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Abstract—Accurate solar power forecasting allows utilities to 
get the most out of the solar resources on their systems. To truly 
measure the improvements that any new solar forecasting 
methods can provide, it is important to first develop (or 
determine) baseline and target solar forecasting at different 
spatial and temporal scales. This paper aims to develop baseline 
and target values for solar forecasting metrics. These were 
informed by close collaboration with utility and independent 
system operator partners. The baseline values are established 
based on state-of-the-art numerical weather prediction models 
and persistence models. The target values are determined based 
on the reduction in the amount of reserves that must be held to 
accommodate the uncertainty of solar power output. 

Keywords—grid integration; numerical weather prediction; 
operating reserve; ramp forecasting; solar power forecasting 

I. INTRODUCTION 
The penetration of solar power in the electric grid is 

steadily rising, and the SunShot Vision Study reported that 
solar power could provide as much as 14% of U.S. electricity 
demand by 2030 and 27% by 2050 [1]. The increasing 
penetration of solar power has raised questions about how to 
best integrate variable renewable energy sources with the 
thermal power plants that dominate power production in the 
United States today. At high levels of solar energy 
penetration, solar power forecasting will become very 
important for electricity system operations, because it helps 
to reduce the uncertainty associated with the power output. 

A. Baseline of Solar Forecasting 

To truly measure the improvements that any new solar 
forecasting methods can provide, it is important to first assess 
the current state of the art in solar forecasting. A number of 
papers in the literature present global horizontal irradiance 
(GHI) forecast models for day-ahead and other similar 
timescale forecasts. Generally, a baseline model is used for 
comparison, which is selected from: (i) persistence models 
[2, 3]; (ii) numerical weather prediction (NWP) models 
without bias correction [4, 5]; and (iii) NWP models with 
bias correction [6, 7]. Most of the literature includes a 
comparison to persistence models in which the forecast 24 
hours (or 48 hours, etc.) ahead is set to the measurement of 
irradiance from the day (or two, etc.) before. Even when 
comparing multiple models for different geographic locations 
to additional baselines, the persistence model is generally 
included as a reference. 

Relatively fewer papers in the literature present day-ahead 
baseline forecasts (or similar timescales) for solar power 
predictions; however, the approaches to solar power 
forecasting baselines seem to be similar to those for 
irradiance forecasts. Baseline models include (i) persistence 
models that set the day-ahead forecasted photovoltaic (PV) 
power equal to the measured PV power 24 hours before that 
time [8-10]; (ii) NWP + plane of array (POA) irradiance 
calculation + PV models [8-10]; and (iii) NWP with bias 
correction + POA irradiance calculation + PV models [8-10]. 
Essentially, baselines in the different PV power predictions 
for day-ahead forecasts always include a persistence model. 
They also seem to utilize one or more of the NWP forecast 
models. 

B. Research Motivation and Objectives 

Target values for the solar forecasting technology will 
establish the goals for improvements that are to be expected. 
Different strategies are used in power system operations at 
different timescales to ensure economic operations and 
reliability; thus, it is important to characterize solar 
forecasting at all timescales of interest. The baseline and 
target values will be made for different geographic and 
energy-market regions to evaluate the versatility of the 
technology. 

The objective of this paper is to determine the baseline 
and target values for solar power forecasting metrics. A suite 
of generally applicable, value-based, and custom-designed 
metrics were adopted for evaluating solar forecasting for 
different scenarios. Section 2 presents the methodology for 
determining baseline and target values. Section 3 discusses 
the results of the California Independent System Operator 
(CAISO) case study. Concluding remarks and future work 
are given in the final section. 

II. METHODOLOGY FOR DETERMINING BASELINE AND 
TARGET METRICS VALUES FOR SOLAR FORECASTING  

Operations of power systems occur at different timescales 
that can be summarized, from longest to shortest, as unit 
commitment, load-following, economic dispatch, and 
regulation. To understand the impact of solar forecasts on 
solar power integration, it is important to characterize solar 
forecast errors at all timescales of interest. One of the 
objectives of this study is to determine the baseline and target 
solar forecasting metrics over a number of different 
timescales. Four solar forecast horizons are investigated: day-
ahead (DA) forecasts, 4-hour-ahead (4HA) forecasts, 1-hour-
ahead (1HA) forecasts, and 15-minute-ahead (15MA) 
forecasts. 

