the initial current spike or brief 
fault-induced imbalances between phases, not to a classic GFO response. 
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Inverter 3, which was actually an assembly of single-phase delta-connected microinverters, 
showed no line-line overvoltages in any test.  This is emphasized by Figure 73, which shows that 
peak line to line voltages never exceeded even 102% of nominal.  This is as expected for an 
assembly of independent single-phase inverters, especially given that two thirds of the inverters 
(those connected to the faulted phase) shut down almost immediately following the fault, as 
noted previously.  In summary, this inverter showed no line to line overvoltage, and all line to 
neutral overvoltages for this inverter were due solely to the initial spike at the time of the fault. 

 
Figure 73: Peak line-line voltages for Inverter 3  

 
For tests with transformers (all of which used Inverter 1), a summary of cumulative line to line 
overvoltage times is shown in Figure 74, and peak line to line overvoltage levels are shown in 
Figure 75.  In both figures, tests with delta-wye transformers are shown both with AI disabled 
and with AI enabled, to emphasize that worst-case overvoltage durations are mitigated by having 
AI on.  All line to line overvoltages tended to be low and brief, especially for tests with AI 
enabled.  The maximum line to line overvoltage in any test was 124%. 
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Figure 74: Cumulative line to line overvoltage times for tests with transformers.  Tests with delta-wye 

transformers are shown both with AI disabled and AI enabled, to emphasize that worst-case overvoltages are 
mitigated by having AI on. 

 
Figure 75: Peak line to line overvoltages for tests with transformers 

 
The delta-wye transformer tests with AI disabled and with the load connected phase-neutral, 
while not indicative of the real situation in the field, do provide the opportunity to view the 
inverter’s ground fault response more fully.  A typical example of such a response is shown in 
Figure 76, with voltages and current on each side of the transformer shown separately.  Note that 
while both sides of the transformer show persistent above-nominal currents, only the side with 
the fault shows above-nominal line to line voltage, and only on one phase.  Also, the peak 
overvoltage occurs during a slight overshoot of the current magnitude around time 2.4 s, and 
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settles to a level just below the 110% threshold for the remainder of the test before the inverter 
shuts down. Hence we can conclude that while the phenomenon of line to line overvoltage due to 
power rejection to the unfaulted phases in three-phase current controlled inverters does exist, the 
magnitudes of the overvoltage are not particularly high in the scenarios tested here.   

 
Figure 76: Current and line to line voltage waveforms for a test with delta-wye transformer and AI disabled 

(SD1D0004).  Note the increase in current magnitudes at the inverter output due to power rejection to the 
unfaulted phases. 
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4 Conclusions and Future Work 
The ground fault overvoltage tests implemented at NREL in partnership with SolarCity 
succeeded in experimentally quantifying single-phase-to-ground fault responses of three 
commercially available grid-interactive inverters.  These tests confirmed theoretical expectations 
that inverters will not cause the high, sustained overvoltages at their output terminals associated 
with neutral shift following a ground fault. These tests focused on scenarios where the generation 
to load ratio was balanced in order to observe the ground fault behavior in isolation, and in order 
to allow the inverter to remain connected for as long as possible following the ground fault.  
Note that in cases where the generation to load ratio is less than one, a combination of ground 
fault response and load rejection response (as characterized in [4], [5]) would be expected. 

The tests also quantified the effects of transformers on ground fault overvoltage. When anti-
islanding controls on the inverters were turned off, tests with delta-wye transformers tended to 
increase the magnitude and duration of overvoltages significantly, showing evidence of true 
neutral shift, as expected.  However, these tests examined a scenario that will not occur in the 
field, where anti-islanding controls are always enabled. Thus, additional tests were performed 
with anti-islanding controls enabled (as they would be in the field). The results with anti-
islanding controls enabled showed greatly reduced overvoltage durations compared to the tests 
with anti-islanding controls disabled.  These results corroborate the theory that in ground fault 
situations, current-controlled inverters do not cause neutral shift GFO in the same way that 
synchronous machines can.   

While the largest inverter power rating tested here was 20 kW, these results are expected to be 
broadly applicable to all current-controlled inverters, from microinverters to utility-scale 
inverters, as the physical effects in play are not functions of inverter size.  Simulations to be 
presented in [8] will support this conclusion.   

These tests also demonstrate an additional overvoltage mechanism occurring with three-phase 
inverters in following ground faults in which the power from the faulted phase is diverted to the 
unfaulted phases, causing a low-magnitude transient overvoltage.  The theory behind this 
mechanism – and behind inverter ground fault response in general – will be further developed in 
an upcoming publication [8]. 

The test plan was based on one developed by FIGII through a consensus of various stakeholders.  
It was specifically designed to scientifically investigate inverter-driven GFO, and was not 
designed as a certification test.  It was also not designed to exactly reproduce the range of load 
conditions and circuit configurations on real distribution feeders, which vary widely.  Most 
importantly, the test was performed with the inverter’s island detection controls disabled 
whenever possible in order to isolate the ground fault response. 

