Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT)

E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan

Conference on Electric Roads & Vehicles
February 10, 2015
Park City, Utah
Regional Road Usage

- 1% of roads are used for 25% of the vehicle miles traveled
- Extensive overlap in road usage apparent across regional vehicle population
- Overlap occurs on high capacity roads
In-Motion Power Transfer

Potential: Road electrification could remove range restrictions of EVs, and increase the fuel savings of PHEVs or HEVs if implemented on a large scale

- ~1% of all roads nationally to be electrified
- Full build out is a major endeavor, so what might incremental benefit be?
- Who might benefit most a state, an urban area?
 - What would be the incentive?

Question: If a government entity wanted to deploy In-Motion WPT what is the fuel savings potential for the regional hybrid personal vehicle population?

- **Metrics:**
 - Cost: Infrastructure Mileage
 - Benefit: Fuel Displaced

- **Assumptions:**
 - Only hybrid vehicle benefits considered
 - Incremental roll out of infrastructure
 - All fuel is displaced during time spent on infrastructure

BEV: Battery Electric Vehicles **PHEV:** Plug in Hybrid Vehicles **HEV:** Hybrid Electric Vehicles

NATIONAL RENEWABLE ENERGY LABORATORY
WPT Fuel Savings Estimation

Workflow

Step 1: Spatial Indexing
- Match drive cycles to census geographies
- Match drive cycles to road network

Step 2: Simulation
- Identify vehicle fuel use through simulation across vehicle models using approximately 1 million miles of on road data

Step 3: Data Fusion
- Merge result from step 1 & 2 to quantify fuel use by road segment across a variety of vehicle models
- Assign priority for roll out based on potential fuel displacement

Resources & Tools

Transportation Secure Data Center (TSDC)
Warehouse of personal vehicle drive cycles collected as part of household travel surveys

Future Automotive Systems Technology Simulator (FASTSim)
Drive cycle simulation tool

High Performance Computing
Census Geographies

- **Consolidated Statistical Area (CSA):**
 - CSAs represent groupings of metropolitan and/or micropolitan statistical areas

- **GPS data divided by In-CSA and Out of CSA**

- **GPS In-CSA divided on high capacity, and not on high capacity roads using map match**
Drive Cycle Match

- Interstates and Highways make up between 2.5% and 4% of the total roads within the CSAs
- The mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago
- Consistent with previous observations

<table>
<thead>
<tr>
<th>Region</th>
<th>In-CSA Interstate\Highway Miles</th>
<th>% Of Travel Captured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>1,489 (3.6%)</td>
<td>24%</td>
</tr>
<tr>
<td>California</td>
<td>6,494 (4%)</td>
<td>54%</td>
</tr>
<tr>
<td>Chicago</td>
<td>1,367 (2.78%)</td>
<td>24%</td>
</tr>
<tr>
<td>Kansas City</td>
<td>222 (2.72%)</td>
<td>28%</td>
</tr>
</tbody>
</table>

Source: Transportation Secure Data Center
Atlanta interstate speed profiles
Google Earth
Simulations Using GPS data

- Simulator takes speed profiles and simulates fuel consumption
- Merging the TSDC data, FASTSim and the HPC we can simulate millions of vehicle miles as dozens of vehicle models
- Merge with drive cycle match to identify where fuel is being consumed
Data Fusion

- Each urban interstate and highway road segment is given a priority using the total fuel displaced per road segment
 - Increased fuel consumption higher priority, and earlier deployment
- Variation in mileage, but similar trends when regional totals are normalized
Prioritization

Top 1%
Results

- If 1% of the road miles within a geography are electrified 25% of the fuel used by a ‘fleet’ of vehicles enabled with the technology could be displaced.

<table>
<thead>
<tr>
<th>Region</th>
<th>1% Mileage</th>
<th>Cost $3 Million/Mile</th>
<th>% Fuel Displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>413</td>
<td>1.2 Billion</td>
<td>25%</td>
</tr>
<tr>
<td>California</td>
<td>1803</td>
<td>5.4 Billion</td>
<td>25%</td>
</tr>
<tr>
<td>Chicago</td>
<td>491</td>
<td>1.4 Billion</td>
<td>25%</td>
</tr>
<tr>
<td>Kansas City</td>
<td>55</td>
<td>166 Million</td>
<td>25%</td>
</tr>
</tbody>
</table>
Considerations – Further Exploration

Geography
- Other census geographies
- Road Segmentation – Needs better normalization to eliminate weighting by segment length
- Defines the denominator of the % Roads metrics
 - Can have significant impact if comparisons are not made appropriately (used to normalize across regions)

Vehicle Drivetrain
- How does vehicle interact with infrastructure
 - Hybrid: Accept charge or direct power to the motor
 - Electric: Accept charge or direct power to the motor
- Charging efficiencies at high speed
- Metrics that can optimize for EVs

Exploration into suitability modeling to better assess costs and generalize fuel savings using capacity, speed, grade, flow, etc.

Expand HPC Implementation
- After first segment placed re-run simulation to place the second, and third