This work was supported by the U.S. Department of Energy under 
Contract No. DE-AC36-08-GO28308 with the National Renewable Energy 
Laboratory. Valuable comments from the utility partners (ISO-New 
England, California-ISO, Green Mountain Power, and Tucson Electric 
Power) are gratefully acknowledged. 
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A. Metrics for Assessing Solar Forecasting 

A suite of generally applicable, value-based, and custom-
designed metrics for solar forecasting for a comprehensive 
set of scenarios (different time horizons, geographic 
locations, applications, etc.) were developed in previous 
work by the authors [11]. The proposed solar forecasting 

metrics can be broadly divided into four categories: (i) 
statistical metrics for different time and geographic scales; 
(ii) uncertainty quantification and propagation metrics, (iii) 
ramp characterization metrics; and (iv) economic metrics. A 
brief description of the metrics is given in Table 1, and 
detailed information about each metric can be found in [11]. 

 
Table 1. PROPOSED METRICS FOR SOLAR POWER FORECASTING [11] 

Type Metric Description/Comment 

Statistical Metrics 

Distribution of forecast errors 
Provides a visualization of the full range of forecast errors and variability of 
solar forecasts at multiple temporal and spatial scales 

Pearson’s Correlation coefficient Linear correlation between forecasted and actual solar power 

Root mean square error (RMSE) and 
normalized root mean square error (NRMSE) 

Suitable for evaluating the overall accuracy of the forecasts while penalizing 
large forecast errors in a square order 

Root mean quartic error (RMQE) and 
normalized root mean quartic error (NRMQE) 

Suitable for evaluating the overall accuracy of the forecasts while penalizing 
large forecast errors in a quartic order 

Maximum absolute error (MaxAE) Suitable for evaluating the largest forecast error 
Mean absolute error (MAE) and mean absolute 
percentage error (MAPE) 

Suitable for evaluating uniform forecast errors 

Mean bias error (MBE) Suitable for assessing forecast bias 
Kolmogorov–Smirnov test integral (KSI) or 
KSIPer 

Evaluates the statistical similarity between the forecasted and actual solar 
power 

OVER or OVERPer 
Characterizes the statistical similarity between the forecasted and actual 
solar power on large forecast errors 

Skewness  
Measures the asymmetry of the distribution of forecast errors; a positive (or 
negative) skewness leads to an over-forecasting (or under-forecasting) tail 

Excess kurtosis 
Measures the magnitude of the peak of the distribution of forecast errors; a 
positive (or negative) kurtosis value indicates a peaked (or flat) distribution, 
greater or less than that of the normal distribution 

Uncertainty 
Quantification 

Metrics 

Rényi entropy 
Quantifies the uncertainty of a forecast; it can utilize all of the information 
present in the forecast error distributions 

Standard deviation Quantifies the uncertainty of a forecast 
Ramp 

Characterization  
Swinging door algorithm 

Extracts ramps in solar power output by identifying the start and end points 
of each ramp 

Economic Metrics 95th percentile of forecast errors 
Represents the amount of non-spinning reserves service held to compensate 
for solar power forecast errors 

 

B. Methodology for Determining Baseline Values  

From the temporal point of view, the simplest approach to 
estimate forecasting baselines is that of climatology. The 
climatology approach consists of using a constant long-term 
average value throughout the entire forecasting period; the 
average value is often used as a benchmark for the 
forecasting skill with minimal effort. However, we consider 
that the solar forecasting sector has surpassed this 
benchmark, and a better baseline approach is need.  

Instead, we decided to use two other fundamental 
forecasting approaches: the model and the persistence 
approaches. The model approach corresponds to the use of 
products from NWP models, which rarely achieve useful 
skill at lead times smaller than a few hours because of the 
(spin-up) period they require to achieve numerical stability. 
The persistence approach (more specifically, Eulerian 
persistence) corresponds to using the persistence of the recent 
observations. This shows superior skill in the shorter 
forecasting periods and when atmospheric variability is 
smaller (e.g., dry climates, few clouds). 

In general, the persistence forecasts show better skill than 
the model forecasts in the short term, whereas the model 
forecasts show better skill (than the persistence) after a few 

hours in the forecasting period [12]. Therefore, our baseline 
forecasts for 0- to 4-hour lead times use the persistence 
approach, whereas our day-ahead baseline forecasts use the 
model approach. 