Because the test plan used here was not designed as a certification test, the results 
presented here should not be subjected to pass/fail criteria.  Rather, the results presented here 
should be taken to indicate that current-controlled inverters (which are the vast majority of grid-
interactive inverters) do not cause neutral-shift GFO at their terminals in the same way as 
synchronous machines, but that they can cause brief neutral-shift GFO when connected on the 
wye side of a delta-wye transformer.  In this case, the GFO occurs only on the delta side, and the 
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duration of the GFO will likely depend on the specific inverter controls and on the details of the 
circuit.  It was also shown that inverters do tend to cause GFO with delta-connected loads; 
intermediate combinations of wye and delta load were not investigated.  Loads unbalanced 
between phases were also not investigated. 

Future work on this topic should include development of inverter models that can be used to 
accurately simulate GFO scenarios of interest to utilities, inverter manufacturers, PV project 
developers, electricity end-users, and other stakeholders. The data presented in this report can be 
used to develop and validate those models.  It is also worth investigating how other inverter 
types respond to ground faults through future analysis, simulation, and experimentation. In 
addition, the GFO test used here by design included only one type of load: an RLC load balanced 
to the generation source.  Future work should investigate ground faults with inverters feeding 
other load types including unbalanced loads, varying generation:load ratios, and other classes of 
loads (ZIP-motor loads).   

In addition, it would be reasonable to develop recommended practices for distribution-connected 
inverters with respect to GFO, as this report corroborates the expectation based on past 
theoretical work and simulations that existing practices developed for synchronous machines are 
not appropriate for inverters.  Specifically, requiring effective grounding for inverters introduces 
extra costs but is not expected to mitigate inverter-driven GFO in many cases.  It may be 
necessary to develop a test to certify that a given model of inverter is indeed a current-controlled 
inverter (or behaves as such), because it is possible to create grid-interactive voltage-controlled 
inverters, though they are quite uncommon at present.   

  

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



 

 76 

References 
 
[1] P. Barker, “Overvoltage considerations in applying distributed resources on power 

systems,” in 2002 IEEE Power Engineering Society Summer Meeting, 2002, vol. 1, pp. 
109–114 vol.1. 

[2] M. Ropp, “Inverter grounding and overvoltages,” IEEE PES General Meeting, Jul-2014. 

[3] M. E. Ropp, M. Johnson, D. Schutz, and S. Cozine, “Effective grounding of distributed 
generation inverters may not mitigate transient and temporary overvoltage,” Western 
Protective Relay Conference, 2012. 

[4] A. Nelson, A. Hoke, S. Chakraborty, J. Chebahtah, T. Wang, and B. Zimmerly, “Inverter 
Load Rejection Over-Voltage Testing,” NREL, TP-5D00-63510, Feb. 2015. 

[5] A. Nelson, A. Hoke, S. Chakraborty, J. Chebahtah, T. Wang, B. Zimmerly, and M. Ropp, 
“Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar 
Inverters,” IEEE Photovoltaics Specialists Conference (PVSC), 2015. 

[6] “IEEE Standard C62.92 - IEEE Guide for the Application of Neutral Grounding in 
Electrical Utility Systems.” IEEE, 2000. 

[7] “IEEE 142-2007 - IEEE Recommended Practice for Grounding of Industrial and 
Commercial Power Systems,” IEEE, 2007. 

[8] M. Ropp, A. Hoke, S. Chakraborty, D. Schutz, C. Mouw, A. Nelson, T. Wang, J. 
Chebahtah, and M. McCarty, “Ground Fault Overvoltage with Inverter-Interfaced 
Distributed Resources,” Submitt. IEEE Trans. Power Deliv. 

[9] “IEEE Standard 1547: Standard for Interconnecting Distributed Resources with Electric 
Power Systems,” IEEE, 2003. 

[10] “IEEE Standard 1547.1: Standard for Interconnecting Distributed Resources with Electric 
Power Systems,” IEEE, 2003. 

 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.


	Acknowledgments
	Executive Summary
	Contents
	Figures
	Tables
	1 Introduction
	2 Test Procedures
	2.1 GFO Test Procedure
	2.2 GFO Data Reporting 
	2.3 Test Inverters and Test Equipment Description

	3 Test Results
	3.1 RLC Load Tuning
	3.2 Total Time Above Voltage Thresholds
	3.3 Maximum Continuous Time Above Voltage Thresholds
	3.4 Maximum Instantaneous Overvoltage
	3.5 Trip Time / Time to Disconnect
	3.6 Waveforms of Interest
	3.7 Effect of Voltage and Frequency Trip Settings
	3.8 Comparison of GFO Test Versions: AI Enabled vs. AI Disabled
	3.9 Tests with Transformers
	3.10  Tests with Delta-connected Load
	3.11 Line to Line Voltage Analysis

	4 Conclusions and Future Work
	References