Given the aforementioned consideration, the overall 
methodology for establishing baseline values is summarized 
in Table 2. The establishment of baseline values for day-
ahead forecasting for each of the metrics is based on a state-
of-the-art weather model, specifically the North American 
Mesoscale Forecast System (NAM) [13], in combination 
with a streamer radiative transfer model (RTM) and the PV-
Lib toolbox [14] for irradiance-to-power modeling. A 
modified persistence model is adopted for the 15MA, 1HA, 
and 4HA forecasts. 

Table 2. OVERALL APPROACH TO ESTABLISHING BASELINES 
Forecast 
Horizon 

Weather 
Information 

Irradiance 
Forecasts Power Forecasts 

15MA, 1HA, 
and 4HA Persistence Streamer 

RTM Persistence of cloudiness 

DA NAM Streamer 
RTM 

PV-Lib or linear least 
square fit (if no PV 

specifications available) 
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1) Numerical Weather Predictions for DA Solar Forecasting 

This day-ahead forecast uses NAM weather forecasting 
and a streamer RTM. The 5-km grid NAM forecast that runs 
at 06z daily is employed. Two NAM forecast windows, 0 to 
23 hours ahead and 24 to 47 hours ahead, are used to derive 
solar irradiance forecasts for the two types of day-ahead (0 to 
23 hours and 24 to 47 hours ahead) baseline values.  

The vertical profiles (39 vertical levels) of pressure, 
temperature, geopotential height, humidity, cloud liquid 
water content, cloud ice content, and surface albedo are taken 
from the NAM forecast. The climatological monthly average 
of ozone concentration and aerosol optical depth are taken 
from the MODIS data set. Together these form the input for 
the streamer RTM [15], which solves the radiative transfer 
equation for the plane-parallel geometry using the spherical 
harmonic discrete ordinate method to calculate GHI and 
direct normal irradiance (DNI) at the Earth’s surface. The 
GHI, DNI, ambient temperature (2 m above ground), and 
wind speed (10 m above ground) are then fed into an 
irradiance-to-power model to derive forecasted AC PV 
power. The irradiance-to-power model consists of two parts: 
(i) the PV modules are modeled using the CEC model, and 
(ii) the inverters are modeled using the Sandia National 
Laboratories model, both of which are implemented in PV-
Lib [14].  

2) Persistence for 15MA, 1HA, and 4HA Solar Forecasting 

The 15MA, 1HA, and 4HA forecasts were synthesized 
using a persistence of cloudiness approach. In this method, 
the solar power index (SPI) is first calculated, which 
represents the ratio between actual power (P) and clear-sky 
power (PCS). Then the solar forecast power is estimated by 
modifying the current power output by the expected change 
in clear-sky output. For the 1HA persistence of cloudiness 
approach, the forecast solar power at time t+1 can be 
calculated as follows: 

𝑃(𝑡 + 1) = 𝑃(𝑡) + 𝑆𝑆𝑆(𝑡) × [𝑃𝐶𝐶(𝑡 + 1) − 𝑃𝐶𝐶(𝑡)] (1) 

where 𝑃𝐶𝐶(𝑡 + 1) and 𝑃𝐶𝐶(𝑡) represent the clear-sky solar 
power at time t+1 and t, respectively; P(t) is the actual solar 
power output at time t; and SPI(t) is the solar power index at 
time t. 

In this work, the clear-sky power 𝑃𝐶𝐶(𝑡) is calculated for 
all test site locations following two steps. First, the standard 
summer atmospheric profile of temperature, pressure, and 
humidity without clouds is assumed. Streamer RTM [15] is 
employed to calculate the Earth’s surface-level GHI and 
DNI. Second, the CEC irradiance-to-power model, which is 
implemented in PV-Lib, is used to calculate AC PV output 
from GHI and DNI. In the irradiance-to-power calculation, 
we assume an ambient temperature of 300 K and no wind. 

C. Methodology for Determining Target Metrics  

The target values of solar forecasting metrics are derived 
by (i) applying uniform forecasting improvements by x% 
based on the baseline forecasting; (ii) applying ramp 
forecasting improvements by y% based on the baseline 
forecasting; and (iii) deriving a complete set of target 
metrics. The values of x% and y% are determined based on 
the economic impacts of improved solar power forecasting 
(i.e., a reduction of 25% in reserve levels, which is based on 
a partner utility consensus). 

Two types of forecasting improvements are implemented. 
The improvements are categorized by the appearance of large 
solar ramps, which are one of the biggest concerns of high-
penetration solar power scenarios. First, the start and end 
points of all significant ramps are extracted using the 
swinging door algorithm (see Section II.C.1). The definition 
of significant ramps is based on the magnitude of solar power 
change. These improvements are generated through the 
following procedures: 
• Uniform improvements of the time series excluding 

ramping periods: The forecast errors of the time series 
when there is not a significant ramp are uniformly 
decreased by a percentage (x%). 

• Ramp forecasting magnitude improvements: Only 
significant ramps that are identified as a change greater 
than or equal to a threshold value (θ) are modified in the 
improved forecasts. The forecast errors of the time series 
with ramps are decreased by a percentage (y%). 

• Ramp forecasting threshold: The ramp forecasting 
threshold (θ) is set as 10% of the solar power capacity in 
this paper. 

Figure 1 illustrates the overall structure of the 
methodology to determine target metrics of solar forecasting.  
• First, the reserve cost of the baseline solar forecasting 

(𝐶𝑏) is calculated, and a 25% reduction is assumed for 
the target reserve level (𝐶𝑡). 

• Second, a set of (𝑁) combinations of x% uniform 
forecasting improvement and y% ramp forecasting 
magnitude improvements are applied to the baseline 
forecasting. The reserve costs (𝐶𝑖) from the 𝑁 improved 
solar forecasting combinations are calculated.  

• The set of x% and y% values, with the smallest 
difference between the ideal target reserve cost (𝐶𝑡) and 
the reserve cost from the improved solar forecasting (𝐶𝑖), 
is then selected for deriving the final target value for the 
solar forecasting. It is important to note that other sets of 
x% and y% combinations can also be used if the 
selection criterion is changed. 

• Finally, a complete set of target metrics is calculated 
based on the target solar forecasting value. 

 
Figure 1. Overall structure to determine target metrics  

1) Swinging Door Algorithm 

The swinging door algorithm extracts ramp periods in a 
series of power signals by identifying the start and end points 
of each ramp. The algorithm allows for the consideration of a 
threshold parameter influencing its sensitivity to ramp 
variations. The only tunable parameter in the algorithm is the 
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width of a “door,” represented by ε. The parameter ε directly 
characterizes the threshold sensitivity to noise and/or 
insignificant fluctuations. With a smaller ε value, many small 
ramps will be identified; with a larger ε value, only a few 
large ramps will be identified. A detailed description of the 
swinging door algorithm can be found in [11]. 

2) Flexibility Reserves for 15MA, 1HA, 4HA, and DA 
Forecasting 

The reduction in the amount of reserves that must be 
carried to accommodate the uncertainty of solar power output 
is anticipated to be one of the largest cost savings. An 
advanced reserve calculation algorithm is thus applied to 
estimate the reserve reductions that various solar power 
forecasting improvements would allow. This methodology 
was originally developed during the Western Wind and Solar 
Integration Study Phase 2 [16]. Improved forecasting (on 
average) reduces the amount of reserves that must be held, 
and various types of flexibility reserves are defined by: 
• For 15MA, 1HA, and 4HA solar power forecasting, 

spinning reserves are used to derive the target solar 
forecasting values. Spinning reserves represent the 
online capacity that can be deployed very quickly 
(seconds to minutes) to respond to variability. In this 
study, the spinning reserve for 0- to 4-hours-ahead 
forecasting (𝑅𝑠𝐻𝐻) is defined as the 95% confidence 
interval (∅95) of solar power forecast errors (𝑒𝐻𝐻) at the 
15MA, 1HA, or 4HA horizon. 

𝑅𝑠𝐻𝐻 = ∅95(𝑒𝐻𝐻) (2) 
• For DA solar forecasting, both spinning and non-

spinning reserves are used to derive the solar forecasting 
target. Non-spinning reserves represent the off-line or 
reserved capacity, or load resources (interruptible loads), 
capable of deploying within 30 minutes for at least 1 
hour. In this paper, the spinning reserve for the DA 
forecasting (𝑅𝑠𝐷𝐷) is defined as the 70% confidence 
interval (∅70) of the DA solar power forecast errors 
(𝑒𝐷𝐷). The non-spinning reserve (𝑅𝑛𝑛𝐷𝐷) is defined by the 
difference between the 95% confidence interval (∅95) 
and the 70% confidence interval (∅70) of the DA solar 
power forecast errors (𝑒𝐷𝐷). 

𝑅𝑠𝐷𝐷 = ∅70(𝑒𝐷𝐷) (3) 

𝑅𝑛𝑛𝐷𝐷 = ∅95(𝑒𝐷𝐷) − ∅70(𝑒𝐷𝐷) (4) 
Considering the cost of holding and deploying reserves, 

this study assumes that the cost of non-spinning reserve per 
MW (𝐶𝑛𝑛𝑀𝑀) is twice the cost of spinning reserve per MW 
(𝐶𝑠𝑀𝑀): 

𝐶𝑛𝑛𝑀𝑀 = 2 × 𝐶𝑠𝑀𝑀 (5) 
Equation (5) is derived based on the (i) start costs of multiple 
types of generators used for spinning and non-spinning 
reserves (gas turbine or oil turbine) and (ii) heat rates and 
fuel costs of multiple fuel types (e.g., biomass, nuclear, coal, 
and combined cycle). 

III. CASE STUDY 
Currently, there are two main customers for solar 

forecasting technologies: utility companies and independent 
system operators (ISOs). As solar penetration increases, solar 
forecasting will become more important to solar energy 
producers and solar power plant developers.  

From the spatial point of view, there are two distinct types 
of test cases for the baseline and target values: point (single 
PV plant) and regional. In the point case, we are able to 
gather detailed information about the operational 
configuration of a particular PV plant (e.g., PV panel and 
inverter types). In conjunction with atmospheric estimates 
throughout the plant, we can perform physics-based 
numerical forecasts of the power production at the plant. We 
can also validate the point forecasts by using the observed 
power production. In the regional case, it is infeasible to 
gather the operational configurations for the multitude of 
solar PV producers in the region; however, an empirical 
relationship between the regional power production and the 
solar irradiance fields can be estimated by NWPs. 

Three PV plants were chosen among hundreds of sites 
available by the solar utilities in the Watt-sun [17] research 
consortium as point test cases: Smyrna, Green Mountain 
Power, and Tucson Electric Power. The selection was based 
on the best quality, continuity, and variety of power 
production observations at the sites. In addition, two regional 
test cases were chosen to cover two distinct atmospheric 
conditions: a cloudier and more humid climate for the ISO-
NE region in contrast to a relatively drier climate and less 
clouds in the CAISO region. A few assumptions were made: 
(i) data points at nighttime were removed when the actual or 
forecasted power was zero; (ii) hourly point forecasts were 
used for DA, 4HA, and 1HA forecasts; and (iii) 15-minute 
average forecasts were used for 15MA forecasts. Considering 
the space limitations, only the results for the CAISO case are 
presented in this paper. 

A. Baseline Values and Target Metrics for CAISO 

CAISO has 4,173 MW generation capacity distributed 
along the coast of California with a few large plants (20 to 40 
MW) and a distribution of small (10-kW) residential and 
commercial installations. Concentrations are high from San 
Diego to Los Angeles and in San Francisco. Many larger 
(MW-size) plants are located in the interior of the state. Data 
is available in 1-hour intervals in AC production summed 
throughout the CAISO region. Day-to-day variations in 
production are relatively small.   

Table 3 lists the amounts of the baseline and target 
reserves for different forecast horizons. For DA forecasts, the 
uniform forecasting improvement and ramp forecasting 
improvement were determined based on the combined 
reduction (25%) in spinning and non-spinning reserves costs. 
For the 15MA, 1HA, and 4HA forecasts, the improvements 
were determined based only on spinning reserves. 

Table 3. BASELINE AND TARGET RESERVES VALUES 

Forecast Horizon 
Baseline 
Reserve 
(MW) 

Uniform 
Improvement 

Ramping 
Improvement 

Target 
Reserve 
(MW) 

0-23 DA spin 227.75 25.13% 30.88% 168.17 
0-23 DA non-spin 448.25 335.48 
24-47 DA spin 222.57 17.58% 34.83% 165.28 
24-47 DA non-spin 383.46 285.49 
1HA spin 459.45 25.84% 21.53% 344.68 
4HA spin 766.47 37.34% 10.03% 577.69 
15MA spin 111.89 40.58% 11.83% 83.96 

Figure 2(a) and 3(b) illustrate the distributions of solar 
power forecast errors for the baseline and target forecasting, 
respectively. It is observed that (i) the 15MA forecasts 
perform the best among all forecast horizons, as shown by 
the peak of the distribution, and (ii) the distribution of the 
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target forecast errors is relatively skinnier than the 
corresponding distribution of the baseline forecast errors. 

The baseline values and target metrics are summarized in 
Table 4. The NAM model for the DA forecasts and the 
persistence model for the 4HA, 1HA, and 15MA forecasts are 
accurate with very high correlation coefficients and small 
RMSE and MAPE values. The relatively larger RMSE and 
MAE values in the 4HA forecasts are partially attributed to the 
inherent assumption that indirect light and panel temperature 
changes of more than 4 hours are not accounted for. The 
financial baseline and targets can be translated back to 
forecasting accuracy metrics and requirements, which will 
guide research on solar forecasting improvements towards the 
areas that are most beneficial to power systems operations. 

  
(a) Baseline (b) Target 

Figure 2. Distribution of baseline values and target metrics for solar power 
forecast errors at DA, 4HA, 1HA, and 15MA forecast horizons 

Table 4. Baseline Values and Target Metrics for CAISO at Different Forecast Horizons 

Metrics 
DA (24-

47) 
Baseline 

DA (24-
47) 

Target 

DA (0-
23) 

Baseline 

DA (0-
23) 

Target 

4HA 
Baseline 

4HA 
Target 

1HA 
Baseline 

1HA 
Target 

15MA 
Baseline 

15MA 
Target 

Correlation coefficient 0.97 0.98 0.98 0.99 0.96 0.97 0.98 0.99 1.00 1.00 
RMSE (MW) 168.39 120.05 150.54 110.82 184.62 149.17 119.91 90.75 29.01 21.42 
NRMSE by capacity 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.02 0.01 0.01 
MaxAE (MW) 2728.00 1777.89 860.02 619.10 1736.00 1561.86 1252.63 982.93 313.16 276.12 
MAE (MW) 98.56 71.74 98.91 72.68 111.97 85.35 93.98 70.95 22.24 15.45 
MAPE by capacity 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.00 
MBE (MW) -8.25 -6.55 -5.72 -4.46 4.45 4.38 16.74 12.42 4.43 3.35 
KSIPer (%) 16.61 14.12 16.36 14.71 31.02 22.68 38.91 31.88 16.93 13.82 
OVERPer (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 
Standard dev. (MW) 168.25 119.92 150.47 110.76 184.63 149.16 118.77 89.91 28.68 21.16 
Skewness 3.04 2.30 0.04 0.04 0.83 1.02 -0.40 -0.49 -0.42 -0.64 
Kurtosis 59.89 43.03 3.17 3.15 13.27 19.81 5.86 6.74 6.42 13.96 
4RMQE (MW) 472.71 311.54 237.20 174.47 371.25 326.40 204.29 158.20 50.08 42.77 
N4RMQE by capacity 0.11 0.07 0.06 0.04 0.09 0.08 0.05 0.04 0.01 0.01 
95th percentile (MW) 304.10 227.02 339.69 251.51 386.30 298.80 229.08 175.52 55.85 42.29 
Renyi entropy 3.09 3.24 4.21 4.23 3.44 3.13 4.54 4.51 4.42 4.07 
NRMSE by clear-sky power 0.31 0.22 0.26 0.19 0.27 0.22 0.19 0.14 0.02 0.02 
MAPE by clear-sky power 0.18 0.13 0.17 0.13 0.16 0.12 0.15 0.11 0.02 0.01 

 

IV. CONCLUSION 
To conclude, we note that the development of baseline 

and target values for solar forecasting is closely related to 
the objective of quantifying the economic benefit of solar 
forecasting, around which currently the industry has no 
consensus. This is not only because of the complicated 
hierarchy and structure of the electrical energy market, but 
also because of the lack of in-depth understanding about 
how the forecast information may seamlessly fit into 
utility or ISO operations. Our development of baseline 
values and target economic metrics for quantifying the 
benefits of the solar forecast system has been based on 
close collaboration with utility and ISO partners.  

As a result of such communications with utilities and 
ISOs, we found that although solar forecasts are likely to 
have a multitude of economic benefits, the industry agrees 
that improved solar forecast accuracy will lead to a 
reduction in the amount of minimum reserves that must be 
carried to accommodate the uncertainty of solar power 
output. Such a reduction in reserves is likely to be one of 
the largest cost savings in the near future. Toward this end, 
we have provided the actual amount of reduction in 
spinning and non-spinning reserves for the test case, after 
the forecast accuracy is improved from the baseline to the 
target value. From these results, we note that even at 
present, the amount of reserve reduction for CAISO will 
be several hundred MW, which will correspond to an 
annual savings on the order of $100 million. The savings 
will continue to grow in the next years as the level of PV 
power penetration increases in the region. 
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